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Abstract

The use of forward models for the future development of mortality has been proposed by sev-
eral authors. In this article, we specify adequate volatility structures for such models. We de-
rive a Heath-Jarrow-Morton drift condition under different measures. Based on demographic
and epidemiological insights, we then propose two different models with a Gaussian and a
non-Gaussian volatility structure, respectively. We present a Maximum Likelihood approach
for the calibration of the Gaussian model and develop a Monte Carlo Pseudo Maximum Like-
lihood approach that can be used in the non-Gaussian case. We calibrate our models to
historic mortality data and analyze and value certain longevity-dependent payoffs within the
models.

I. Introduction

In classical actuarial mathematics, future mortality rates and survival probabilities are as-
sumed to be known. Life insurance premiums are determined by the principle of equivalence,
which is based on the insight that, for a sufficiently large portfolio of insureds, mortality risk
is diversifiable (see Bowers et al. (1997) for an introduction to classical actuarial mathemat-
ics). However, recent studies show that mortality improvements occur in an unpredictable
manner (see, e.g., Currie et al. (2004) or Macdonald et al. (2003)), and it is now a widely ac-
cepted fact that systematic mortality risk, i.e., the risk that aggregate mortality trends might
differ from those anticipated, is an important risk factor in both life insurance and pensions
(cf. Cairns et al. (2005b)). In particular, for annuity providers longevity risk, i.e., the risk that
mortality improvements are higher than anticipated, constitutes a source of risk which is disre-
garded by classical actuarial mathematics. In contrast to the “classical" mortality risk resulting
from small sample deviations (henceforth unsystematic mortality risk ), the risk arising from
non-deterministic mortality improvements is systematic in the sense that it can not be diversi-
fied away by an increasing number of insureds within an insurer’s portfolio. Thus, other meth-
ods of managing this risk have to be applied, e.g., securitization (see Cowley and Cummins
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(2005) for an introduction to securitization in life insurance and Blake et al. (2006a) for a sur-
vey of mortality linked securities for managing longevity risk).

In order to account for systematic mortality risk in life insurance or annuity portfolios and
for modeling mortality linked securities, models are needed which consider the stochastic
characteristics of the mortality evolution. In recent literature, a number of such models have
been presented (see Cairns et al. (2005b) for an overview and a categorization of stochastic
mortality models).

Most of the proposed models are so-called spot force models as they model the spot mor-
tality rate qx(t) or the spot force of mortality μst (x) (cf. Cairns et al. (2005b)). For exam-
ple, several authors have presented stochastic versions of well-known deterministic mor-
tality laws by replacing some or all of the parameters by stochastic processes (see, e.g.,
Milevsky and Promislow (2001) or Schrager (2006)). Loosely speaking, these spot force mod-
els are a stochastic version of period life tables, where mortality rates for all ages for a certain
year are noted.

However, annuity products are typically priced based on generation tables rather than period
tables, where some (expected) mortality trend is already considered, i.e., mortality rates for
each cohort of x-year olds for each future year are provided. These correspond to so-called
forward mortality models, which have been introduced by Milevsky and Promislow (2001)
and Dahl (2004), and studied in more detail by Cairns et al. (2005b), Miltersen and Persson
(2005), and Bauer (2008). Here, in contrast to spot force models, the whole age/term struc-
ture of mortality is modeled. However, to the authors’ knowledge, no concrete forward models
have been presented thus far.

As pointed out by Bauer and Russ (2006), given the initial term structure of mortality, for the
valuation of mortality contingent securities it is sufficient to fix an adequate volatility struc-
ture since the drift term is implied by the so-called Heath-Jarrow-Morton drift condition (see
Cairns et al. (2005b) or Miltersen and Persson (2005)). The goal of this paper is therefore to
derive an adequate model for the volatility of mortality, which, on the one hand, is capable of
capturing empirical effects as well as epidemiological and demographic insights and, on the
other hand, is still tractable in terms of calibration.

The text is organized as follows: In Section II, we introduce the forward force mortality mod-
eling framework based on Bauer (2008); aside from providing the necessary definitions, we
present and discuss Heath-Jarrow-Morton drift conditions for different situations.

When building their well-known model for the interest rate term structure, Nelson and Siegel
(1987) relied on their economic insights on how the yields’ structure may be transformed. Sim-
ilarly, when building a model for the term structure of mortality, one should take into account
insights how mortality may evolve. However, this is not primarily an economic or mathematical
question. Therefore, in Section III, we present opinions and insights regarding possible future
evolutions for the term structure of mortality from demographic and epidemiological points
of view and discuss how these insights can be reflected in mathematical mortality models.
Based on this discussion, we derive and specify our model for the volatility of the forward
force of mortality in the subsequent section.

Section V describes the calibration procedures: In the Gaussian case, i.e., for deterministic
volatility structures, we can determine the distribution of the forward force of mortality and,
on this basis, are able to calibrate the model using Maximum Likelihood estimation. For non-
Gaussian specifications, the distribution may not be known or may be hard to derive. Hence,
we propose a “Pseudo Maximum Likelihood" approach, which does not rely on a specific
structure of the volatility. Based on described data, illustrative numerical results as well as
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some applications are presented in the next section. We close with a summary and discuss
limitations as well as possible extensions of our approach.

II. Forward Force of Mortality Modeling

Similar to Cairns et al. (2005b), we consider the definition of stochastic mortality rates via a
(hypothetical) exogenously given longevity bond market. However, the respective quantities
may also be defined using an intensity based modeling approach, for example by using so-
called doubly stochastic processes (see, e.g., Biffis et al. (2005) or Miltersen and Persson
(2005)) – under some assumptions on the market price of mortality risk, which are satisfied
when modeling and pricing mortality linked securities, the approaches are equivalent (see
Bauer (2008)). We do not focus on generality, but we only provide the necessary ideas for our
application – for a deeper study we refer to Bauer (2008).

The Forward Force of Mortality For the remainder of the paper, we fix a time horizon T ∗ and
a filtered probability space (Ω,F ,F, P ), where F = (F)0≤t≤T ∗ is assumed to satisfy the usual
conditions, i.e., P -completeness and right continuity. Furthermore, we fix a (large) underlying
population of individuals at inception, where each individual has a certain age denoted by x0.

Following Cairns et al. (2005b), we denote by Πt (T, x0) the price at time t of a (T, x0) (Long-
evity) Bond, i.e., a financial security paying T p

(T )
x0 at maturity T , where T p

(T )
x0 denotes the

proportion of x0 year olds at inception who are still alive at time T (the survival rate or the
“realized" survival probability). Denoting the price of a zero coupon bond with maturity T at
time t by p(t, T ), we can define the forward force of mortality at time t with maturity T by:

μ̃t(T, x0) := − ∂
∂T
log

{
Πt (T, x0)

p(t, T )

}
. (1)

This implies:

Πt (T, x0) = tp
(t)
x0 p(t, T ) e

− ∫ T
t μ̃t(s,x0) ds , (2)

which motivates the definition and clarifies the similarity to forward interest rates.

Assuming independence of financial and biometric events1 and assuming that there exists a
risk-neutral measure Q for the market, Equations (1) and (2) yield:

Πt (T, x0)

tp
(t)
x0

= p(t, T )EQ

[
T p
(T )
x0

tp
(t)
x0

∣∣∣∣∣Ft
]

= p(t, T )EQ

[
T−tp

(T )
x0+t

∣∣∣Ft]
⇒ EQ

[
T−tp

(T )
x0+t

∣∣∣Ft] = e−
∫ T
t μ̃t(s,x0) ds . (3)

Now, we further assume that for every fixed T > 0 and x0, the forward forces μ̃·(T, x0) have
stochastic differentials, which, under Q, are given by:2

dμ̃t(T, x0) = α̃(t, T, x0) dt + σ̃(t, T, x0) dW̃t , μ̃0(T, x0) > 0, (4)

1This assumption has been challenged by, among others, Miltersen and Persson (2005) and Bauer and Russ
(2006). At this stage, we will nevertheless rely on it for the sake of simplicity, but we intend to consider correlations in
future work.

2We omit technical assumptions on the structure, but implicitly assume that all quantities are regular enough such
that all following operations are well-defined (see Bauer (2008) for details).
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where W̃t is a finite dimensional Brownian motion under Q. Therefore, in order to specify a
model for the term structure of mortality based on these generics, we have to:

1. Find (or define) the initial forward plane μ̃0(·, ·) : R2 → R.
2. Specify the drift term α̃(t, T, x0) and the volatility structure σ̃(t, T, x0).

When directly modeling under the risk-neutral measure Q, the situation simplifies as the drift
term is implied by the volatility structure:3

α̃(t, T, x0) = σ̃(t, T, x0)

∫ T
t

σ̃(t, s, x0)
′ ds. (5)

This is the well-known Heath-Jarrow-Morton (HJM) drift condition, which – for mortality mod-
eling – has been derived by Cairns et al. (2005b) and Miltersen and Persson (2005). For
pricing interest rate derivatives, the corresponding equation for forward interest rates can be
handily applied for calibrating the volatility structure to market prices. A similar idea for mor-
tality modeling has been presented by Bauer and Russ (2006), who propose to calibrate the
mortality volatility structure to mortality contingent options within life insurance products, for
example certain Guaranteed Minimum Benefits within Variable Annuity contracts. However, at
this point the market is not liquid enough to find adequate data for deriving meaningful param-
eterizations. It is thus necessary to rely on historical mortality data – and hence, we need to
model the real world dynamics under the physical measure P . Therefore, the question arises
whether, under this measure, it is also sufficient to specify a volatility structure in order to build
a model.

