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Abstract

Within the European Union, risk-based funding requirements for insurance companies
are currently being revised as part of the Solvency II project. However, many life insurers
struggle with the implementation, which to a large extent appears to be due to a lack of
know-how regarding both, stochastic modeling and efficient techniques for the numerical
implementation.

The current paper addresses these problems by providing a mathematical framework
for the derivation of the required risk capital and by reviewing different alternatives for
the numerical implementation based on nested simulations. In particular, we seek to
provide guidance for practitioners by illustrating and comparing the different techniques
based on numerical experiments.
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1 Introduction

Within the European Union, risk-based funding requirements for insurance companies are
currently being revised as part of the Solvency II project. One key aspect of the new
regulatory framework is the determination of the required risk capital for a one-year time
horizon, i.e. the amount of capital the company must hold against unforeseen losses during
the following year. In particular, the regulation allows for a company-specific calculation
based on a market-consistent valuation of assets and liabilities within a structural internal
model. However, many life insurers are struggling with the implementation, which to a
large extent appears to be due to a lack of know-how regarding both, the construction of
the underlying model and efficient techniques for implementing the necessary calculations.
As a consequence, many companies rely on second-best approximations within the so-called
standard model, which is usually not able to accurately reflect an insurer’s risk situation and
may lead to deficient outcomes (see e.g. Liebwein (2006), Pfeifer and Strassburger (2008),
Ronkainen et al. (2007), or Sandström (2007)).

The current paper addresses these problems. More specifically, our objectives are twofold:
On the one hand, we seek to shed light on the proper calculation of the Solvency Capital
Requirement (SCR) by presenting a mathematical framework based on the Market Consis-
tent Embedded Value (MCEV) principles issued by the CFO Forum (2008). On the other
hand, to provide guidance for the practical implementation, we survey and adapt different
advanced techniques for the calculation of the SCR based on nested simulations. For in-
stance, we address the optimal allocation of computational resources within the simulation,
the construction of confidence intervals for the SCR, the application of variance reduction
techniques, and the use of screening procedures to increase the efficiency of the simula-
tion approach. The drawbacks and advantages of the different approaches and techniques
are illustrated based on detailed numerical experiments using the model for a participating
term-fix contract introduced in Bauer et al. (2006).1 In particular, we demonstrate that the
efficiency of the computation as e.g. measured by the length of a corresponding confidence
interval for the SCR can be increased by more than a factor of ten when relying on a suitable
simulation design.

Several of the presented numerical techniques were originally proposed in the context of
nested simulations for portfolio risk measurement, and our contribution in this direction lies
in the adaptation of the underlying ideas to the insurance setting and their integration. In
particular, we draw on results from Gordy and Juneja (2010), who analyze how to allocate
a fixed computational budget to the inner and the outer simulation step within a nested
simulation in order to minimize the mean square error when measuring the risk of a derivative
portfolio. Furthermore, for the derivation of confidence intervals for the SCR with and
without screening procedures, we follow ideas from Lan et al. (2007a,b, 2010), where similar
problems were studied.

The remainder of the paper is structured as follows. Section 2 provides background in-
formation on the Solvency II requirements and gives precise definitions of the quantities of
interest. We particularly illustrate the relation between these quantities and the concept of
MCEV. In Section 3, we introduce the mathematical framework underlying our considera-

1As pointed out by Kling et al. (2007), under the assumption that cash flows resulting from premiums
roughly compensate for death and surrender benefits, the evolution of a term-fix contract can be considered
as an approximation for the evolution of an entire life insurance company offering participating contracts.
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tions and describe the basic nested simulation approach for estimating the SCR. Aside from
presenting the (point) estimation procedure, we address the determination of an optimal
allocation of a fixed computational budget. In Section 4, we derive confidence intervals for
the resulting point estimator. The subsequent Section 5 describes methods to increase the
efficiency of the estimation by means of screening procedures. In Section 6, we illustrate the
different methods based on detailed numerical experiments. Finally, Section 7 summarizes
our findings and concludes.

2 The Solvency II Capital Requirement

The quantitative assessment of the solvency position of a life insurer can be split into two
components, the derivation of the Available Capital (AC) at the current point in time (t = 0),
and the derivation of the Solvency Capital Requirement (SCR) based on the Available Capital
at the measurement time horizon (one year for Solvency II, t = 1).

2.1 Available Capital

The Available Capital, which is also called “own funds” under Solvency II, corresponds to
the amount of available financial resources that can serve as a buffer against risks and absorb
financial losses. It is derived from a market-consistent valuation approach as the difference
between the market value of assets and the market value of liabilities. The market-consistent
valuation of assets is usually quite straightforward for the typical investment portfolio of an
insurance company since market values are either readily available (mark-to-market, level
1) or can be derived from standard models with market-observable inputs (level 2). This
is usually not the case for the liabilities of a life insurance company, and there are two
different basic approaches for their calculation, the direct and the indirect approach (cf.
Girard (2002)).

As suggested by its name, the direct method prescribes a direct valuation of the cash
flows associated with an insurance liability, e.g. by determining their expected discounted
value under some risk-neutral or risk-adjusted probability measure.2 In contrast, within the
indirect method, the valuation is taken out from the shareholders’ perspective by considering
the free cash flows generated by the insurance business. While of course the quantity to
be estimated is – or at least should be – the same for both procedures (see Girard (2002)),
the two methods may well yield different estimators for the AC and, hence, for the SCR.
In particular, as illustrated by our numerical experiments in Section 6, the quality of the
resulting estimate can differ significantly. Since the conceptual results of our paper are not
affected by the choice of the method and since the indirect method generally presents the
practically more accepted approach, we limit our exposition to the indirect method.

In either case, due to the relatively complex financial structure of life insurance liabilities
containing embedded options and guarantees, this calculation usually cannot be done in
closed form. Therefore, insurance companies usually follow a mark-to-model approach that
relies on Monte Carlo simulations.

2To keep our focus and without loss of generality, we do not address methods to account for non-financial
(non-hedgeable) risks in the current paper, but refer to Babbel et al. (2002), Klumpes and Morgan (2008),
and references therein for this discussion.
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To reduce the arbitrariness in the choice of this model and to ascertain comparability
of results across companies, over the last decade, the insurance industry has developed
principles for assessing the market-consistent value of a life insurance company’s assets and
liabilities from the shareholders’ perspective. This so-called Market-Consistent Embedded
Value (MCEV) corresponds to the present value of shareholders’ interest in the earnings
distributable from assets backing the life insurance business, after allowance for the aggregate
risks in the life insurance portfolio. It is important to note though that the MCEV does
not reflect the shareholders’ default put option resulting from their limited liability. More
precisely, it is assumed that the shareholders would make up any deficit arising in the future
with no upper limit on the amount. Consequently, the market-consistent value of insurance
liabilities can be derived indirectly as the difference between the market value of assets and
the MCEV. In particular, the Available Capital (AC) derived under Solvency II principles
is usually very similar to the MCEV, so that for the purpose of this paper, we assume that
the two quantities coincide.3

According to the CFO Forum (2008), the MCEV is defined as the sum of the Adjusted
Net Asset Value (ANAV) and the Present Value of Future Profits (PVFP) less a Cost-of-
Capital charge (CoC):

MCEV := ANAV + PVFP− CoC. (1)

The ANAV is derived from the (statutory) Net Asset Value (NAV)4 and includes adjustments
for intangible assets, unrealized gains and losses on assets etc. It consists of two parts, the
free surplus and required capital (cf. Principles 4 and 5 in CFO Forum (2008)). In most
cases, the ANAV can be calculated from statutory balance sheet figures and the market
value of assets; hence, the calculation does not require simulations.

The PVFP corresponds to the present value of post-taxation shareholder cash flows
from the in-force business5 and the assets backing the associated (statutory) liabilities. In
particular, it also includes the time value of financial options and guarantees (cf. Principles
6 and 7 in CFO Forum (2008)). The derivation of the PVFP is quite challenging since it
highly depends on the future development of the financial market, i.e. on the evolution of
the yield curve, equity returns, credit spreads etc. Hence, the PVFP needs to be determined
based on stochastic models, where, in general, risk-neutral valuation approaches are applied.

The CoC is the sum of the frictional cost of required capital and the cost of residual
non-hedgeable risks (cf. Principles 8 and 9 in CFO Forum (2008)).

2.2 The Solvency Capital Requirement

For deriving the SCR, the quantity of interest is the Available Capital at t = 1. Assuming
that the profit for the first year (denoted by X1) has not been paid to shareholders yet, it
can be described by

AC1 := MCEV1 + X1. (2)
3More specifically, there exist slight differences between the MCEV cost-of-capital and the risk margin

under Solvency II, and in the eligibility of certain capital components (e.g. subordinated loans).
4For an insurance company, the NAV is defined as the value of its assets less the value of its liabilities

based on the statutory balance sheet, and therefore roughly coincides with the statutory equity capital.
5This means that cash flows from future new business are not included in the PVFP.
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Intuitively, an insurance company is considered to be solvent under Solvency II if its AC at
t = 1 as seen from t = 0 is positive with a probability of at least 99.5%, i.e.

P (AC1 ≥ 0|AC0 = x)
!≥ 99.5%.