The Best Estimate Forward Force of Mortality In the previous subsection, the forward
forces have been defined based on longevity bond prices or, in other words, based on ex-
pected values of survival rates under a risk-neutral measure; from Equations (1) and (3), it
particularly follows that:

μ̃t(T, x0) = − ∂
∂T
log

{
EQ

[
T p
(T )
x0

∣∣∣Ft]} (6)

T>t
= − ∂

∂T
log

{
EQ

[
T−tp

(T )
x0+t

∣∣∣Ft]} .
However, typically only best estimate generation tables are available which do not provide
“risk-neutral" expectations, but rather expectations under the real world measure P . Thus, we
define forward rates based on these best estimates:

μ̂t(T, x0) := − ∂
∂T
log

{
EP

[
T p
(T )
x0

∣∣∣Ft]} (7)

T>t
= − ∂

∂T
log

{
EP

[
T−tp

(T )
x0+t

∣∣∣Ft]} .
In oder to differentiate between the “risk-neutral" forward rates from the previous subsection
and forward intensities from Equation (7), we will refer to the latter as best estimate forward
forces.

Let us now consider the dynamic evolution of best estimate forward forces by assuming P -
differentials of the form:

dμ̂t(T, x0) = α̂(t, T, x0) dt + σ̂(t, T, x0) dWt , μ̂0(T, x0) > 0, (8)
3Here, x ′ denotes the transpose of the vector x .
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where Wt is a Brownian motion under P of the same dimension as W̃t . Two natural questions
arise:

• Can we make any inference about the drift term of these dynamics?

• How do the dynamics of the different forward forces relate?

The first question is straight forward to answer: By virtually the same arguments as under the
risk-neutral measure, the HJM drift condition also holds for best estimate forward intensities
under the physical measure P (see Bauer (2008)). Therefore, we have (cf. Equation (5)):

α̂(t, T, x0) = σ̂(t, T, x0)

∫ T
t

σ̂(t, s, x0)
′ ds. (9)

Hence, given initial forward rates, it is again sufficient to specify the volatility structure. Based
on the volatility structure, we would then be able to, e.g., determine the expected payoff of a
mortality contingent security under the measure P . However, in order to price the security, we
need to determine the expected (discounted) payoff under some risk-neutral or risk-adjusted
measure, which brings us back to the second question.

Here, the answer is not that easy. However, we know that the spot force implied by the “risk-
neutral" and the best estimate forward dynamics must be the same:

μ̃st (x0) := μ̃t(t, x0) = − ∂
∂T
log

{
EQ

[
T p
(T )
x0

∣∣∣Ft]}∣∣∣∣
T=t

= − ∂
∂t
log

{
tp
t
x0

}
= − ∂

∂T
log

{
EP

[
T p
(T )
x0

∣∣∣Ft]}∣∣∣∣
T=t

= μ̂t(t, x0).

Furthermore, the forward dynamics imply the spot force dynamics. Hence, Proposition 2.1.2
in Bauer (2008) together with (8) and (9) yields that, under P , we have:

dμ̃st (x0) =
∂

∂T
μ̂t(t, x0) dt + σ̂(t, t, x0) dWt , μ̃

s
0(x0) = μ̂0(0, x0) > 0. (10)

Analogously, the spot force dynamics under Q are implied by the dynamics of the “risk-neutral"
forward intensities (see (4) and (5)):

dμ̃st (x0) =
∂

∂T
μ̃t(t, x0) dt + σ̃(t, t, x0) dW̃t , μ̃

s
0(x0) = μ̃0(0, x0) > 0. (11)

As the equivalent measure Q is given by its Girsanov density, say:

dQ

dP

∣∣∣∣
Ft
= exp

{
−
∫ t
0

λ(s)′ dWs − 1
2

∫ t
0

‖λ(s)‖2 ds
}
,

we can also determine the Q-dynamics taking Equation (10) as the starting point. By applying
Girsanov’s Theorem (see, e.g., Bingham and Kiesel (2003), Theorem 5.7.1), together with
(10) we get for the Q-dynamics of μ̃st (x0):

dμ̃st (x0) =
∂

∂T
μ̂t(t, x0) dt − σ̂(t, t, x0)λ(t) dt + σ̂(t, t, x0) dW̃t ,

μ̃s0(x0) = μ̂0(0, x0) > 0. (12)
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Finally from (11) and (12), it follows that:

σ̃(t, t, x0) = σ̂(t, t, x0),

∂

∂T
μ̃t(t, x0) =

∂

∂T
μ̂t(t, x0)− σ̂(t, t, x0)λ(t), (13)

almost surely. This means that we are able to determine μ̃t(t, x0) if the structure of the
market price of risk λ(t), the best estimate forward dynamics, i.e., σ̂(t, T, x0) and, thus, im-
plicitly μ̂t(T, x0) as well as ∂

∂T μ̂t(t, x0) are given. However, in general, we cannot conclude
σ̃(t, T, x0) = σ̂(t, T, x0) for all T .

When considering the Gaussian case, that is a deterministic choice of σ̂(t, T, x0) and a de-
terministic market price of risk λ(t), we are able to derive a stronger result: In this case, it is
easy to verify that:

EQ

[
T−tp

(T )
x0+t

∣∣∣Ft] = e− ∫ T
t

∫ s
t σ̂(u,s,x0)λ(u) du ds EP

[
T−tp

(T )
x0+t

∣∣∣Ft] ,
which yields:

μ̃t(t, T, x0) = μ̂t(t, T, x0) +

∫ T
t

σ̂(s, T, x0)λ(s) ds,

and hence:

σ̂(t, T, x0) = σ̃(t, T, x0) ∀t, T > t, x0. (14)

To conclude this section, we summarize the theoretical results and their practical implications
which are important for the remainder of the text:

• Given initial best estimate forward intensities, e.g., from some generation life table, we
can build a model for the dynamic evolution of the form (8) for the forward plane under
the physical measure P by simply specifying the volatility structure σ̂(t, T, x0). The drift
term is given by the P -HJM condition (9).

• The model under the physical measure can be calibrated to observed forward planes for
the same underlying population at different points in time.

• Once calibrated, the resulting model may be used to determine expected payoffs, quan-
tiles, etc. of mortality contingent claims. However, it is not yet a pricing model, even
though under the assumption of risk-neutrality with respect to mortality risk, i.e., λ(t) ≡
0, the models coincide.

• In general, in order to specify a corresponding pricing model, we also have to specify
the market price of risk λ(t).

• In the Gaussian case and under the assumption of a deterministic market price of risk,
Equation (14) yields that the volatilities of risk-neutral and best estimate forward rates
coincide. Therefore, given the initial risk-neutral forward plane from (hypothetical) long-
evity bond prices or as implied by insurance prices (see Bauer and Russ (2006)), the
Q-HJM condition (5) and a calibrated volatility structure can yield a pricing model.

• The resulting pricing model can be used to determine the values of mortality securitiza-
tion products such as longevity bonds or, under some additional assumptions, to deter-
mine values of mortality contingent options within insurance products such as Guaran-
teed Annuity Options (GAOs) or Guaranteed Minimum Benefits (GMBs) within Variable
Annuities.
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In order to specify a forward model, we are nevertheless still left with a wide range of choices,
the “fundamental" ones being the number of risk drivers (i.e., the dimension of the Brownian
motion) and the selection of volatility shapes (cf. Angelini and Herzel (2005)). A standard ap-
proach would be to conduct a Principal Component Analysis (PCA) to determine the number
of explaining factors. For forward interest rate models, two factors are usually considered
enough for modeling the entire term structure (see Angelini and Herzel (2005)). By analyzing
UK yields, Rebonato (1998) even concludes that one factor is enough to explain 92 percent of
the variance. For (periodic) mortality data on the other side, Lee and Carter (1992) show that
the first singular value explains about 93 percent of the total deviation.

However, these insights are only of limited use for our considerations, as we want to describe
forward forces for different terms to maturity and different ages at a time, such that a specific
PCA for our situation would be necessary. The first technical problem we are facing is that we
need a stationary formulation of the dynamics, which may be achieved by a reformulation of
our specification similarly to the well-known Musiela parameterization for forward interest rate
models. But aside from this technical peculiarity, we are faced with a more severe practical
problem: While interest rate or derivative data is available daily or even intra-daily and periodic
mortality rates are quoted at least annually, generation life tables are only compiled in relatively
large and irregular intervals. Hence, the data basis for calibrating a given model is very limited
and definitely too slim for conducting a meaningful PCA. Furthermore, it is questionable that
we will find the same patterns in future mortality evolution as were observed in the past, so
that it may be adequate to allow for “additional structures".

Therefore, as indicated in the Introduction, we rely on demographic and epidemiological in-
sights for the specification of our model.