The SCR would then be defined as the smallest amount x satisfying this condition. This is
an implicit definition of the SCR ensuring that if the Available Capital at t = 0 is greater
or equal to the Solvency Capital Requirement, then the probability of the Available Capital
at t = 1 being positive is at least 99.5%.

However, for practical applications, one usually relies on a simpler but approximately
equivalent notion of the SCR, which avoids the implicit nature of the definition given above.
For this purpose, we define the one-year loss function evaluated at t = 0 as

L := AC0 − AC1

1 + s(0, 1)
,

where s(0, 1) is the one-year risk-free rate over [0, 1]. The SCR is then defined as the α-
quantile of L, where the security level α is set equal to 99.5%:6

SCR := argminx

{
P

(
AC0 − AC1

1 + s(0, 1)
> x

)
≤ 1− α

}
. (3)

The probability that the loss over one year exceeds the SCR is less or equal to 1−α, i.e. we
need to calculate a one-year Value-at-Risk (VaR). The Excess Capital at t = 0, on the other
hand, is defined as AC0 − SCR and satisfies the following requirement:

P
(

AC1

1 + s(0, 1)
≥ AC0 − SCR

)
≥ α; (4)

thus, the probability (evaluated at t = 0) that the Available Capital at t = 1 is greater or
equal to the Excess Capital is at least α (e.g. 99.5%).

Note that under this definition, the SCR depends on the actual amount of capital held
at t = 0 and may also include capital for covering losses arising from assets backing positive
Excess Capital. In case the Excess Capital is negative, it is implicitly assumed that it is
invested in a risk-free asset which can be illustrated by rewriting Equation (4) as follows:

P (AC1 + (SCR−AC0) · (1 + s(0, 1)) ≥ 0) ≥ α.

Based on this definition of the SCR, the solvency ratio can be calculated as AC0/SCR.
In the standard model, the SCR in Equation (3) is approximated via the so-called square-

root formula based on a modular approach. However, this formula is usually not able to
accurately reflect the insurer’s risk situation and may lead to deficient outcomes (see e.g.
Pfeifer and Strassburger (2008) and Sandström (2007)). Therefore, in what follows, we
describe how to determine the probability distribution of the loss function based on nested
simulations in an internal model which enables us to derive the SCR directly as defined in
Equation (3).

6These simplifications are analogous to the definition used for the Swiss Solvency Test (Federal Office of
Private Insurance (2006)).
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3 Nested Simulations Approach

3.1 Mathematical Framework

We assume that investors can trade continuously in a frictionless financial market, and we let
T be the maturity of the longest-term policy in the life insurer’s portfolio.7 Let (Ω,F ,P,F =
(Ft)t∈[0,T ]) be a complete filtered probability space on which all relevant quantities exist,
where Ω denotes the space of all possible states of the financial market and P is the physical
probability measure. Ft represents all information about the financial market up to time t,
and the filtration F is assumed to satisfy the usual conditions.

The uncertainty with respect to the insurance company’s future profits arises from the
uncertain development of a number of influencing factors, such as equity returns, interest
rates, or credit spreads. We introduce the d-dimensional, sufficiently regular Markov process
Y = (Yt)t∈[0,T ] = (Yt,1, . . . , Yt,d)t∈[0,T ], the so-called state process, to model the uncertainty
of the financial market, i.e. all risky assets in the market can be expressed in terms of
Y . Furthermore, we suppose the existence of a locally risk-free asset (Bt)t∈[0,T ] (the bank
account) with Bt = exp{∫ t

0 ru du}, where rt = r(Yt) is the instantaneous risk-free interest
rate at time t. In this market, we take for granted the existence of a risk-neutral probability
measure Q equivalent to P under which payment streams can be valued via their expected
discounted values with respect to the numéraire process (Bt)t∈[0,T ].8

Based on this market model, we assume that there exists a cash flow projection model of
the insurance company, i.e. there exist functionals f1, . . . , fT that derive the future profits
at time t from the development of the financial market up to time t, t = 1, . . . , T . This
cash flow model reflects legal and regulatory requirements as well as management rules.
Hence, we model the future profits from the in-force business as a sequence of random
variables X = (X1, . . . , XT ) where Xt = ft(Ys, s ∈ [0, t]), t = 1, . . . , T . In order to keep
our presentation concise, as pointed out above, we abstract by limiting our focus to market
risk, i.e. non-hedgeable risks as well as the corresponding cost-of-capital charges are ignored
(cf. Footnote 2). However, non-financial risk factors such as a mortality index could also be
incorporated in the state process. The corresponding cost-of-capital charges as well as other
frictional costs could then be considered by an appropriate choice of Q and ft, t = 1, . . . , T .

3.2 Calculation of the SCR

According to the risk-neutral valuation formula, we can determine the PVFP at time t = 0,
V0, as the expectation of the sum of the discounted future profits Xt, t = 1, . . . , T , under the
risk-neutral measure Q:

V0 := EQ
[

T∑

t=1

exp
(
−

∫ t

0
ru du

)
Xt

]
with σ0 :=

√√√√VarQ
[

T∑

t=1

exp
(
−

∫ t

0
ru du

)
Xt

]
.

In most cases, V0 cannot be computed analytically due to the complexity of the interaction
between the development of the financial market variables Yt and the liability side, or, more

7Since insurance contracts are long-term investments, T will usually be in the range of 30-40 years or even
longer.

8Under some mild technical conditions, this assumption is equivalent to the absence of arbitrage in the
financial market. See e.g. Bingham and Kiesel (2004) for more details.
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precisely, the shareholders’ profits Xt. Thus, in general, we have to rely on numerical methods
to estimate V0.

A common approach is to use Monte Carlo simulations, i.e. independent sample paths
(Y (k)

t )t∈[0,T ], k = 1, . . . , K0, of the underlying state process Y generated under the risk-
neutral measure Q. Based on these different scenarios for the financial market, we first derive
the resulting cash flows X

(k)
t (t = 1, . . . , T ; k = 1, . . . , K0) using the cash flow projection

model. Then, we discount the cash flows with the appropriate discount factor, and average
over all K0 sample paths, i.e.

Ṽ0(K0) :=
1

K0

K0∑

k=1

T∑

t=1

exp
(
−

∫ t

0
r(k)
u du

)
X

(k)
t ,

where r
(k)
t denotes the instantaneous risk-free interest rate at time t in sample path k. By

Equation (1) and since the ANAV can be derived from the statutory balance sheet, an
estimator for AC0 is given by ÃC0(K0) = ANAV0 + Ṽ0(K0). The sample version of the
standard deviation is denoted by σ̃0(K0).

For the calculation of the Solvency Capital Requirement, in addition to the Available
Capital at t = 0, we need to assess the (physical) distribution of the Available Capital at
t = 1. Assuming that the profit of the first year, X1, has not been paid to shareholders yet,
we need to determine the P-distribution of the F1-measurable random variable (cf. Equations
(1) and (2))

AC1 := ANAV1 + EQ
[

T∑

t=2

exp
(
−

∫ t

1
ru du

)
Xt

∣∣∣∣∣F1

]

︸ ︷︷ ︸
=:V1

+X1.

We may now estimate the distribution of AC1 via the corresponding empirical distribution
function: Given N ∈ N sample paths (Y (i)

s )s∈[0,1], i = 1, . . . , N , for the development of the
financial market over the first year under the real-world measure P, the PVFP at t = 1
conditional on the state of the financial market in scenario i can be described by

V
(i)
1 := EQ




T∑

t=2

exp
(
−

∫ t

1
ru du

)
Xt

︸ ︷︷ ︸
=:PV

(i)
1

∣∣∣∣∣∣∣∣∣∣∣

(Y (i)
s )s∈[0,1]




with σ
(i)
1 :=

√
VarQ

[
PV

(i)
1

∣∣∣ (Y (i)
s )s∈[0,1]

]
.

(5)

Note that the σ
(i)
1 may differ significantly for different scenarios i, i.e. the discounted cash

flows
∑T

t=2 exp
(
− ∫ t

1 ru du
)

Xt are usually not identically distributed for different realiza-
tions of the state process over the first year.

In addition, realizations for the remaining components of AC1, X1 and ANAV1, can easily
be calculated for each of the N first-year paths. Therefore, N realizations of AC1 are given
by

AC(i)
1 = ANAV(i)

1 + V
(i)
1 + X

(i)
1 .
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t=0 t=1 … t=T

Y(1)

Y(i)

Y(N)

P Q

Figure 1: Illustration of the nested simulations approach

Note that these F1-measurable random variables AC(i)
1 , i = 1, . . . , N , are independent and

identically distributed as Monte Carlo realizations and thus may be used for the construction
of an empirical distribution function.

However, just as at time zero, the valuation problem (5) generally cannot be solved
analytically, and, again, we may rely on Monte Carlo simulations. As illustrated in Figure 1,
based on the first-year path of the state process (Y (i)

s )s∈[0,1] in scenario i ∈ {1, . . . , N}, we

simulate K
(i)
1 ∈ N risk-neutral scenarios and denote them by (Y (i,k)

s )s∈(1,T ]. Then, for each

first-year path i ∈ {1, . . . , N}, by determining the resulting future profits X
(i,k)
t (t = 2, . . . , T ;

k = 1, . . . , K
(i)
1 ) and averaging over all K

(i)
1 sample paths, we obtain Monte Carlo estimates

for V
(i)
1 via

Ṽ
(i)
1 (K(i)

1 ) :=
1

K
(i)
1

K
(i)
1∑

k=1

T∑

t=2

exp
(
−

∫ t

1
r(i,k)
u du

)
X

(i,k)
t

︸ ︷︷ ︸
=:PV

(i,k)
1

, i ∈ {1, . . . , N}.

The number of simulations in the ith real-world scenario may depend on i since for differ-
ent standard deviations σ

(i)
1 , a different number of simulations may be necessary to obtain

acceptable results. We obtain the following sample standard deviation for PV
(i)
1 :

σ̃
(i)
1 (K(i)

1 ) :=

√√√√√ 1

K
(i)
1 − 1

K
(i)
1∑

k=1

(
PV

(i,k)
1 − Ṽ

(i)
1 (K(i)

1 )
)2

.

Now, we can estimate N realizations of AC1 by

ÃC
(i)

1 (K(i)
1 ) := ANAV(i)

1 + Ṽ
(i)
1 (K(i)

1 ) + X
(i)
1 , i = 1, . . . , N.
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From Equation (3), it follows that the SCR is the α-quantile of the random variable L =
AC0 − AC1

1+s(0,1) . Since AC0 is approximated by the unbiased estimator ÃC0(K0) and s(0, 1)
is known at t = 0, the only remaining random component is AC1 and the task is to estimate
the α-quantile of −AC1.

Based on the N estimated realizations of the random variable S = −AC1 with corre-
sponding order statistic

(
S̃(1), . . . , S̃(N)

)
and realization

(
s̃(1), . . . , s̃(N)

)
, a simple approach

for estimating the α-quantile sα is to rely on the corresponding empirical quantile, i.e.

s̃α = s̃(m),

where m = bN · α + 0.5c. The SCR can then be estimated as

S̃CR = ÃC0(K0) +
s̃(m)

1 + s(0, 1)
. (6)

Alternatively, extreme value theory could be applied to derive a robust estimate of the
quantile based on the given observations; see e.g. Embrechts et al. (1997) for details.

3.3 Quality of the Resulting Estimator and Choice of K0, K1, and N

Within our estimation process, we have three sources of error: (1) We estimate the Available
Capital at t = 0 with the help of (only) K0 sample paths; (2) we only use N real-world
scenarios to estimate the distribution function; and, (3) the Available Capital at t = 1 is
estimated with the help of (only) K1 sample paths in every scenario.9 As a consequence,
Equation (6) does not necessarily present an (unbiased) estimate for the quantile of the
distribution function of the “true” F1-measurable loss

L = AC0 − AC1

1 + s(0, 1)
= AC0 − ANAV1 + V1 + X1

1 + s(0, 1)
,

but instead we actually consider the distribution of the estimated loss

L̃ = ÃC0(K0)−
ANAV1 +

(
1

K1

K1∑
k=1

T∑
t=2

e−
∫ t
1 r

(k)
u duX

(k)
t

∣∣∣ (Ys)s∈[0,1]

)
+ X1

1 + s(0, 1)
.

In particular, L̃ is not F1-measurable due to the random sampling error resulting from the
estimation of AC0 and the inner simulation.

Obviously, by the law of large numbers (LLN)

L̃ → L a.s. as K0,K1 →∞.

Nevertheless, we base our estimation of the SCR on distorted samples. To analyze the
influence of this inaccuracy on our actual estimate S̃CR, we follow Gordy and Juneja (2010)
and decompose the mean-square error (MSE) into the variance of our estimator and a bias:10

MSE = E
[
(S̃CR− SCR)2

]
= Var(S̃CR) +


E(S̃CR)− SCR︸ ︷︷ ︸

bias




2

. (7)

9For the sake of simplicity, for the remainder of this section we let K
(i)
1 = K1 for all i ∈ {1, . . . , N}.

10In what follows, probabilities and expectations are calculated under a simulation measure. More specifi-
cally, while the structure of the probability space is modified by the interim change of measure, our simulation
procedure implies a new probability measure, which for simplicity is also denoted by P.
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Since ÃC0(K0) is an unbiased estimator of AC0 and since it is independent of s̃(m), Equation
(7) simplifies to

MSE = Var
(
ÃC0(K0)

)
+ Var

(
s̃(m)

1 + s(0, 1)

)
+

[
E

(
s̃(m)

1 + s(0, 1)

)
− sα

1 + s(0, 1)

]2

. (8)

Obviously, Var
(
ÃC0(K0)

)
= σ2

0
K0

, and we will now focus on the second and third term in
(8). Again following Gordy and Juneja (2010), let

ZK1 =
ANAV1 +

(
1

K1

K1∑
k=1

T∑
t=2

e−
∫ t
1 r

(k)
u duX

(k)
t

∣∣∣ (Ys)s∈[0,1]

)
+ X1

1 + s(0, 1)
− ANAV1 + V1 + X1

1 + s(0, 1)
denote the difference between the estimated loss and its “true” value under the assumption
that ÃC0(K0) is exact. Furthermore, define gK1(·, ·) to be the joint distribution function of
L and Z̃K1 := ZK1 · √K1.

Then, with Proposition 2 from Gordy and Juneja (2010), under some regulatory condi-
tions, we obtain

E
[

s̃(m)

1 + s(0, 1)

]
− sα

1 + s(0, 1)
=

θα

K1 · f(SCR)
+ oK1(1/K1) + ON (1/N) + oK1(1)ON (1/N),

and Var
(

s̃(m)

1 + s(0, 1)

)
=

α(1− α)
(N + 2)f2(SCR)

+ ON (1/N2) + oK1(1) ON (1/N),

where f(·) denotes the density function of L and

θα = − 1
2

∂

∂u

[
f(u)E

[
Var(Z̃K1 |(Ys)s∈[0,1])|L = u

]]∣∣∣∣
u=SCR

= − 1
2

∫ ∞

−∞
z2 ∂

∂u
gK1(u, z) dz

∣∣∣∣
u=SCR

.

The sign of θα – and, hence, the direction of the bias – will eventually be determined by the
sign of ∂

∂ugK1(u, z). Since the SCR is located in the right-hand tail of the distribution and

since gK1
(u,z)∫∞

−∞ gK1
(l,z) dl

is a (conditional) density function, ∂
∂ugK1(u, z)

∣∣
u=SCR

will in general be

negative. Thus, we expect to overestimate the SCR, i.e. the probability that the company
is solvent is on average slightly higher than α = 99.5%.

To optimize our estimate, we would like to choose K0, K1, and N such that the MSE is
as small as possible. Disregarding lower order terms, this yields the following optimization
problem in K0, K1, and N :

σ2
0

K0
+

θ2
α

K2
1 · f2(SCR)

+
α(1− α)

(N + 2)f2(SCR)
→ min

subject to the budget restriction K0 +N ·K1 = Γ.11 Using Lagrangian multipliers, we obtain
that for any choice of Γ,

N ≈ α (1− α) ·K2
1

2θ2
α

, and K0 ≈ σ0 ·K1 · f(SCR)
θα

√
N ·K1

2
,

11We disregard the cost for the generation of the N sample paths in the first period, since this effort is
small compared to the effort for the nested simulations. Furthermore, we do not consider the fact that the
sample paths for the estimation of AC0 are one period longer than those for the estimation of AC1 since T
is usually relatively large.
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i.e. given any choice of K1 and given θα, we may choose an optimal N and K0.
In practical applications, f , σ0, and θα are unknown but may be estimated in a pilot

simulation with only a small number of sample paths. However, the estimation of θα generally
will be quite inaccurate for large α because it is necessary to estimate a derivative in the
very tail of the distribution.

4 Confidence Interval for the SCR

The practical usefulness of the estimator for the SCR from the previous section clearly
depends on its accuracy, which may be described by a confidence interval. This section not
only describes how to derive a confidence interval for the SCR based on the ideas by Lan et
al. (2007a), but also addresses the allocation of the computational budget to obtain results
as accurate as possible.

4.1 Derivation of a Confidence Interval for the SCR

When constructing a confidence interval for the SCR, we have to take into account the
same three sources of uncertainty as described in the beginning of Section 3.3. To derive
confidence intervals for estimates based on nested simulations, Lan et al. (2007a) propose a
two step procedure: First, derive a confidence interval under the assumption that no inner
simulations are necessary; then consider the uncertainty arising from the estimation in the
inner simulation. However, they do not consider any uncertainty at t = 0 which – in our
setup – comes into play due to the estimation of AC0. Thus, in what follows, we extend
their approach to derive a confidence interval for the SCR.

If the losses L(i), 1 ≤ i ≤ N , are known explicitly, the estimation error is solely due to
the fact that the SCR is estimated via the empirical distribution function rather than the
“true distribution.” We are then looking to determine a lower bound LB as well as an upper
bound UB such that

P(SCR ∈ [LB; UB]) ≥ 1− αout,

where αout is the error resulting from the outer simulation. The derivation of such a confi-
dence interval for the SCR is straightforward since

∑N
i=1 1{L(i)≤SCR} is Binomially distributed

with parameters N and α = P (L ≤ SCR) (see e.g. Glasserman (2004), p. 491). More specif-
ically, we have for n ∈ N

n−1∑

i=1

(
N

i

)
αi (1− α)N−i = P

(
N∑

i=1

1{L(i)≤SCR} < n

)
= P (

L(n) > SCR
)

⇒ P(L(ψ) ≤ SCR < L(ψ)) =
ψ−1∑

i=ψ

(
N

i

)
αi (1− α)N−i , ψ, ψ ∈ N, (9)

where L(n) denotes the nth order statistic of the losses
(
L(i)

)N

i=1
. Therefore, in order to

determine a (1−αout)-confidence interval for the SCR, it suffices to determine ψ, ψ ∈ N such
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that

P(L(ψ) ≤ SCR < L(ψ)) =
ψ−1∑

i=ψ

(
N

i

)
αi (1− α)N−i ≥ 1− αout, (10)

and to set LB := L(ψ) and UB := L(ψ). Clearly, the choice of ψ and ψ is not unique and
the specification depends on the modeler’s objective, for example the question of whether
one- or two-sided confidence intervals are more appropriate for the application in view. In
what follows, we assume that ψ and ψ are chosen at the beginning of the procedure, and
that they remain fixed subsequently.