III. Epidemiological Considerations for Mortality Modeling

We focus on the evolution of mortality for industrialized countries and restrict ourselves to one
representative population only. In the first subsection, we discuss possible interpretations of
the stochastic drivers in a mortality model. In particular, our argumentation is not yet directly
linked to the specific modeling framework presented in the previous section. However, we
conclude the subsection with a discussion of the adequacy of Brownian motions for modeling
the evolution of mortality. In the subsequent subsection, we then focus on the “translation"
of epidemiological insights in order to derive a suitable volatility structure within our model
framework.

Interpretation of Stochastic Mortality Drivers The most obvious approach to stochastic
mortality modeling from an epidemiological background would be to simply consider models
already applied in epidemiology. The most prominent models used for analyzing mortality
(and also morbidity) effects, are so-called risk factor models, cause of death models, or com-
binations of these (see, e.g., Van den Berg Jeths et al. (2001)). An intuitive idea is then to
adopt risk factors and/or causes of death from such models for the specification of a stochas-
tic mortality model.

However, there are certain limitations to this approach: With respect to the risk factor ap-
proach, Christensen and Vaupel (1996) assess the determinants of longevity and conclude
that “probably, a large number of environmental and genetic factors interact to determine lifes-
pan", for instance smoking, diet, physical activity, medicine, weight, socio-economic status,
education etc. It is hardly possible to list all relevant risk factors, let alone to consider all of
them in a stochastic mortality model. Associating each factor with a stochastic driver would
yield an extremely complex and intractable model.
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Alternatively, one could focus on the most crucial factors and thereby reduce the number of
stochastic drivers. But, in that case, during the calibration process, some mortality changes
would be arbitrarily assigned to some risk factors which is not desirable because the model
would loose parts of its interpretability. In general, the problem of always describing only
parts of the observed mortality is a critical shortcoming of risk factor models as the results
may be misinterpreted (see Van den Berg Jeths et al. (2001)). Furthermore, it is often difficult
to assess how changes in (the exposure to) a certain risk factor will change the expectation of
future mortality. In particular, due to the same risk factor, mortality can improve or decline for
all ages or improve for some ages and decline for others. It is not possible to account for such
expectations in a risk factor based mortality model without significantly increasing the number
of stochastic drivers.

If, on the other hand, causes of death, such as ischemic heart disease, cerebrovascular acci-
dents, chronic obstructive lung disease, lung cancer, breast cancer, dementia, traffic and other
accidents (see Van den Berg Jeths et al. (2001)), are used as drivers for the model, a similar
argumentation holds as for the risk factors. Again, it is difficult to determine which causes
might be the crucial ones in the future and which ages and points in time will particularly be
affected.

Since – for the sake of feasibility – one could not consider all causes one would also need a
category “remaining causes". But for that group of causes of death, it is virtually impossible to
assess the impact of its changes on particular ages and points in future time. Additionally, the
cause of death interpretation is not very suitable for modeling the evolution of very senior age
mortality because of the numerous causes of death affecting those ages (see Tabeau et al.
(2001)).

Thus, both, a risk factor and a cause of death model do not seem practical. Similar arguments
apply when considering other determinants of mortality.

Therefore, in what follows, we consider a different, more practical possibility: We combine
determinants into groups which affect the mortality for similar ages and at a similar time. For
such an approach, the individual random effects do not correspond to a certain determinant,
but rather the aggregate effect. We will refer to those determinant groups simply as (age and
time dependent) effects and the occurrence of each effect will be modeled by one stochastic
driver, in our case a Brownian motion.

While it is difficult to assess whether Brownian motions are adequate stochastic drivers for our
purposes, the following heuristic argument shows that the application of diffusion processes
might be a reasonable choice within such a modeling approach. Newman and Wright (1981)
and later Birkel (1988) for the more general, non-stationary case show that the partial sum
process of identically distributed random variables, under some assumptions on their covari-
ance structure, converges in distribution to a standard Brownian motion. As stated above,
regarding the evolution of mortality, we have a lot of determinants, i.e., random variables,
which are influential, but they are not identically distributed. However, by combining different
classes of determinants and transforming them appropriately, the mortality changes resulting
from these groups may be close to identically distributed. The distribution of their partial sum
will then, by the theorems in Newman and Wright (1981) and later Birkel (1988), converge in
distribution to a standard Brownian motion.

Epidemiological Insights and Practical Implementation Even though modeling approa-
ches used in epidemiological research do not seem appropriate for our purpose, qualitative
epidemiological and demographic insights are helpful for building specifications. Clearly, there
is a trade-off between the “resolution" or “flexibility" of considered effects and the tractability.
The question of how to cluster ages and time intervals for which the assumption of a similar
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mortality evolution is acceptable is certainly a demographic/epidemiological one. Note that
we explicitly deal with age and time in combination as there clearly seems to be a connection.
At least in the past, the strongest changes in mortality have been observed for varying ages
at different times (see, e.g., Weiland et al. (2006) and Vaupel (1986)). For instance, at the
beginning of the 20th century, the strongest improvements were observed in infant mortality.
Toward the end of the century, this completely shifted to improvements for older ages (see
Weiland et al. (2006)).

We allow for ages between 20 and 140 and, thus, have a time horizon of T ∗ = 120 years. A
limiting age of 140 may seem rather high from today’s point of view, but considering the cur-
rent increase of life expectancy (cf., e.g., Oeppen and Vaupel (2002)), this number does not
appear to be high for a person aged 20 today – in particular in tail scenarios. As a compromise
between tractability and flexibility, we divide the age span of 120 years in three groups. The
so-called old age group contains the ages 80 to 140. In the past decades, the largest mortal-
ity improvements have been observed for these ages (see Christensen and Vaupel (1996)).
Wiesner (2001) even states that (at least for the German population), the ages above 65 can-
not be treated as a homogeneous group because there are significant differences between
what he calls “old" and “oldest-old"4 people in terms of health status, life style, education and
family status. Also, the increase in force of mortality slows down for the oldest-old with the
for younger ages exponential trend becoming rather linear then (see Boleslawski and Tabeau
(2001)), which again distinguishes the oldest-old from younger ages. Hence, it seems rea-
sonable to treat these ages separately from the others. We divide the remaining ages in two
groups: “young ages" from age 20 to 55 and “middle ages" from age 55 to 80.

With respect to time effects, we also use three effects: A short-term, a mid-term and a long-
term effect. Clearly, there is a need for a short-term effect that models events that lead
to a change of mortality for a limited time only, e.g., a wave of influenza that will lead to
an increase in expected mortality for the next couple of months. However, the considered
diffusion processes only allow for smooth mortality evolutions, which is not appropriate for
modeling e.g., catastrophes. Instead, a jump component might be preferable for modeling
short-term effects. This is left for future research. Apart from the short-term effect, longer
termed effects are included. Since with only one longer-term effect, the model would be fairly
inflexible, we distinguish between changes in the nearer future (mid-term), e.g., the next few
decades, and the far future thereafter (long-term).

There is an ongoing scientific debate on whether an upper limit for human life expectancy
may exist. Olshansky et al. (1990) and Fries et al. (1989) believe that there is such an up-
per bound. The converse view is held by, e.g., Oeppen and Vaupel (2002) and Manton et al.
(1991). In particular, Oeppen and Vaupel (2002) show that worldwide maximum life expec-
tancy5 has increased almost linearly over the last 160 years and they state that there is no
obvious reason why this trend should not prevail in the future. As, so far, no country’s life ex-
pectancy has exceeded this trend, in a certain sense, they also postulate some upper bound
on worldwide life expectancy – a bound that is time dependent and linearly increasing. So,
no matter which expectation will turn out to be true in the future, both claim that, at any given
point in time, there is some upper limit for life expectancy and, thus, also a lower limit for mor-
tality. On the other hand, there seems to be no limit on potential increases in mortality. For
example, in Russia, life expectancy for men sank from 63.8 years to only 57.7 years between
1990 and 1994 (see Notzon et al. (1998)). That means age-adjusted mortality rose by about
33 percent in just four years (see Notzon et al. (1998)). Although such a development seems
rather unlikely in Western industrialized countries, it is still possible. Hence, regarding the
distributional property, we expect the forward force of mortality to have a positively skewed
distribution with rather light tails.

4In general and also in Wiesner (2001), oldest-old refers to ages above 80.
5Maximum life expectancy means that for each year, the country with the largest life expectancy is considered.
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IV. Modeling the Volatility of Mortality

Specification of the Mortality Effects Based on the qualitative insights presented in Sec-
tion III, in this section, we derive a quantitative model for the volatility terms σ̃(t, T, x0) and
σ̂(t, T, x0), respectively, from Section II, where, in order to simplify notation, we simply denote
the volatility by σ(t, T, x0) as long as no ambiguity arises. Based on the description above,
we consider three mid-term effects: one for young ages, one for middle ages and one for old
ages. These effects are complemented by a short-term effect and a long-term effect, which
both are independent of age, since we expect strong correlations between the short-termed
effects for different ages, and the long-term effect is only of importance for relatively young
ages as seen from today.

While there is already some correlation incorporated into the model thus far for ages and
points in time that are combined in the same mortality effect, there exists no “inter-effect" cor-
relation yet. Such a correlation is important as there exist many mortality determinants which
similarly affect the expected mortality evolution for all ages and points in time, for example,
improvements in medication, political changes, or pollution. Thus, we introduce another mor-
tality effect which is independent of age and time; it simply models the general tendency of
mortality evolution.