Within most applications, there exist no closed-form solution for the losses, i.e. they have
to be estimated numerically. Therefore, we are looking for bounds L̂B and ÛB that can be
derived from our nested simulations such that

lim
K

(i)
1 →∞

P
(
[LB; UB] ⊆

[
L̂B; ÛB

])
≥ 1−αin ⇒ lim

K
(i)
1 →∞

P
(
SCR ∈

[
L̂B; ÛB

])
≥ 1−αout−αin.

(11)

Hence,
[
L̂B; ÛB

]
is a confidence interval for the SCR.

In order to determine L̂B and ÛB, we first observe that when determining the loss in
the ith real-world scenario, we have two sources of error: the estimation of AC0 and the
estimation of AC(i)

1 . Let αAC0 be the error due to the estimation of AC0 and αAC1 be the
error due to the estimation of AC1 in all real-world scenarios. To simplify notation, we define

zAC0(K0) := t
K0−1,1−αAC0

2

σ̃0(K0)√
K0

and z
(i)
AC1

(K(i)
1 , N) := t

K
(i)
1 −1,1− ε

2

σ̃
(i)
1 (K(i)

1 )

(1 + s(0, 1)) ·
√

K
(i)
1

,

where tk,α is the α quantile of the t-distribution with k degrees of freedom and ε := 1 −
(1− αAC1)

1
N . Moreover, we let

C :=
N⊗

i=1

[
L̃(i)(K(i)

1 )− zAC0(K0)− z
(i)
AC1

(K(i)
1 , N); L̃(i)(K(i)

1 ) + zAC0(K0) + z
(i)
AC1

(K(i)
1 , N)

]
,

where
⊗

denotes the cartesian product. If PV
(k)
0 and PV

(i,k)
1 are Normally distributed, we

directly obtain

P
((

L(1), . . . , L(N)
)
∈ C

)

≥ P
(
ÃC0 − zAC0(K0) ≤ AC0 ≤ ÃC0 + zAC0(K0)

)

N∏

i=1

P
(

ÃC
(i)

1 − z
(i)
AC1

(K(i)
1 , N) · (1 + s(0, 1)) ≤ AC(i)

1 ≤ ÃC
(i)

1 + z
(i)
AC1

(K(i)
1 , N) · (1 + s(0, 1))

)

= (1− αAC0) ·
N∏

i=1

(1− ε) = 1− (αAC0 + αAC1 − αAC0 · αAC1)︸ ︷︷ ︸
=:αin

, (12)
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i.e. C is a confidence region for
(
L(1), . . . , L(N)

)
with level (1−αin). While generally, PV

(k)
0

and PV
(i,k)
1 will not be normal, the confidence interval is still asymptotically valid by the

central limit theorem (CLT). In order to combine the two confidence intervals for the inner
and the outer simulation, simply set

L̂B := inf
M∈C

M(ψ) and ÛB := sup
M∈C

M(ψ), (13)

where M := (M (1), . . . , M (N)) is an element in the confidence region C and M(.) is the order
statistic of M (1), . . . ,M (N). The following Proposition summarizes the foregoing:

Proposition 4.1. L̂B is the ψth order statistic of L̃(i)(K(i)
1 )−zAC0(K0)−z

(i)
AC1

(K(i)
1 , N), ÛB

is the ψ
th order statistic of L̃(i)(K(i)

1 )+ zAC0(K0)+ z
(i)
AC1

(K(i)
1 , N), 1 ≤ i ≤ N , and the confi-

dence interval
[
L̂B; ÛB

]
for the SCR has an asymptotic confidence level of (1− αout − αin).

It is necessary to note, however, that this confidence interval will in general be very
conservative since there are several steps where we underestimate the confidence level. More
specifically, on the one hand, the outer confidence level P(L(ψ) ≤ SCR < L(ψ)) may be
strictly greater than (1− αout) due to the discreteness of the binomial distribution. On the
other hand, the inequalities in (11) and (12) will generally not be tight. Hence, our actual
confidence level in many cases will be considerably higher than (1− αout − αin).

4.2 Choice of Parameters

Clearly, the length of the confidence interval depends on the choice of the parameters, and
our aim is to find the shortest confidence interval for the SCR given a fixed computational
budget Γ = K0 +K1 ·N . For the sake of simplicity, we fix αout, αin, and αAC0 although they
could easily be included in the optimization process.

Let iLB be the index such that L̂B = L̃(iLB)(K1) − zAC0(K0) − z
(iLB)
AC1

(K1, N), and let

iUB be the index such that ÛB = L̃(iUB)(K1) + zAC0(K0) + z
(iUB)
AC1

(K1, N). Then the length
of the confidence interval is given by

ÛB − L̂B = L̃(iUB)(K1)− L̃(iLB)(K1) + 2 · zAC0(K0) + z
(iUB)
AC1

(K1, N) + z
(iLB)
AC1

(K1, N).

In order to obtain an estimate for this length based on a pilot simulation, we fix K̃0 sample
paths for the estimation of AC0, Ñ real-world scenarios, and K̃1 inner simulations. We derive
the corresponding confidence interval as described in the first part of this section and denote
the lower and upper limit by L̂Bpilot and ÛBpilot, respectively, where iLB,pilot and iUB,pilot

denote the corresponding indices.
For our approximation of the length of the confidence interval, similarly to Lan et al.

(2007b), we make the following assumptions:

1. Sample standard deviations can be approximated by the pilot simulation.

2. K0 and K1 are sufficiently large so that the quantiles of the t-distribution can be
approximated by those of the standard normal distribution.
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3. The (approximate) length of the outer confidence interval for N real-world scenarios
can be derived from the pilot simulation by

L̃(iUB)(K1)− L̃(iLB)(K1) ≈
√

Ñ

N

(
L̃(iUB,pilot)(K̃1)− L̃(iLB,pilot)(K̃1)

)
.

Based on these assumptions, the length of the confidence interval can be approximated
by

ÛB − L̂B ≈
√

Ñ

N

(
L̃(iUB,pilot)(K̃1)− L̃(iLB,pilot)(K̃1)

)
+ 2 · z

1−αAC0
2

σ̃0(K̃0)√
K0

+z1− ε
2

σ̃
(iUB,pilot)
1 (K̃1)

(1 + s(0, 1))
√

K1
+ z1− ε

2

σ̃
(iLB,pilot)
1 (K̃1)

(1 + s(0, 1))
√

K1
,

where zα denotes the α-quantile of the standard normal distribution, and the optimization
problem is to minimize this length subject to the budget restriction Γ = K0 +K1 ·N . While
it cannot be solved in closed form, from the first order condition with respect to K1, we
obtain

K1 =
Γ

N + ζ
2
3
1 · ζ

− 2
3

2 ·N 2
3

, (14)

where

ζ1 := z
1−αAC0

2

σ̃0(K̃0) and ζ2 := z1− ε
2
· σ̃

(iUB,pilot)
1 (K̃1) + σ̃

(iLB,pilot)
1 (K̃1)

2 · (1 + s(0, 1))
.

Hence, for fixed Γ and N the optimal K1 is given by (14) and since K0 = Γ − N ·K1 the
dimension of our optimization problem is reduced to one. Then, numerical methods can be
applied to solve the univariate problem for the optimal N .

5 Screening Procedures

As pointed out in the previous section, the confidence interval for the SCR may be relatively
wide due to several inequalities in its derivation. Screening procedure present a way to
increase the efficiency of the simulation approach.

5.1 Confidence Intervals with Screening

The basic idea behind this method is splitting up the estimation process into two parts:
Based on a first run of nested simulations, we “screen” out those scenarios that are not
likely to belong to the tail of the distribution. Afterwards, we discard all inner simulations
of the first run (this is referred to as “restarting”) and generate new inner simulations for
those scenarios that survived the screening process. The objective is to screen out as many
scenarios as possible, so that we can perform many more inner simulations per real-world
scenario in the second run, and, this way, obtain more reliable results. However, when using
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screening procedures, we have an additional source of error in our computations because we
potentially screen out scenarios belonging to the tail.