We suggest the following functional structure for σ(t, T, x0) (to simplify notation, we denote the
three mid-term effects only by their corresponding age group and omit the phrase “mid-term"
as only these effects are age dependent):

general: σ1(t, T, x0) = c1
short-term: σ2(t, T, x0) = c2 · exp (−w2(T − t))
young age: σ3(t, T, x0) = c3 · exp (−w31(T − t − 20)2 − w32(x0 + T − 37.5)2)
middle age: σ4(t, T, x0) = c4 · exp (−w41(T − t − 20)2 − w42(x0 + T − 67.5)2)
old age: σ5(t, T, x0) = c5 · exp (−w51(T − t − 20)2 − w52(x0 + T − 110)2)
long-term: σ6(t, T, x0) = c6 · exp (−w6(T − t − 120)2).

Here, c1, ..., c6 and w2, w31, ..., w52, w6 are parameters still to be determined. Depending on
the choice for w2, σ2(t, T, x0) is quickly decreasing in time and, thus, suitable for modeling
short-termed mortality. The next three functional representations are two-dimensional bell-
shaped curves with maximum at the center of the particular age group and time interval.
Obviously, these functions overlap which is useful because, given a reasonable choice of
width parameters, that results in a smooth transition from one age (group) and time interval to
the next. Furthermore, this leads to additional correlation between adjacent6 mortality effects.
Finally, σ6(t, T, x0) increases over the whole time frame and is particularly large in the long-
term future.

Parameter Elimination In order to reduce the number of free parameters, we impose restric-
tions on the effects’ functional representations. We leave the scaling parameters ci variable
because they are crucial for determining how strong mortality changes for a particular age
and time combination are – both absolutely and compared to the other effects. We impose
conditions for the width parameters wi and wi j .

The parameter w2 determines how long the short-term effect influences the forward force of
mortality. We fix this parameter such that, after one year, this effect is only 10 percent of its
immediate value, i.e., w2 = − log

(
1
10

)
.

For the other mortality effects, we require smooth transitions from one effect to the next one, in

6Adjacent with respect to age groups and time intervals under consideration.
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terms of age as well as in terms of time. We set each effect to be 50 percent of its maximum
value at the boundary to adjacent effects. Because of the symmetric construction of the
functional representations, this is possible for all effects. By adding the effects’ values at
the boundaries we automatically receive a smooth transition. Exemplarily, for the middle age
effect the conditions are:

age condition: exp (−w42(x0 + T − 67.5)2) |x0+T=67.5= 2
· exp (−w42(x0 + T − 67.5)2) |x0+T=80,

time condition: exp (−w41(T − t − 20)2) |T−t=20= 2 · exp (−w41(T − t − 20)2) |T−t=40.

Hence, the effects in our model read as follows:

general: σ1(t, T, x0) = c1
short-term: σ2(t, T, x0) = c2 · exp (log (0.1)(T − t))
young age: σ3(t, T, x0) = c3 · exp ( log (0.5)202 (T − t − 20)2 + log (0.5)17.52 (x0 + T − 37.5)2)
middle age: σ4(t, T, x0) = c4 · exp ( log (0.5)202 (T − t − 20)2 + log (0.5)12.52 (x0 + T − 67.5)2)
old age: σ5(t, T, x0) = c5 · exp ( log (0.5)202 (T − t − 20)2 + log (0.5)302 (x0 + T − 110)2)
long-term: σ6(t, T, x0) = c6 · exp ( log (0.5)802 (T − t − 120)2).

Distributional Properties and a Correction Term Up to this point, the implied changes in
the forward force of mortality μ̂t(T, x0) are absolute values, i.e., they do not depend on the
current level of μ̂t(T, x0). This has several implications. First of all, in extreme scenarios,
μ̂t(T, x0) could become negative, although depending on calibration, this may be seen as
an acceptable shortcoming of our model. Moreover, the resulting Normal distribution for the
forward forces of mortality μ̂t(T, x0) may not be desirable since, in Section III, we motivated
a light tailed and positively skewed distribution. However, we believe that a Gaussian model
can still generate reasonable results and it has some major advantages regarding tractability
in terms calibration and applications (see Sections V and VI).

A third implication of the absolute changes in μ̂t(T, x0) is that the total standard deviation will
significantly decrease with age relative to the level of μ̂t(T, x0) since the force of mortality is
increasing with age. This is not a desirable feature. Hence, we introduce a correction term in
the form of a Gompertz curve. While we could also apply other functional forms as correction
terms, we choose the Gompertz form due to its simplicity.

Finally, our Gaussian mortality model has the following volatility structure:

general: σ1(t, T, x0) = c1 · exp (a(x0 + T ) + b)
short-term: σ2(t, T, x0) = c2 · exp (a(x0 + T ) + b) · exp (log (0.1)(T − t))
young age: σ3(t, T, x0) = c3 · exp (a(x0 + T ) + b)

· exp ( log (0.5)202 (T − t − 20)2 + log (0.5)17.52 (x0 + T − 37.5)2)
middle age: σ4(t, T, x0) = c4 · exp (a(x0 + T ) + b)

· exp ( log (0.5)202 (T − t − 20)2 + log (0.5)12.52 (x0 + T − 67.5)2)
old age: σ5(t, T, x0) = c5 · exp (a(x0 + T ) + b)

· exp ( log (0.5)202 (T − t − 20)2 + log (0.5)302 (x0 + T − 110)2)
long-term: σ6(t, T, x0) = c6 · exp (a(x0 + T ) + b)

· exp ( log (0.5)802 (T − t − 120)2)

An Alternative Model with Different Distributional Properties An alternative mortality mo-
del which better complies with the distributional properties we established in Section III, i.e.,
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a positive skewness and light tails, can be achieved by multiplying σ(t, T, x0) by
√
μ̂t(T, x0).

This leads to a square-root diffusion process for each μ̂t(T, x0) and, hence, implies a distribu-
tion similar to the χ2 distribution (cf. Glasserman (2004, Section 3.4)) which is in fact positively
skewed and light tailed.

At the same time, the problem of a decreasing volatility addressed in the previous subsection
is eased since the volatility is now proportional to

√
μ̂t(T, x0). While a correction term, for ex-

ample, in form of the square-root of a Gompertz curve could be inserted to make the volatility
approximately proportional to μ̂t(T, x0), we consider the scaling by

√
μ̂t(T, x0) sufficient for

our purposes and hence, we do not consider any correction term.

Thus, our Square-root model has the following volatility structure:

general: σ1(t, T, x0) = c1 ·
√
μ̂t(T, x0)

short-term: σ2(t, T, x0) = c2 ·
√
μ̂t(T, x0) · exp (log (0.1)(T − t))

young age: σ3(t, T, x0) = c3 ·
√
μ̂t(T, x0)

· exp ( log (0.5)202 (T − t − 20)2 + log (0.5)17.52 (x0 + T − 37.5)2)
middle age: σ4(t, T, x0) = c4 ·

√
μ̂t(T, x0)

· exp ( log (0.5)202 (T − t − 20)2 + log (0.5)12.52 (x0 + T − 67.5)2)
old age: σ5(t, T, x0) = c5 ·

√
μ̂t(T, x0)

· exp ( log (0.5)202 (T − t − 20)2 + log (0.5)302 (x0 + T − 110)2)
long-term: σ6(t, T, x0) = c6 ·

√
μ̂t(T, x0) · exp ( log (0.5)802 (T − t − 120)2)

V. Calibration of the Models

As pointed out in Section II, we rely on historical data of the mortality age/term structure.
Generation life tables report forward survival probabilities and, usually, the risk margins are
explicitly noted such that best estimate forward expectations can be conveniently derived.
Thus, we can make use of the results from Section II, in particular of the drift condition under
the physical measure P from Equation (9). Problematic is the fact that generation tables are
not frequently and not regularly compiled, and hence, our data basis is rather sparse.

The task for this section is to find procedures for calibrating parameters of our volatility model
or another volatility specification in the same framework, i.e., to find parameters which match
the given mortality data in an optimal way. For the Gaussian case as introduced in Section
II, we can explicitly determine the distributions of the quantities in view and, hence, we are
able to present a Maximum Likelihood approach in the first subsection. For the general case,
the situation is more complex – we present a “Pseudo Maximum Likelihood" approach which
is based on Monte Carlo simulation in the second subsection; while the computation is very
time-consuming and tedious, it can be applied for very general specifications and, contingent
on certain requirements on the data, provides stable results.

The Gaussian Case As we are modeling the dynamic evolution of the age/term-structure of
the mortality intensity, the natural approach would be to directly consider a data-set of different
mortality intensities for the calibration procedure. However, these are not explicitly quoted
in life tables and need to be approximated from the given data (see Section VI). Another
possibility without the necessity of using approximations would be to take expected future
survival probabilities:

E

[
p
(T+1)
x0+T

∣∣∣Fti ] = E
[
exp

{
−
∫ 1
0

μ̂T (T + u, x0) du

}∣∣∣∣Fti
]
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as denoted in the generation table compiled at time ti ∈ {t0, ..., tN}, i.e., we assume we are
given N generation tables at different times. In practical use, it is more convenient to work
with their logarithms:

Yti (T, x0 + T ) := log
{
E

[
p
(T+1)
x0+T

∣∣∣Fti ]} .
Note that we have T ≥ ti , such that, e.g., p(50)30 would imply a negative x0, namely x0 = −19.
As we want to employ all available data, we accept this slight abuse of notation and accept
“negative x0" such that x0 + ti ≥ 0. This shortcoming may be fixed by changing the notation,
but the notation used here proves to be handy in other situations.