We follow Lan et al. (2010), who describe a screening procedure for expected shortfall
based on nested simulations. Given N1 real-world scenarios, we simulate a certain number
K1,1 of inner sample paths for each scenario. The estimated loss in real-world scenario i is

denoted by L̃(i)(K1,1) = ÃC0(K0)− ÃC
(i)

1 (K1,1)
1+s(0,1) . Based on this first run of inner simulations,

we would now like to screen out all scenarios with a “small” loss, i.e. which do not belong
to the tail of the α · N1 largest losses. In doing so, we define an “error probability” αscreen

and keep all scenarios in the set

I :=





i :
∑

j 6=i

1



L̃(i)(K1,1)<L̃(j)(K1,1)−t
f(i,j),1−δ

√√√√
(

σ̃
(i)
1 (K1,1)

)2
+

(
σ̃
(j)
1 (K1,1)

)2

(1+s(0,1))2K1,1





< N1 − ψ + 1





(15)

where δ := αscreen
(N1−ψ+1)(ψ−1) , ψ is defined by Equation (10), and tf (i,j),1−δ is the (1−δ)-quantile

of the t-distribution with f (i,j) degrees of freedom. Here,

f (i,j) :=

(K1,1 − 1)


1 +

2(
σ̃

(i)
1 (K1,1)/σ̃

(j)
1 (K1,1)

)2
+

(
σ̃

(j)
1 (K1,1)/σ̃

(i)
1 (K1,1)

)2




 ,

which is a consequence of the Welch-Satterthwaite equation. The specific choice of δ is
required for the proof of the confidence level in Proposition 5.2. Thus, we screen out all
scenarios where we can find at least N1−ψ + 1 other realizations yielding a higher loss with
a certain predetermined probability.12 The number of “surviving” scenarios is denoted by
N2 = |I|.

In order to limit the number of necessary comparisons, we further use a pre-screening
procedure before we start the screening process.13 Specifically, let π1(·) be a permutation of
the indices such that L̃(π1(i)) is non-decreasing in i and define

σ̃max(K1,1) := max
j∈{ψ,...,N1}

{
σ̃

(π1(j))
1 (K1,1)

}
and

tmax,1−δ := max
i∈{1,...,N1}

{
max

j∈{ψ,...,N1}

{
tf (π1(i),π1(j)),1−δ

}}
.

Then we pre-screen out all scenarios with

L̃(i)(K1,1) < L̃(π1(ψ))(K1,1)− tmax,1−δ

√√√√
(
σ̃

(i)
1 (K1,1)

)2
+ (σ̃max(K1,1))

2

(1 + s(0, 1))2K1,1
,

12Of course, one may also consider screening out scenarios, in which the losses are too large, i.e. where
we can find at most N1 − ψ − 1 other scenarios where the loss is higher with a predetermined probability.
However, since we estimate a quantile in the far right tail of the distribution, there will only be very few
scenarios that can be screened out in this way. Hence, in most cases this procedure will not be very efficient
and thus, it will not be worth the additional computational effort.

13Pre-screening is suggested in Lan et al. (2010), but is not included in their convergence proofs.
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i.e. we pre-screen based on a stricter test using the maximal quantile and the maximal
variance in the tail. The great advantage of pre-screening is that actually many scenarios
can be screened out by only one comparison, which saves a lot of computational time. Those
scenarios that survive pre-screening are screened afterwards. The following proposition shows
that screening with and without pre-screening leads to the same result. A proof for this
proposition can be found in the Appendix.

Proposition 5.1. Let Ĩ denote the set of scenarios that survive pre-screening, i.e.

Ĩ =





i : L̃(i)(K1,1) ≥ L̃(π1(ψ))(K1,1)− tmax,1−δ

√√√√
(
σ̃

(i)
1 (K1,1)

)2
+ (σ̃max(K1,1))

2

(1 + s(0, 1))2K1,1





.

Then I ⊆ Ĩ . Thus, the pre-screening procedure does not screen out scenarios that would
survive screening.

Having screened out the irrelevant scenarios, we discard all inner simulations and generate
K

(i)
1,2 new inner simulations for each i ∈ I. The corresponding loss estimates and standard

deviations are denoted by L̃(i)(K(i)
1,2) and σ̃

(i)
1 (K(i)

1,2), respectively, i = 1, . . . , N2.

We use two different approaches to determine K
(i)
1,2. In the first approach, we allocate the

remaining computational budget equally to all scenarios, i.e. K
(i)
1,2 = K1,2; within the second

allocation, we divide the budget proportional to the variance in the remaining scenarios, i.e.

K
(i)
1,2 :=


(Γ−N1 ·K1,1 −K0)

(
σ̃

(i)
1 (K1,1)

)2

∑
j∈I

(
σ̃

(j)
1 (K1,1)

)2

 . (16)

To derive a confidence interval, we proceed just like in the previous section. More pre-
cisely, we define

zAC0(K0) := t
K0−1,1−αAC0

2

σ̃0(K0)√
K0

, and

z
(i)
AC1

(K(i)
1,2, N2) := t

K
(i)
1,2−1,1− ε

2

σ̃
(i)
1 (K(i)

1,2)

(1 + s(0, 1))
√

K
(i)
1,2

, ε := 1− (1− αAC1)
1

N2 ,

where, as before, αAC0 denotes the error resulting from the estimation of AC0 and αAC1

denotes the error resulting from the estimation of the AC(i)
1 , i ∈ I. Now choose L̂B and ÛB

as the (ψ − (N1 − N2))th order statistic of L̃(i)(K(i)
1,2) − zAC0(K0) − z

(i)
AC1

(K(i)
1,2, N2) and the

(ψ−(N1−N2))th order statistic of L̃(i)(K(i)
1,2)+zAC0(K0)+z

(i)
AC1

(K(i)
1,2, N2), i ∈ I, respectively.

Then, we have the following result:

Proposition 5.2. [L̂B, ÛB] is an asymptotically valid confidence interval for the SCR with
confidence level (1− αout − αin) as K0 →∞, K1,1 →∞, and K

(i)
1,2 →∞, where

αin := 1− (1− αscreen) (1− αAC0) (1− αAC1) . (17)
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A proof of the proposition can be found in the Appendix. Note that this confidence
interval will generally be again very conservative due to the many inequalities used in the
proof.

In addition to the confidence interval, we may also compute a point estimate S̃CR
screen

for the SCR, which is given by the (m − (N1 − N2))th order statistic of L̃(i)(K(i)
1,2), i ∈ I,

where m = bN1 · α + 0.5c. Clearly, this estimate is based on the assumption that if we
had also computed the losses L̃(i)(K(i)

1,2) for those real-world scenarios that were screened

out, they would have been smaller than the (m− (N1 −N2))th order statistic of L̃(i)(K(i)
1,2),

i ∈ I. Under this assumption, the (m − (N1 − N2))th order statistic of L̃(i)(K(i)
1,2), i ∈ I,

coincides with the mth order statistic of L̃(i)(K(i)
1,2), 1 ≤ i ≤ N1, i.e. this estimate for the

SCR is the same as the point estimator from the basic nested simulations approach with N1

real-world scenarios and K
(i)
1,2 inner simulations. Hence, if K

(i)
1,2 > K

(i)
1 , where K

(i)
1 denotes

the number of inner simulations in the basic nested simulations approach with N1 real-
world scenarios and the same computational budget Γ, the point estimate resulting from
the screening procedure will be considerably more precise than the point estimator from
the basic nested simulations approach because of the higher number of inner simulations.
However, in general the assumption that all estimated losses in those scenarios that have
been screened out are smaller than those in the surviving scenarios is problematic because
we may have screening mistakes. More specifically, it is possible that we have screened out a
scenario where L̃(i)(K(i)

1,2) is greater than the (m− (N1 −N2))th order statistic of L̃(i)(K(i)
1,2),

i ∈ I. Hence, screening introduces an additional type of bias in our point estimate. This
bias will be negative, since we may have replaced one of the tail scenarios by a scenario with
a smaller loss, i.e. it will lead to an underestimation of the SCR. Note, however, that we
have a positive bias originating from the uncertainty associated with the inner simulation
(cf. Section 3.3), so that the two biases may potentially offset each other.

If we only aim for a good point estimator for the SCR, we may further adapt the approach
from Liu et al. (2008) to our problem. Here, the authors use multiple stages of screening to
estimate the expected shortfall. However, they note that the “procedure does not provide
confidence intervals nor guarantees a minimum probability of correctly identifying the tail.”

5.2 Efficient Use of Screening Procedures

Obviously, for a fixed computational budget, the efficiency of the screening procedure de-
scribed in the previous subsection strongly depends on the choice of K0, K1,1, and N1. If we
allocate too much of our budget to the screening procedure, there is only a small budget left
for the second run. However, choosing the budget for the screening procedure “too small”
results in a high number of survivors and thus, the remaining budget for the second run has
to be divided between “too many” scenarios. In this section, we describe a procedure how to
choose N1 approximately optimal to minimize the length of the confidence interval for fixed
K1,1 and K0, and a given computational budget Γ. The approach again uses the basic ideas
from the adaptive procedure in Lan et al. (2007b).

We first consider the case where the remaining budget is allocated equally to all survivors
in the second run. Furthermore, we fix αout, αin, αAC0 , and αscreen. αAC1 can then be derived
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from these values as follows (cf. Equation (17)):

αAC1 = 1− (1− αin)
(1− αscreen) · (1− αAC0)

. (18)

Akin to the optimization approach for confidence intervals without screening (cf. Section
4.2), we let iLB be the index such that L̂B = L̃(iLB)(K1,2) − zAC0(K0) − z

(iLB)
AC1

(K1,2, N2),

and iUB be the index such that ÛB = L̃(iUB)(K1,2) + zAC0(K0) + z
(iUB)
AC1

(K1,2, N2). Then,
the length of the confidence interval is given by

ÛB − L̂B = L̃(iUB)(K1,2)− L̃(iLB)(K1,2) + 2 · zAC0(K0) + z
(iUB)
AC1

(K1,2, N2)

+z
(iLB)
AC1

(K1,2, N2).

Our target is now to predict this length for different choices of N1 based on a pilot
simulation with Ñ1 real-world scenarios, K1,1 inner simulations, and K0 sample paths for the
estimation of AC0.14 Within the pilot simulation, we perform the first run and compute the
resulting confidence interval as described in Section 4.1, the only difference being that we use
αAC1 from Equation (18). The resulting confidence interval is denoted by [L̂Bpilot; ÛBpilot]
with corresponding indices iLB,pilot and iUB,pilot, respectively. Subsequently, we apply the
screening procedure to the results from the first run of the pilot simulation.

Similar to Lan et al. (2007b), we make the following assumptions:

1. For fixed K0 and K1,1, the fraction of scenarios that survive screening does not depend
on the number of real-world scenarios N1, i.e.

Ñ2

Ñ1

≈ N2

N1
,

where Ñ2 is the number of scenarios that survives screening in the pilot simulation.

2. The sample standard deviations can be approximated by the pilot simulation.

3. The length of the outer confidence interval for N1 real-world scenarios can be approx-
imated from the length for Ñ1 scenarios by

L̃(iUB)(K1,2)− L̃(iLB)(K1,2) ≈
√

Ñ1

N1

(
L̃(iUB,pilot)(K1,1)− L̃(iLB,pilot)(K1,1)

)
.

Based on these assumptions, the length of the confidence interval can be approximated by

ÛB − L̂B ≈
√

Ñ1

N1

(
L̃(iUB,pilot)(K1,1)− L̃(iLB,pilot)(K1,1)

)
+ 2 · zAC0(K0)

+tK̂1,2−1,1− ε̂
2

σ̃1
(iLB,pilot)(K1,1)

(1 + s(0, 1))
√

K̂1,2

+ tK̂1,2−1,1− ε̂
2

σ̃1
(iUB,pilot)(K1,1)

(1 + s(0, 1))
√

K̂1,2

,

14Note that once N1, K1,1, and K0 are specified, the number of survivors N2 and the number of inner
simulation in the second run K1,2 result from the screening procedure.
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where ε := 1 − (1 − αAC1)
1

N̂2 with N̂2 := Ñ2·N1

Ñ1
being the estimated number of survivors.

K̂1,2 := (Γ−N1·K1,1−K0)·Ñ1

Ñ2·N1
is the estimated number of inner simulations in the second run.15

Then, the task is to minimize this length which may be carried out numerically.
If we allocate the remaining budget for the second run proportional to the variance in

the first run, we need to add one more assumption (cf. Lan et al. (2007b)):

(iv) The average variance in a scenario that survives screening does not depend on the
original number N1 of real-world scenarios, i.e.

∑
i∈I

(
σ̃

(i)
1 (K1,2)

)2

N2
≈

∑
i∈Ipilot

(
σ̃

(i)
1 (K1,1)

)2

Ñ2

,

where Ipilot denotes the set of scenarios that survives screening in the pilot simulation.

Then, we obtain the following expression for the number of inner simulations in the second
run:

K̂
(iLB)
1,2 := (Γ−N1 ·K1,1 −K0) ·

Ñ1 ·
(
σ̃

(iLB,pilot)
1 (K1,1)

)2

N1 ·
∑

i∈Ipilot

(
σ̃

(i)
1 (K1,1)

)2 .

K̂
(iUB)
1,2 is derived analogously. Subsequently, we proceed as in the case of a constant alloca-

tion.

6 Application

6.1 Asset and Liability Model

As an example framework for our considerations, we use the model for a single participating
term-fix contract introduced in Bauer et al. (2006).

6.1.1 General Setup

A simplified balance sheet is employed to represent the insurance company’s financial situ-
ation (see Table 1). Here, At denotes the market value of the insurer’s asset portfolio, Lt

Assets Liabilities
At Lt

Rt

At At

Table 1: Simplified balance sheet

15In case K̂1,2 is not an integer, we use the largest integer that is smaller than K̂1,2.
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is the policyholder’s statutory account balance, and Rt = At − Lt are the free funds (also
referred to as “reserve”) at time t.

Disregarding debt financing, the total assets A0 at time zero derive from two components,
the policyholder’s account balance (“liabilities”) and the shareholders’ capital contribution
(“equity”). Ignoring charges as well as unrealized gains or losses, these components are
equal to the single up-front premium L0 and the reserve at time zero, R0, respectively.
In particular, the shareholders’ funds are available to cover potential losses, i.e. they are
exposed to risk. Thus, as compensation for the adopted risk, we assume that dividends dt

may be paid out to shareholders each period. Moreover, shareholders may benefit from a
favorable evolution of the company in that the market value of their capital contribution
increases. More specifically, they may realize ROIT := RT − exp

(∫ T
0 ru du

)
R0 as their

(time value-adjusted) return on investment at the end of the projection period (also referred
to as “maturity”) T .

For the bonus distribution scheme, i.e. for modeling the evolution of the liabilities, we rely
on the so-called MUST-case from Bauer et al. (2006). This distribution mechanism describes
what insurers are obligated to pass on to policyholders according to German regulatory and
legal requirements: On the one hand, companies are obligated to guarantee a minimum rate
of interest g on the policyholder’s account; on the other hand, according to the regulation
about minimum premium refunds in German life insurance, a minimum participation rate
δ of the earnings on book values has to be credited to the policyholder’s account.16 Since
earnings on book values usually do not coincide with earnings on market values due to
accounting rules, we assume that earnings on book values amount to a portion y of the
latter.

In case the asset returns are so poor that crediting the guaranteed rate g to the poli-
cyholder’s account will result in a negative reserve Rt, the insurer will default due to the
shareholders’ limited liability (cf. the notion of a “shortfall” in Kling et al. (2007)). How-
ever, as was pointed out in Section 2.1, the MCEV should not reflect the shareholders’ put
option, i.e. the MCEV should be calculated under the supposition that shareholders cover
any deficit. In accordance with this hypothesis, we assume that the company obtains an
additional contribution ct from its shareholders in case of such a shortfall.

Therefore, the earnings on market values equal to A−t − A+
t−1, where A−t and A+

t =
A−t − dt + ct describe the market value of the asset portfolio immediately before and after
the dividend payments dt and capital contributions ct at time t ∈ N, respectively. Moreover,
we have

Lt = (1 + g) Lt−1 +
[
δy

(
A−t −A+

t−1

)− gLt−1

]+
, t = 1, . . . , T.

Assuming that the remaining part of earnings on book values is paid out as dividends, we
obtain

dt = (1− δ)y
(
A−t −A+

t−1

)
1{δy(A−t −A+

t−1)>gLt−1}
+

[
y

(
A−t −A+

t−1

)− gLt−1

]
1{δy(A−t −A+

t−1)≤ gLt−1≤ y(A−t −A+
t−1)}.

16These earnings reflect the investment income on all assets, including the assets backing shareholders’
equity Rt; this reduces the shareholders’ ROI.
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Obviously, dividend payments equal zero whenever a capital contribution is required. There-
fore, the capital contribution at time t can be described as

ct = max{Lt −A−t , 0}.
For more details on the contract model we refer to Bauer et al. (2006).

6.1.2 Relevant Quantities

Since we ignore unrealized gains and losses on assets as well as other adjustments, we have
ANAV0 = NAV0 = R0. Therefore, the Available Capital at time t = 0 can be described as
follows:

AC0 = ANAV0 + V0

= R0 + EQ
[

T∑

t=1

exp
(
−

∫ t

0
ru du

)
(dt − ct) + exp

(
−

∫ T

0
ru du

)
ROIT

]

= R0 + EQ
[

T∑

t=1

exp
(
−

∫ t

0
ru du

)
(dt − ct) + exp

(
−

∫ T

0
ru du

)
RT −R0

]

= EQ
[

T∑

t=1

exp
(
−

∫ t

0
ru du

)
Xt

]

where

Xt =
{

dt − ct , if t ∈ {1, . . . , T − 1}
dT − cT + RT , if t = T

.

Similarly, we obtain

AC1 = ANAV1 + V1 + X1 = EQ
[

T∑

t=1

exp
(
−

∫ t

1
ru du

)
Xt

∣∣∣∣∣F1

]
.

So far, we described the Available Capital based on cash flows from the shareholders’
point of view. But as already mentioned in Section 2.1, we can also express AC0 and AC1

based on cash flows from the policyholders’ perspective, i.e. within this framework we have

AC0 = A0 − EQ
[
exp

(
−

∫ T

0
ru du

)
LT

]
.

and

AC1 = A+
1 − EQ

[
exp

(
−

∫ T

1
ru du

)
LT

∣∣∣∣F1

]
+ X1.