Some computations yield:

Yt+τ (T, x0 + T ) = Yt+τ (T, x0 + T )− 1
2

∫ t+τ
t

∥∥∥∥
∫ T+1
T

σ(u, s, x0) ds

∥∥∥∥2 du
−
∫ t+τ
t

∫ T+1
T

σ(u, s, x0) ds dWu,

and hence:

Δ(ti , tj , T, x0 + T ) := Ytj (T, x0 + T )− Yti (T, x0 + T ), ti ≤ tj ≤ T (15)

is Normally (Gaussian) distributed with mean:

E [Δ(ti , tj , T, x0 + T )] = −1
2

∫ tj
ti

∥∥∥∥
∫ T+1
T

σ(u, s, x0) ds

∥∥∥∥2 du (16)

and variance:

V AR [Δ(ti , tj , T, x0 + T )] =

∫ tj
ti

∥∥∥∥
∫ T+1
T

σ(u, s, x0) ds

∥∥∥∥
2

du. (17)

As the Gaussian distribution is completely determined by the first two moments, we are thus
given the distribution of Δ(ti , tj , T, x0 + T ). However, since our data-set does not consist of
independent quantities, we are interested in the joint distribution for different ti , tj , T, x0,
which, on the other hand, is completely determined by Equations (16), (17), and the correla-
tion structure. Therefore, we need to compute the covariances between Δ(ti , tj , T1, x1 + T1)
and Δ(tk , tl , T2, x2 + T2) for ti ≤ tk . By some algebra and an application of Itô’s product rule,
we obtain:

COV [Δ(ti , tj , T1, x1 + T1),Δ(tk , tl , T2, x2 + T2)]

= 1{tk≤tj}E
[∫ tj∧tl
tk

∫ T1+1
T1

σ(u, s, x1) ds dWu

×
∫ tj∧tl
tk

∫ T2+1
T2

σ(u, s, x2) ds dWu

]

= 1{tk≤tj}

∫ tj∧tl
tk

(∫ T1+1
T1

σ(u, s, x1) ds

)(∫ T2+1
T2

σ′(u, s, x2) ds
)
du,

where a ∧ b := min{a, b}, a, b ∈ R.

So for different generation tables labeled by their compilation times {t0, ..., tN} and choices
for ages {x0, ..., xM} as well as maturities {T0, ..., TK}, we have determined the distribution of
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the random vector (Δ(ti , tj , Tk , xl + Tk)) of dimension D. In particular, the probability density
is given by:

f (y) =
1√

(2π)D det{Σ} exp
{
−1
2
(y −m)′Σ−1 (y −m)

}
, y ∈ RD,

where:

m =
(
mti ,tj ,T,x0

)
=

(
−1
2

∫ tj
ti

∥∥∥∥
∫ T+1
T

σ(u, s, x0) ds

∥∥∥∥
2

du

)

and:

Σ =
(
Σ(ti ,tj ,T1,x1),(tk ,tl ,T2,x2)

)
=

(
1{tk≤tj}

∫ tj∧tl
tk

(∫ T1+1
T1

σ(u, s, x1) ds

)(∫ T2+1
T2

σ′(u, s, x2) ds
)
du

)
.

However, so far we have neglected that σ(·) is only given contingent on a certain parameter
vector c ∈ Rd , i.e., we are in fact only given a parametric form of the density:

f (y ; c) =
1√

(2π)D det{Σ(c)} exp
{
−1
2
(y −m(c))′ (Σ(c))−1 (y −m(c))

}
, y ∈ RD,

and our goal is to estimate the parameter vector c from our sample data based on given
generation tables. So, given our realization vector Δ ∈ RD, we are given a likelihood function
by:

f (Δ; ·) : Rd → [0,∞)
and we want to determine a Maximum Likelihood estimation ĉ for the parameter vector such
that ĉ maximizes the likelihood function, i.e.:

f (Δ; ĉ) = sup
{
f (Δ; c) | c ∈ RD} .

Instead of the likelihood function, we may also consider the log-likelihood function:7

L(Δ, c) = − log (det{Σ(c)})− (Δ−m(c))′ (Σ(c))−1 (Δ−m(c)) , (18)

and, thus, our calibration problem narrows down to the determination of the maximum value
for L(Δ, ·), which can be carried out numerically.

This calibration routine as well as all other numerical calculations are implemented in C ++
using routines from the GNU Scientific Library (GSL)8. In particular, for the numerical compu-
tation of integrals we make use of a routine based on the QNG non-adaptive Gauss-Kronrod
method and for the numerical optimization we apply a routine using the Simplex algorithm of
Nelder and Mead (1965). For the latter, it is worth noting that minimization algorithms find
local minima – and there is no way to determine whether a local minimum is a global one. We
consider this problem by choosing different sets of starting parameters and comparing the
resulting values.

7Note that we disregard additive terms and positive factors.
8See www.gnu.org or The GSL Team (2007) for details.
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The General Case By the “general case", we denote a volatility structure of the form:

σi(t, T, x0) = ci · gi (t, T, x0, μ̂t(T, x0)) ,

where gi is a non-negative, non-trivial deterministic function, i = 1, ..., d , such that the system
of stochastic differential equations (8) has a unique strong solution. In this case, the joint
probability density is generally not given explicitly. Hence, implementing a similar approach
as in the previous subsection is not possible. However, we may still use the same intuition as
for Maximum Likelihood estimation: For a scalar random variable X with density fc , where c
is some parameter vector, we know that:

Pc (|X − x | < ε) ≈ fc(x)2ε (19)

for some “small" ε > 0, where Pc is the (parametrical) probability distribution implied by fc .
Therefore, maximizing c → fc(x̄) for a given sample outcome x̄ is equivalent to maximizing
the probability that X is close to x̄ under a certain parameterization c .

Since the μ̂ti (·, ·) are assumed to be continuous, we can consider the Banach space of con-
tinuous functions with the supremum-norm ‖f ‖ = supx∈Df |f (x)|, where Df is the domain of
the continuous function f .9 Thus, the probability that μ̂ti is close to the sample outcome, say
μ̄ti , given some parameter vector c , reads as follows:

Pc (‖μ̂ti − μ̄ti ‖ < ε) = Pc
(

sup
T≥ti , x0+T≥x0+ti

|μ̂ti (T, x0)− μ̄ti (T, x0)| < ε
)

(20)

for some ε > 0 and given an initial term structure μ̂0 ≡ μ̄0. In order to estimate the parameter
vector c , we may now choose the ĉ that maximizes these probabilities for all t1, t2, ..., which
could, e.g., be determined numerically by Monte Carlo simulation. However, there are some
immediate questions:

• Does the algorithm converge, i.e., can we find such an estimate ĉ?

• Does it depend on the choice of ε, and, if so, how should ε be chosen?

With respect to the first question, we find that in order for the algorithm to converge, the target
planes μ̄ti must be attainable for some cε:

Proposition 1. Let ε > 0 be fixed and consider only one target plane at t1 > t0 = 0,
μ̄t1 . Then, the algorithm converges, i.e., there exists an estimate ĉ that maximizes the
probability from (20), if and only if the following condition is satisfied:

∃c : Pc (‖μ̂t1 − μ̄t1‖ < ε) > 0. (21)

For a proof, see the Appendix.

For relatively large choices of ε, this condition will be satisfied, but the resulting estimate may
be biased: For example, when choosing ε big enough such that the deterministic model (i.e.,
c ≡ 0) lies in the ε-corridor, the algorithm would automatically yield this deterministic choice
as then:

P0 (‖μ̂t1 − μ̄t1‖ < ε) = 1 ≥ Pc (‖μ̂t1 − μ̄t1‖ < ε) ∀c.
Thus, and also due to the motivation behind the approach from Equation (19), we should pre-
fer rather small corridors. However, for small choices of ε, condition (21) may not be satisfied
– and it is not possible to provide general conditions as we would need to impose conditions

9For simplicity, we only allow for intervals respectively products of intervals as domains.
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on μ̄ti , which are given exogenously.
10 Furthermore, for small choices of ε, the probabilities

in Equation (21) may become very small; this could lead to problems when determining these
quantities numerically by Monte Carlo simulations.

We resolve these problems by considering a more general distance function in (21). In partic-
ular, we relax the condition of the simulation outcomes μ̂ti being uniformly close to the “target
curves" μ̄ti by considering the integrated relative distance between simulated curve and target
curve:

d(μ̂ti , μ̄ti ) =
1

d0i

∫ 140
20

∫ 140−x0
ti

|μ̂ti (T, x0)− μ̄ti (T, x0)|
μ̄ti (T, x0)

dT dx0

where:

d0i =

∫ 140
20

∫ 140−x0
ti

|μ̂0(T, x0)− μ̄ti (T, x0)|
μ̄ti (T, x0)

dT dx0.

Hence, if a target curve strongly deviates from the initial curve, we allow for a larger deviation
(in absolute value) of the simulation outcomes than if a target curve is already fairly close
to the starting curve. In this setting, the convergence of our algorithm is not guaranteed by
Proposition 1 anymore, but we found that meaningful values for the parameter vector c can
still be obtained.