The corresponding estimators for the Available Capital based on policyholder cash flows can
be derived in analogy to the estimator for the shareholder cash flows (cf. Section 3.2). Fur-
thermore, the optimization procedure described in Section 3.3 as well as the considerations
from Section 4 and 5 can easily be adapted for the estimators based on policyholder cash
flows. As we will see in Section 6.2, the quality of the two different estimation approaches
differs considerably.
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6.1.3 Asset Model

For the evolution of the financial market, similarly to Zaglauer and Bauer (2009), we assume
a generalized Black-Scholes model with stochastic interest rates (Vasicek model). The asset
process and the short rate process evolve according to the stochastic differential equations

dAt = µAt dt + ρ σA At dWt +
√

1− ρ2 σA At dZt, A0 > 0,

drt = κ (ξ − rt) dt + σr dWt, r0 > 0,

respectively, where ρ ∈ [−1, 1] describes their correlation, µ ∈ R, σA, κ, ξ, σr > 0, and W
and Z are two independent Brownian motions under the real-world measure P. Hence, the
market value of the assets at t = 1 can be expressed as

A−1 = A0 exp
(

µ− σ2
A

2
+ ρ σA W1 +

√
1− ρ2 σA Z1

)
,

and for the short rate process, we have

r1 = e−κr0 + ξ
(
1− e−κ

)
+

∫ 1

0
σre

−κ(t−s) dWs.

Moreover, we assume that the market price of interest rate risk is constant and denote it by
λ. Then, we obtain the following dynamics under the risk-neutral measure Q:

dAt = rtAt dt + ρ σA At dW̃t +
√

1− ρ2 σA At dZ̃t,

drt = κ
(
ξ̃ − rt

)
dt + σr dW̃t,

where ξ̃ = ξ − λσr
κ , and W̃ and Z̃ are two independent Brownian motions under Q. Hence,

under Q, we have

A−t = A+
t−1 exp

(∫ t

t−1
rsds− σ2

A

2
+ ρ σA (W̃t − W̃t−1) +

√
1− ρ2σA(Z̃t − Z̃t−1)

)
,

rt = e−κr0 + ξ̃
(
1− e−κ

)
+

∫ t

t−1
σre

−κ(t−s) dW̃s,

and
∫ t

t−1
rs ds =

rt−1 − ξ̃

κ

(
1− e−κ

)
+ ξ̃ +

σr

κ

∫ t

t−1

(
1− e−κ(t−s)

)
dW̃s, t = 2, . . . , T,

which can be conveniently used in Monte Carlo algorithms (cf. Zaglauer and Bauer (2009)).
We estimate the parameters for our asset model from German data from June 1998 to

June 2008 using a Kalman filter. The parameters for the asset portfolio are calibrated to
an index consisting of 80% REXP17 and 20% DAX.18 For the estimation of the short rate
process, we use interest rates for government bonds with maturities of 3 months, 1, 3, 5, and
10 years. We obtain the following results: The drift of the asset process is µ = 4.25%, and
its volatility is σA = 4.28%. For the short rate process we have κ = 14.49%, ξ = 3.64%, and

17The REXP is a total return index of the German bond market.
18The DAX is a total return index of the German stock market.
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Figure 2: Empirical density function for different choices of K1 for the estimator based
on the policyholder cash flows (left) and the shareholder cash flows (right); N = 100, 000,
K0 = 250, 000

σr = 0.6%. The initial value of the short rate is r0 = 4.19%. The estimated correlation is
ρ = −0.0597 and the market price of risk is λ = −0.5061.

For the insurance contract, similarly to Bauer et al. (2006), we assume a guaranteed
minimum interest rate of g = 3.5%, a minimum participation rate of δ = 90%, an initial
premium of L0 = 10, 000, and a maturity of T = 10. Moreover, we assume that y = 50%
of earnings on market values are declared as earnings on book values and that the initial
reserve quota equals x0 = R0/L0 = 10%, i.e. R0 = x0 · L0 = 1, 000.

6.2 Results

In Sections 3 to 5, we introduce different methods on how to estimate the SCR and corre-
sponding confidence intervals. In what follows, we implement them in the setup described
in Section 6.1. In particular, we focus on the optimal parameter choice for the different
methods in view.

6.2.1 Nested Simulations Approach

As indicated in Section 3.3, the estimation of the SCR using nested simulations is biased.
This bias mainly depends on the choice of the estimator and the number of inner simulations.
Hence, in order to develop an idea for its magnitude, we analyze the results for the estimator
based on cash flows from the policyholders’ and from the shareholders’ perspective (see
Section 6.1.2), and choose different numbers of inner simulations. We fix K0 = 250, 000
sample paths for the estimation of AC0, N = 100, 000 realizations for the simulation over
the first year, and choose K

(i)
1 = K1 ∀1 ≤ i ≤ N .

In Figure 2, the empirical density functions of the loss L for both estimators and different
choices of K1 are plotted. As expected, for both estimators the distribution is more dispersed
for small K1, which has a tremendous impact on our problem of estimating a quantile in the
tail: We significantly overestimate the SCR for small choices of K1. This can also be noticed
in Table 2, where the estimated SCR for different choices of K1 is displayed. Moreover, we
observe that the distribution given by the estimator based on shareholder cash flows is more
dispersed than that given by the estimator for the policyholder cash flows for the same K1.
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Since the bias mainly depends on the variance of ÃC
(i)

1 (K(i)
1 ), 1 ≤ i ≤ N , this indicates

that the former estimator has a higher variance and, thus, we need more inner simulations
to obtain reliable results. Further analyses show that in our setting, the estimator based on
cash flows from the policyholders’ perspective is superior to that based on shareholder cash
flows in most cases. Therefore, if not mentioned otherwise, we will rely on the estimator
based on cash flows from the policyholders’ perspective for the remainder of the paper.

K1 policyholder cash flows shareholder cash flows
S̃CR ÃC0/S̃CR S̃CR ÃC0/S̃CR

1 1,994.0 94% 3,432.5 55%
5 1,404.7 134% 1,874.6 100%
10 1,332.7 141% 1,606.5 117%
100 1,261.2 149% 1,279.1 147%

1,000 1,246.3 151% 1,254.6 149%

Table 2: Estimated SCR and estimated solvency ratio for different choices of K1; K0 =
250, 000, N = 100, 000

The above results show that a proper allocation of resources, i.e. a careful choice of K0,
K1, and N , is inevitable in order to obtain accurate results. In order to find (approximately)
optimal combinations of K0, K1, and N , we estimate the unknown quantities σ0, f , and
θα from a pilot simulation with K̃0 = 250, 000 sample paths for the estimation of AC0,
Ñ = 100, 000 real-world scenarios, and K̃1 = 200 inner simulations. Based on these scenarios,

we calculate the empirical variances
(
σ̃

(i)
1 (K̃1)

)2
for each real-world scenario i, i = 1, . . . , Ñ

and estimate the expected conditional variance via a regression analysis. More specifically,
we assume

EQ
[
Var

(
Z̃K1 |Y1, D1

)
|L

]
≈ β0 + β1L + β2L

2

and estimate β0, β1, and β2 from our results. Sensitivity analyses show that the optimal
choice of K0, K1, and N is rather insensitive to different choices of the regression function.
In a second step, we derive the empirical density function and approximate its derivative
by the average of left- and right-sided finite differences. In this case, sensitivity analyses
indicate that the obtained results are not very exact due to the rather small number of
observations in the tail. Nevertheless, our estimates provide a rough idea of the optimal
ratio. The resulting estimate for θα is given by θ̂α ≈ 0.027. σ0 is approximated by the
empirical standard deviation.

In order to obtain an accurate estimate of the 99.5% quantile based on the empirical
distribution function, we choose a relatively large number of inner simulations, namely K1 =
300. Then, we find that a choice of approximately N = 320, 000 and K0 = 1, 500, 000 is
optimal, which results in a total budget of Γ = 97, 500, 000 simulations. In this setting, we
obtain S̃CR = 1, 249.7 and a solvency ratio of 150%. At first sight, it might be surprising that
K0 should be chosen that large compared to the two other parameters. However, reducing
the variance of ÃC0(K0) is relatively “cheap” compared to reducing the variance of s̃(m)

1+s(0,1)
because whenever we increase N , we automatically have to perform K1 inner simulations



On the Calculation of the SCR based on Nested Simulations 25

for every additional real-world scenario. Therefore, it is reasonable to allocate a rather large
budget to K0.

To demonstrate that, given a total budget of Γ = 97, 500, 000, this choice is roughly
adequate, we estimate the SCR 150 times for fixed K0 and different combinations of N and
K1, where each combination corresponds to a total budget of 97,500,000 simulations. We
estimate the bias by θ̄α

K1·f̄(S̃CR)
, where θ̄α and f̄ denote the average of the estimates resulting

from the 150 estimation procedures as explained above. The MSE is then estimated by the
sum of the empirical variance and the squared estimated bias. This allows us to correct the
mean by the estimated bias. Figure 3 and Table 3 show our results.
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Figure 3: 150 runs for different choices of N and K1; K0 = 1, 500, 000

N K1 Mean Empirical Estimated Estimated Corrected
(S̃CR) Variance Bias MSE Mean

160,000 600 1,247.7 24.6 1.4 26.6 1,246.3
320,000 300 1,249.3 15.8 2.9 24.0 1,246.4
640,000 150 1,251.3 7.9 5.7 40.6 1,245.6

1,280,000 75 1,257.4 4.2 11.4 133.1 1,246.1

Table 3: Results for different choices of N and K1; 150 runs, K0 = 1, 500, 000

As expected, the mean of the estimated SCRs increases as K1 decreases due to the in-
creased bias. In contrast to this, the empirical variance obviously decreases as N increases.
Furthermore, we find that our choice of N and K1 yields the smallest estimated MSE from
the combinations given in Table 3. Therefore, our choice appears reasonable within our
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framework. Moreover, it is remarkable that if we correct the means in Table 3 by the corre-
sponding estimated bias, the difference between the results for the different combinations is
almost negligible.