In order to include several target planes simultaneously, for a fixed choice of ε,11 for each
simulation we count the number of times the simulated curve is “close" to a target curve and
sum up the results of each simulation. In principle, the larger this sum is, the better should the
model with the corresponding parameter vector c fit the data. Thus, this sum is the likelihood
expression we maximize.

For the realization of this calibration procedure, we use Monte Carlo simulations: Based on
an iterated procedure with the range and the grid of possible values for the components of
c becoming smaller with each step, we repeatedly simulate the development of the forward
force of mortality for c and apply the criterion specified above. The calibration procedure has
been implemented in C++ following the algorithm for the simulation of HJM-models proposed
by Glasserman (2004, Section 3.6) where the time steps were set to a quarter year. For T
and x0, we deploy yearly approximations of the continuous forward force of mortality.

Due to the long time lag between two consecutive “data points" (generation tables) and the
specification of the distance function, the calibration of the short-term effect based on the
presented procedure is problematic. Hence, we use an approximative refinement approach
based on annually available period mortality data. Under the assumption that the deviations
within the period mortality data are close to alike, i.e., that the underlying populations are
sufficiently similar, this is achieved by re-calibrating the short-term parameter c2, on the basis
of the corresponding spot force model. Proposition 2.1.2 in Bauer (2008) and a yearly Euler
discretization yield the following approximate distributional relation:

μ̃st+1(x0)− μ̃st(x0)− ∂
∂T μ̂t(t, x0)√

σ1(t, t, x0)2 + · · ·+ σ6(t, t, x0)2
∼ N (0, 1).

Given values for all other parameters from the Monte Carlo algorithm, an estimate for c2 can
be obtained for each x0 by matching the second moment. Finally, averaging these values for
c2 yields our overall estimate. In order to carry out this procedure, it is necessary to determine
values for ∂

∂T μ̂t(t, x0). To keep the inconsistency in considering two data-sets as small as
possible, we first derive a mortality trend from the spot force data. Subsequently, based on

10This question is related to so-called consistency problems as the target plane needs to be consistent with the
model. See Björk (2003), Filipović (2001) or references therein for detailed discussions of consistency problems for
forward interest rate models or Bauer (2008) for an application of their ideas to mortality modeling.

11In the calibration process, we tested several values for ε in order to confirm the stability of the results.
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this trend, we determine a Gompertz fit exp {â(x0 + T ) + b̂} for the mortality intensity for each
initial age x0 by exponential regression, and set:

∂

∂T
μ̂t(T, x0)

∣∣∣∣
T=t

=
∂

∂T
e â(x0+T )+b̂

∣∣∣∣
T=t

= â e â(x0+t)+b̂.

VI. Data and Calibration Results

For a practical application of the model, of course, the choice of data should cohere with
the application in view, i.e., the considered population for the application should be similar to
the population underlying the data used for the calibration procedures. If generation tables
for different points in time for the considered population are readily available, these could be
used for determining adequate parameterizations for the volatility structure. But as already
mentioned earlier in the text, generation life tables are not frequently published and may not
even exist for the population under consideration.

However, in contrast to the compilation of life tables themselves, it is not necessary to as-
sess mortality rates or even trends for the calibration of the volatility, but solely fluctuations
around the trends. If mortality rates differ for certain populations, this may not be the case for
the respective trends, and, even if the trends differ, this may not be the case for the volatil-
ity. For example, even though it is well-known that mortality rates differ considerably between
the general population and the insured population, this is not the case for mortality improve-
ments: Even though mortality improvements were somewhat higher for insureds in the recent
past, the deviation was rather slim; particularly, for the incorporation of mortality trends into
the Valuation Basic Table 2001 for the insured population, the American Academy of Actu-
aries reports that they relied on the observed improvements for the general population (cf.
American Academy of Actuaries (2002)). Therefore, assuming a similar structure for devia-
tions from this trend for the respective populations should also be adequate. An additional
problem with the use of generation life tables is that they are often compiled in an unsophis-
ticated manner. Hence, the best estimate mortality rates denoted in a generation life table,
which serve as the basis for our approach, may not be very accurate.

In this article, we omit analyzing trends, their deviations for different populations, or the quality
of underlying forecasts, but for illustrating our ideas we will rely on the Group Annuity Mortality
tables (GAM tables) published by the Society of Actuaries, which are mainly employed for the
calculation of reserves in U.S. companies’ pension schemes. The reasons for our choice are
simple: On the one hand, they have been published fairly regularly (our data-set consists of
the 1951, 1971, 1983, and 1994 generation table) and, on the other hand, they are publicly
available, e.g., from Table Manager.12

From each table, for some time t, approximations of the forward forces of mortality μ̂t can be
determined in the following way for each x0, t, and k such that x0 + t + k ∈ {20, 21, ..., 109}
at time t:

• For k = 0:

E

[
p
(t+1)
x0+t

∣∣∣Ft] = e−
∫ t+1
t μ̂t(s,x0) ds

⇒ − log
{
E

[
p
(t+1)
x0+t

∣∣∣Ft]} =

∫ t+1
t

μ̂t(s, x0) ds ≈ μ̂t(t + 1
2
, x0)

12Table Manager can be obtained from the website of the Society of Actuaries (www.soa.org/professional-
interests/technology/tech-table-manager.aspx).
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• For k ≥ 1:

E

[
k+1p

(t+k+1)
x0+t

∣∣∣Ft]
E

[
kp
(t+k)
x0+t

∣∣∣Ft] = e−
∫ t+k+1
t+k μ̂t(s,x0) ds

⇒ − log
⎧⎨
⎩
E

[
k+1p

(t+k+1)
x0+t

∣∣∣Ft]
E

[
kp
(t+k)
x0+t

∣∣∣Ft]
⎫⎬
⎭ =

∫ t+k+1
t+k

μ̂t(s, x0) ds ≈ μ̂t(t + k + 1
2
, x0).

It is worth noting that there is a slight inconsistency hidden in generation life tables with basi-
cally any stochastic mortality model as it is generally assumed that:

E

[
kp
(k)
x0

]
E

[
k−1p

(k−1)
x0

] !
= E

[
kp
(k)
x0

k−1p
(k−1)
x0

]
= E

[
p
(k)
x0+k−1

]
,

which aside from some pathological cases, implies a deterministic evolution of mortality (see
Bauer (2008)). We disregard this feature for now as all considered quantities are sufficiently
well-defined.

Based on the derived approximations, we may now calibrate the volatility structure of the
Square-root model using the algorithm introduced in Section V. But due to the enormous
computational time necessary for the procedure, we disregard the first table (1951), since the
long time lag of 20 years between the first and the second table would slow down the calcu-
lations considerably. For the refinement of the short-term effect based on the approximative
method, we use annual period mortality data for the general US population as available from
the Human Mortality Database13, assuming that the respective volatilities are similar. The
resulting parameter estimates are provided in Table 4.

For the calibration in the Gaussian case (see Section V), we could employ all available data
as the computation is very fast: Results are available in just a few seconds. However, when
incorporating all data, the algorithm is not stable as the correlation matrix Σ is poorly condi-
tioned and, hence, numerically singular. Even if employing a reduced data-set, the different
influences interact in such a way that the resulting volatility takes values which are inconsis-
tent with other analyses. These problems may be overcome by appropriately smoothing the
data, but here the question arises which smoothing function would be consistent with our mo-
del. Another possibility would be the inclusion of more random effects, maybe even infinitely
many, i.e., to use a Gaussian field rather than a finite dimensional Brownian motion as pro-
posed in Biffis and Millossovich (2006) for spot force models. However, it is arguable whether
this would be adequate and a statistical assessment of the principal components does not
seem feasible given the limited amount of data. While we intend to consider these possibili-
ties in more detail in future work, we “solve" these problems here by simply using a reduced
data-set of six data points per period (as many as there are random factors). But this puts
us in the situation of having to choose appropriate data points, and the resulting estimates
differ considerably, particularly for choices of Δ which are clustered in the (T, x0)-triangle of
available data. However, for choices which are evenly spread among the triangle, the esti-
mates are fairly close and seem reasonable regarding analyses in the Square-root model or
analyses of the variation observable in period mortality data. In order to reduce subjectiv-
ity, we will use parameter estimations for data points which are widely spread in the triangle
of available data,14 i.e., (T − t, x0 + T ) ∈ {(0, 20), (0, 60), (0, 95), (35, 60), (35, 95), (75, 95)}.

13Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic
Research (Germany). Available at www.mortality.org or www.humanmortality.de (downloaded 04/11/2007).

14Note that, since the mortality trends incorporated in the GAM tables are equal to zero for very old ages, we
consider only ages up to 95 in order to facilitate mortality changes in time.
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Table 4: Resulting parameterizations

Gaussian model Square-root model

c1 0.09371 0.00007
c2 0.2358 0.00467
c3 0.4470 0.0063
c4 0.5343 0.0005
c5 0.01714 0.032
c6 0.1647 0.024

Figure 1: Volatility structure for the Gaussian and the Square-root model
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Moreover, we choose a = 0.078 as this maximizes the likelihood of the resulting estimate and
b = −10. Obviously, the multiplicative term eb is superfluous from a theoretical perspective as
it is automatically incorporated in the parameter vector c , but we decided to choose a value
such that the resulting estimates are in a reasonable range. The resulting parameterization is
also displayed in Table 4.

Due to the differences in the structure of the models, the respective values for c1, ..., c6 cannot
be directly compared. In order to illustrate the resulting structures, in Figure 1 the norm
‖σ(t, T, x0)‖ for t = 20, i.e., for the spot volatility at the 1971 table is plotted for both models,
where xt := x0 + t and τ = T − t.15

For both models, we can clearly see the exponential trend in τ for each xt and in xt for each
fixed τ . Furthermore, the volatilities for the same age at maturity generally increase in the time
to maturity τ in both models: Each diagonal parallel to the line through (τ, xt) = (0, 109) and

15Note that since our proposed volatility structure only depends on x0+T and T −t, at least in the Gaussian model
the spot volatility is the same for each point in time t. For the Square-root model, the local time t is only incorporated
by changing values of

√
μ̂t(T, x0).
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Figure 2: Relative volatility structure for the Gaussian and the Square-root model
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(τ, xt) = (89, 20) represents volatilities for intensities with the same age at maturity and these
diagonals are mostly upward sloping in τ . In contrast, the short-term effect seems to be by far
more pronounced in the Gaussian model in comparison to the Square-root model, whereas
the old age effect for the Square-root model seems to be considerably larger. However, these
observations are somewhat misleading as different weightings are applied in both models
and, due to the exponential trend, effects for smaller choices of (τ, xt) are hardly noticeable.

Thus, in Figure 2, the relative spot volatility structure ‖σ(t,T,x0)‖
μ̂t(T,x0)

is displayed and it clearly
appears that the exponential trend overshadowed several structures. Firstly, we notice that
the short-term effect is now more pronounced in the Square-root model in comparison to
the Gaussian model. However, this may again be a consequence of the different weights as
especially for small values of xt , the remaining

√
μ̂t(T, x0) in the denominator of the relative

spot volatilities for the Square-root case plays a dominant role. Furthermore, we observe that
the young age effect is very large in both models, whereas the middle age effect is hardly
noticeable for the Square-root case but quite pronounced for the Gaussian calibration. The
overall relative volatility now decreases in the age at maturity xt + τ .

All in all, the general structure and the size of the volatilities seem to be fairly similar when
comparing both models, but some detailed structures differ. This may in part also be a con-
sequence of the slightly different data-set underlying the calibration as the 1951 table was
not considered when determining the Square-root model parameterization. It is hard to judge
which structure serves as a “better" model for the actual volatility and which calibration is
“more accurate": On the one hand, due to numerical limitations, the Square-root parameters
may be biased, but, on the other hand, the limited amount of data points used in the calibra-
tion procedure for the Gaussian model could also have led to skewed outcomes. Moreover,
the a priori structure fixed for the different effects still plays a dominant role, too.

Despite these potential shortcomings and problems, our model allows for more sophisticated
effects and complex structures to be considered than most other stochastic mortality models
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proposed in the literature. Moreover, due to similarities of the outcomes from the (different)
calibration procedures for the two models, we believe that our results are fairly reliable.

VII. Illustrative Application of the Models

As mentioned in the introduction, forward mortality models differ from spot mortality models
in that the future evolution of mortality is not forecasted, but the expected mortality structure
is incorporated as the input. The stochasticity arises from the fact that these forecasts are
uncertain, i.e., the realized evolution of mortality may well deviate from the expected one.

This means that, within the forward modeling approach, mortality contingent claims only de-
pending on the expected evolution may be valued without considering the stochasticity. For
example, under the assumption that an insurer is risk-neutral with respect to unsystematic
mortality risk arising from finite portfolios of insureds, for the value of an immediate single pre-
mium annuity paying $1 per year for an x0-year old, we have (cf. Bauer and Russ (2006)):16

ax0 = EQ

[ ∞∑
k=0

e−
∫ k
0 rs ds kp

(k)
x0

]
=

∞∑
k=0

p(0, k)EQ

[
kp
(k)
x0

]

=

∞∑
k=0

p(0, k) e−
∫ k
0 μ̃0(s,x0) ds ,

i.e., for immediate annuities, insurers may apply the forward mortality model similar to regular
life tables. However, for annuity products with mortality contingent options such as Guaran-
teed Annuitization Options (GAOs) or Guaranteed Minimum Income Benefits (GMIBs) within
Variable Annuities, the stochastic effects need to be considered.

Similarly, for the valuation of longevity securitization products which solely depend on the
expected mortality structure, it is not necessary to take the stochasticity into account. For
example, the coupon payments of the so-called EIB Bond announced by the European In-
vestment Bank in 2004 approximately are of the form C tp

(t)
65 , t = 1, 2, ..., 25, where C is some

nominal amount. Based on the forward mortality model, the value of each coupon payment at
time zero can thus be determined by:

EQ

[
e−

∫ t
0 rs ds C tp

(t)
65

]
= Cp(0, t)e−

∫ t
0 μ̃0(s,65) ds .

There are several reasons why the EIB Bond was not successfully placed on the market
(see Cairns et al. (2005a) for a discussion and a detailed description of the deal); one pos-
sible explanation is the payoff structure: “The upfront capital may be too large compared
with the risk being hedged, leaving no capital to hedge other risks" (cf. Cairns et al. (2005a)).
Other instruments and payoff structures have been proposed, for example so-called Survivor
Swaps (see Dowd et al. (2006)) or longevity derivatives with an option-type payoff structure
(see Lin and Cox (2005)), respectively.

In order to illustrate how our model may be applied to valuate such more sophisticated struc-
tures and to obtain an idea about the implications of our model regarding the risk inherent in
the given estimates, we consider a security with an option-type payoff of the form:

CT =
(
T p
(T )
x0 −K

)+
= max

{
T p
(T )
x0 −K, 0

}
,

16Here rt denotes the short rate of interest at time t.
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Table 5: Comparative statistics of the longevity derivative

Model Gaussian model Square-root model

P
(
T p
(T )
x0 > K

)
E

[(
T p
(T )
x0 − K

)+]
P
(
T p
(T )
x0 > K

)
E

[(
T p
(T )
x0 −K

)+]
x0 = 65 0.4076 0.0491 0.4214 0.0200
x0 = 70 0.4021 0.0334 0.4268 0.0194
x0 = 75 0.3877 0.0174 0.4190 0.0122
x0 = 80 0.3567 0.0058 0.3961 0.0042
x0 = 85 0.3053 0.0011 0.3670 0.0008

i.e., the longevity derivative CT is triggered if the realized T -year survival probability exceeds
some strike level:

K := (1 + α)EP

[
T p
(T )
x0

]
= (1 + α)e−

∫ T
0 μ̂0(s,x0) ds ,

with α > 0.

Table 5 shows the probability for the derivative to be triggered as well as the expected payoff
under the physical measure P for the Gaussian and the Square-root model for α = 2.5%,
maturity T = 20 and different initial ages x0 at t = 0 (1994). The quantities for the Square-
root model have been derived via Monte Carlo simulations (30,000 paths), whereas in the
Gaussian case they can be derived analytically with a Black-type formula (see Bauer (2008)).

We find that the trigger probabilities implied by the Square-root model slightly exceed the
respective values for the Gaussian model, whereas the expected payoff is considerably larger
in the Gaussian case. The first observation results from the distributional differences of the
models: While for Gaussian random variables the mean and the median coincide, for the
distribution of the mortality intensities in the Square-root model, the mean exceeds the median
(see Section IV), implying a higher probability for intensities just below the expected value,
which in turn yields an increase of the probability of survival probabilities slightly above the
expected value compared to the Gaussian case. Regarding the second observation, we notice
that the relative difference between the expected payoffs implied by both models decreases in
x0. Thus, this deviation appears to be a consequence of the far more pronounced middle age
effect in the Gaussian model (cf. Section VI). As explained earlier, it is hard to judge whether
this difference is a peculiarity of the data used in the Gaussian model or due to a bias in the
calibration procedure applied for the Square-root model.

In order to determine the value, i.e., the expected discounted payoff under a risk-neutral or
risk-adjusted measure Q, of a longevity derivative we need to determine the dynamics of
the risk-neutral forward mortality intensities μ̃t . As explained in Section II, in general, it is
necessary to specify a market price of risk to determine these dynamics based on the given
dynamics of the best estimate forward rates. As pointed out by Blake et al. (2006b), “sophisti-
cated assumptions about the dynamics of the market price of risk are pointless given that, at
the time, there is just a single item of price data available for a single date (i.e., the EIB Bond)
and even that is no longer valid." However, in the Gaussian model, under the assumption of
a deterministic market price of risk, the volatilities of best estimate and risk-neutral forward
intensities coincide (cf. Section II). Hence, in this case it is not necessary to explicitly fix the
market price of risk, but it is sufficient to determine the initial configuration of the risk-neutral
or risk-adjusted forward rates μ̃0.17

17Note that the market price of risk is then implied by the risk-adjustment, i.e., the two approaches are theoretically
equivalent.
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Table 6: Discounted expected values of the longevity derivative

p(0, T )EP

[
T p
(T )
x0

]
p(0, T )EP

[(
T p
(T )
x0 −K

)+]
p(0, T )EQ

[(
T p
(T )
x0 −K

)+]
T = 10 0.3906 0.0083 0.0210
T = 20 0.1006 0.0112 0.0214
T = 30 0.0101 0.0029 0.0055

As shown by Bauer and Russ (2006) based on an idea from Lin and Cox (2005), under cer-
tain conditions, it is possible to derive the initial risk-neutral forward rates based on annuity
quotes; however, instead of considering multiple annuity quotes, here, similarly to Lin and Cox
(2005), we rely on an approximation by the so-called Wang transform (see Wang (2000)), the
parameter λ of which can be calibrated to just a single quote. Using the price of a single pre-
mium annuity for a 65-year old from 1996, Lin and Cox (2005) obtain a parameter λ = 0.1792,
and hence, we can approximate the risk-adjusted expectation of the survival probability by:

EQ

[
T p
(T )
65

]
= 1−Φ

(
Φ−1

(
1− EP

[
T p
(T )
65

])
− λ

)
,

where Φ(·) denotes the cumulative distribution function of the Standard Normal distribution.
However, it is important to note that, in general, the Wang transform is not a consistent trans-
formation of the best estimate survival probabilities within our modeling framework (see Bauer
(2008)). Nevertheless, we rely on their approach here for illustrative purposes.

Thus, based on the distorted expectations and the determined parameterization of the volatil-
ity structure for the Gaussian model, we can valuate the considered longevity derivative ana-
lytically. The respective values and the discounted expected values under the physical mea-

sure as well as the “actuarially fair" values of the payoff T p
(T )
x0 , p(0, T )EP

[
T p
(T )
x0

]
, for x0 = 65,

α = 2.5% and different choices for T are displayed in Table 6.18

It appears that the value of the derivative considerably exceeds the corresponding discounted
expected value under the physical measure – for all maturities, the risk premium accounts for
an increase by at least 90 percent. Furthermore, for larger maturities, the derivative’s value is
rather large when compared to the “actuarially fair" value of an endowment payment for a 65-
year old maturing after T years.19 Therefore, from this perspective, such longevity derivatives
do not seem to be attractive for insurers to hedge their exposure to longevity risk arising from
their annuity business. However, clearly the annuity provider will not charge an actuarially fair
value, but the annuity premium also contains a risk premium (see Bauer and Weber (2007)).
Hence, when being short in the endowment payment but having a long position in the longevity
derivative, the insurer would benefit from outcomes where the realized survival probability is
lower than the (P -)expected value. In particular, an insurer could reduce the cost of the
hedge by also assuming a “short position" in longevity, for instance, by simultaneously selling
life insurance policies or by investing in a so-called Catastrophe Mortality Bonds (see, e.g.,
Bauer and Kramer (2007) for details on such securities).

18For the computation of the T -year zero coupon bond p(0, T ) we use the T -Year Treasury Constant Maturity
Rates on 07/01/1994 as denoted in FRED (Federal Reserve Economic Data) provided by the St. Louis Federal
Reserve Bank (www.research.stlouisfed.org).

19Note that, for illustrative purposes, we simply assume that the underlying population for the derivative coincides
with the population of annuitants.
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VIII. Summary and Conclusion

Most stochastic mortality models presented in the literature focus on the proper assessment
of mortality trends. However, from an actuarial perspective, trends are already incorporated
in annuity products. Hence, for actuarial applications, the central problem is not to assess
trends, but rather to assess the structure of deviations from these trends. As pointed out
by, among others, Dahl (2004) or Cairns et al. (2005b), forward approaches similar to Heath-
Jarrow-Morton models for the term structure of interest rates may constitute an appropriate
base for such models in a no-arbitrage framework. However, to the authors’ knowledge, no
explicit models have been proposed.

One potential reason may be that (at this point) there is no liquid market for longevity se-
curities, and consequently, it is not possible to directly apply the same ideas as for forward
interest rate models. However, we show that, when considering best estimate forward struc-
tures, i.e., forward structures implied by the real world measure, similar conditions hold as for
classical forward rates implied by a risk-neutral measure. Moreover, there are interrelations
between these different notions of forward rates, and in some special cases, the dynamics
under different measures even coincide.

This observation allows us to build best estimate forward models which may be calibrated
using best estimate expectations observed at different points in time, e.g., generation life
tables. However, due to limited data availability, it does not seem feasible to directly derive
a model structure from the data. Therefore, we first derived a suitable structure based on
epidemiological and demographic insights. Of course, such an approach bears a certain
arbitrariness and requires compromises, but we are convinced that such insights should not
be neglected. While there are some structural shortcomings of our specification, we believe
that it serves as a good starting point for future forward mortality models.

We presented two calibration procedures which do not depend on our specification and may
also be applied for other parametric models. The first approach based on Maximum Likelihood
estimation yields fast results but demands a deterministic volatility structure, whereas the
second algorithm works for very general choices, but is rather time consuming as it relies
on Monte Carlo simulation. When applying both procedures to our particular specifications,
the resulting parameterizations yield similar volatility structures. However, there remain open
issues; for example, the first algorithm does not yield reasonable values when employing “too
many" data points, which is a consequence of the incoherence of the structure implied by our
model and the structure of the data. Nevertheless, the resulting volatility appears adequate
when comparing it to the variation within period mortality data, and the similarities between
the two approaches indicate a fair quality of the results.

One of the big advantages of the framework lies in the application: Although the models seem
complex at first glance, it is a natural extension of classical actuarial approaches. Basic an-
nuity contracts or simple mortality-linked securities may be valuated without having to use the
stochasticity since the expected trend is incorporated in the input. For the valuation of more
complex mortality contingent claims, Monte Carlo simulation can be used and for determin-
istic volatilities even analytical solutions exist for the value of several payoff structures. We
illustrate the model application by considering longevity securities with an option-type payoff
structure.

Even though we presented two calibrated models, there are several points which should be
considered in future research:

• For both calibration algorithms, there have been difficulties arising from the inconsis-
tency of the observed data with the structures implied by the models – these could be
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overcome by smoothing the data appropriately. However, it is unclear which smooth-
ing function to use, i.e., which functions, if any, are (approximately) consistent with our
model.

• Another solution could be to consider more general driving factors for our models such
as Lévy models or random fields. However, it is arguable whether such approaches are
reasonable. Empirical investigations are necessary to assess this question.

Despite these open issues, we believe that our particular approach presents a good starting
point toward practical applications of forward mortality models.

Appendix

Proof of Proposition 1

• Necessity of the condition:
Assume the contrary, i.e.:

∀c Pc (‖μt1 − μ̄t1‖ < ε) = 0.

Clearly, no (real) global maximum exists.

• Sufficiency of the condition:
We assume that P0 (‖μt1 − μ̄t1‖ < ε) = 0; if not:

P0 (‖μt1 − μ̄t1‖ < ε) = 1 > Pc (‖μt1 − μ̄t1‖ < ε) ∀c

as g is assumed to be non-trivial.

First we show that for:

‖c‖ → ∞ : Pc (‖μt1 − μ̄t1‖ < ε)→ 0.

Thus, it is sufficient to show that:

c �−→ Pc (‖μt1 − μ̄t1‖ < ε)

is continuous, and, hence, a non-constant function in C0
(
R
d
)
which has a maximum ĉ .

In order to keep the notation simple, we only consider the one-dimensional case, that is
d = 1. The multidimensional case may be treated analogously.

For fixed (T, x0), we have:

μ
(c)
t1 (t, x0) = μ0(T, x0)

+c2
∫ t1
0

g(u, T, x0, μu(T, x0))

∫ T
u

g(u, s, x0, μu(s, x0)) ds du︸ ︷︷ ︸
=:AT,x0

+c

∫ t1
0

g(u, T, x0, μu(T, x0))dWu︸ ︷︷ ︸
=:BT,x0

,

196



The Volatility of Mortality

where AT,x0 is a positive random variable on F and BT,x0 is a random variable with zero
mean and positive variance independent of c . Thus, we have:

P

(∣∣∣μ(c)t1 (T, x0)− μ̄t1(T, x0)∣∣∣ < ε)
= P

(
μ̄t1(T, x0)− μ0(T, x0)− ε

|c | <

|c |AT,x0 + sgn(c) BT,x0 <
μ̄t1(T, x0)− μ0(T, x0) + ε

|c |
)
−→ 0

as |c | → ∞ and:

0 ≤ Pc (‖μt1 − μ̄t1‖ < ε) ≤ P
(∣∣∣μ(c)t1 (T, x0)− μ̄t1(T, x0)∣∣∣ < ε)→ 0 (|c | → ∞),

which completes the first part.

Let now (c)∞n=1 be a sequence in R with limn→∞ = c∞ ∈ R. We want to show:

Pcn (‖μt1 − μ̄t1‖ < ε)→ Pc∞ (‖μt1 − μ̄t1‖ < ε)

and, by the Theorem of dominated convergence, it is sufficient to note that:∥∥μ0(T, x0) + c2n AT,x0(ω) + cn BT,x0(ω)− μ̄t1(T, x0)∥∥
−→

∥∥μ0(T, x0) + c2∞ AT,x0(ω) + c∞ BT,x0(ω)− μ̄t1(T, x0)∥∥
for almost every ω being a continuous function as a composition of continuous functions.

�
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