Therefore, we will use N = 320, 000 and K1 = 300 in the remaining part of this paper
if not stated otherwise, and we refer to this parameter combination as the base case. With
this parameter combination, it takes about 16 minutes to carry out one run with our C++
implementation.19

6.2.2 Confidence Intervals

Having analyzed the point estimator of the nested simulations approach, we now proceed
with the derivation of confidence intervals for the SCR as described in Section 4. Within
our numerical experiments, we aim for a total confidence level of 90%. In a first step, we
determine confidence intervals for the base case from the previous subsection. We derive a
two-sided confidence interval and choose the indices ψ and ψ (cf. Equation (10)) such that
they are symmetric around m = bα · N1 + 0.5c, which corresponds to the order statistic of
the estimated SCR.

Of course, our results depend on the choice of the error levels αout and αAC0 .
20 However,

based on some sensitivity analyses we find that the influence of this choice on the length of
the confidence interval is not very pronounced. Since in our base case the uncertainty arising
from the inner simulation dominates the uncertainty arising from the outer simulation and

since the estimation error for ÃC0(K0) is significantly smaller than that for ÃC
(i)

1 (K1),
i = 1, . . . , N , αin = 8% and αAC0 = 0.1% seem to be reasonable choices.

In this case, we obtain a confidence interval of [1, 073.4; 1, 427.6]. Hence, we have a
length of 354.2, which corresponds to about 28% of the point estimate S̃CR. However, when
analyzing the result in more detail, we find that the ψth and ψ

th order statistics of the
estimates losses are given by L̃ψ = 1, 241.6 and L̃ψ = 1, 259.4. Thus, a very large part of the
confidence interval can be attributed to the uncertainty arising from the inner simulation
and the estimation of AC0. Therefore, it may be conductive to reconsider the choice of K0,
K1, and N for fixed αout and αAC0 and using the optimization approach presented in Section
4.2.

For the sake of simplicity, we use the same pilot simulation as in Section 6.2.121 leading to
the following approximately optimal parameters: N ≈ 20, 000, K1 ≈ 4, 732, K0 ≈ 2, 860, 000.
Thus, as expected, in comparison to the base case from the previous section, the number
of inner simulations and the number of sample paths for the estimation of AC0 increase
whereas the number of real-world scenarios decreases. Based on these parameters, we obtain
a confidence interval of [1,179.9;1,329.2]. This translates into a solvency ration between
141% and 159%. The length of the confidence interval is given by 149.3 which corresponds
to approximately 12% of S̃CR.

To demonstrate that this choice of parameters is roughly adequate, we also compute the
length of the confidence interval for other numbers of real-world scenarios N , where for each

19The simulations were carried out on a Windows machine with Intel Core 2 Duo CPU T7500, 2.20GHz, and
2048 MB RAM. Of course, the computational time depends on our particular implementation; optimizations
of the code may be possible.

20Note, that αin and αAC1 are defined by αout and αAC0 and the total confidence level of 90%.
21However, we found that already pilot simulations with about N = 10, 000 yields suitable estimates.
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N we calculate the approximately optimal choice of K0 and K1. In Figure 4, we show our
results. The shortest confidence interval with a length of 148.7 is obtained for N = 30, 000.
Nevertheless, we find that our choice resulting from the optimization algorithm is roughly
optimal in the sense that it lies within a range of N where the length of the confidence
interval is close to minimal. Furthermore, we need to keep in mind that the results in Figure
4 are based on a limited number of N and for every choice of N , only one run was performed.
Compared to our base case with N = 320, 000, the length of the confidence interval with
parameters as derived by the optimization approach is decreased to less than 50% of the
original length. This demonstrates again that the parameters need to be chosen carefully in
order to obtain accurate results.

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

50,000 100,000 150,000 200,000 250,000 300,000

N

S̃CR
L̂B

ÛB
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Figure 4: 90% Confidence intervals for different N (left), length of confidence interval as
percentage of S̃CR (right); Γ = 97, 500, 000

6.2.3 Screening Procedures

In the previous subsection, we used a rather large computational budget of Γ = 97, 500, 000
to determine a confidence interval with length corresponding to 12% of S̃CR. However,
within practical applications, due to the complexity of the projection models, it is in general
impossible to determine the SCR based on so many sample paths. Therefore, we now apply
the screening procedure described in Section 5. This method enables us to either obtain a
shorter confidence interval with the same computational budget or to derive a confidence
interval of the same length based on a lower computational budget.

As before, we aim for two-sided 90%-confidence intervals for the SCR. In a first step, we
analyze the results of the screening procedure for our base case from Section 6.2.1, i.e. we fix
N1 = 320, 000, K0 = 1, 500, 000, and we use a total budget of Γ = 97, 500, 000. As before,
we choose αin = 8% and αAC0 = 0.1%. Furthermore, we set αscreen = 4%.22 The remaining
budget in the second run is allocated equally to all surviving scenarios. To obtain a first
estimate, we set K1,1 = 150, i.e. we use half of the maximal number of inner simulations for
the first run. In this case, the resulting confidence interval is given by [1, 191.5; 1, 305.9] and
the length corresponds to 9% of S̃CR

screen
= 1, 247.8.23

22Again, numerical experiments show that at least in our case different choices of αscreen do not have a
significant impact on the results. Thus, we choose αscreen = 4% such that the error due to screening is similar
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Figure 5: 90%-confidence intervals with screening for different N1 (left), length of confidence
interval as percentage of S̃CR (right); K0 = 1, 500, 000, K1,1 = 150, Γ = 97, 500, 000

Next, we optimize N1 for given K0 = 1, 500, 000 and K1,1 = 150 to further reduce the
length of the confidence interval. Based on a pilot simulation with Ñ1 = 10, 000 samples,
we find that N1 ≈ 75, 000 is optimal. In this case, we obtain the following confidence
interval: [1,212.2;1,281.0]. Thus, we have a length of 68.8 which corresponds to 6% of
S̃CR

screen
= 1, 243.8. To show that this choice is adequate, we also derive confidence intervals

for other choices of N1, fixed K0 = 1, 500, 000 and K1,1 = 150. Figure 5 shows our results.
Again, we find that our optimizations approach provides parameters such that the resulting
length of the confidence interval is close to minimal. Furthermore, in comparison to the case
without screening, the length of the confidence interval is reduced by approximately 50%.

Of course, when comparing the two results, we need to keep in mind that the computation
of the confidence interval takes longer when screening is applied due to the increased number
of operations. However, in practical applications, the effort for the projection of the insurer’s
assets and liabilities will in general be the primary source of the numerical complexity such
that the additional effort for screening will be negligible. Moreover, our analyses indicate
that pre-screening is very efficient. We find that in all analyzed cases for K1,1 = 150 at least
92% of the real-world scenarios are pre-screened out. The subsequent screening procedure
eliminates no more than 2 additional percentage points, i.e. a huge part of the total number
of scenarios that are screened out is already eliminated by pre-screening which saves much
computational time because pre-screening is much faster than screening.

With respect to the choice of K1,1, our sensitivity analyses show that the impact is not
very pronounced, i.e. unless K1,1 is chosen “too small,” we can find an appropriate N1 such
that the confidence interval is close to minimal. Furthermore, we carried out some numerical
experiments for an allocation proportional to the variance in the first run. However, at
least for our sample contract, we found that there is hardly any difference between the two
methods.

to the error arising from the estimation of AC
(i)
1 .

23Here, S̃CR
screen

is the point estimate resulting from the screening procedure as described at the end of
Section 5.
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policyholder cash flows

K1 KAV
1 S̃CR

AV
ÃC

AV

0 /S̃CR
AV

S̃CR ÃC0/S̃CR
4 2 1,286.3 146% 1,436.5 131%
10 5 1,261.7 149% 1,332.7 141%
100 50 1,253.1 150% 1,261.2 149%

1,000 500 1,253.5 150% 1,246.3 151%

shareholder cash flows

K1 KAV
1 S̃CR

AV
ÃC

AV

0 /S̃CR
AV

S̃CR ÃC0/S̃CR
4 2 1,275.3 147% 2,024.3 93%
10 5 1,258.7 149% 1,606.5 117%
100 50 1,251.4 150% 1,279.1 147%

1,000 500 1,252.6 150% 1,254.6 149%

Table 4: Comparison of estimated SCR and estimated solvency ratio with and without
antithetic variates

6.2.4 Variance Reduction Techniques

Variance reduction techniques present means to further increase the efficiency of our calcu-
lations. As an example, we consider the use of antithetic variates although there is an array
of different alternatives available. We refer to Glasserman (2004) for more details and to
Bergmann (2010) for the use of control variates in our context.

The basic idea behind antithetic variates (AV) is to reduce the variance by introducing
a negative dependence between pairs of realizations when estimating expected values. In
the present context, this means instead of using independent sample paths within the inner
simulation step and within the estimation of AC0, we employ samples of pairs of paths
generated based on perfectly negatively correlated Normal random variables. Table 4 shows
the analog of Table 2 when relying on antithetic variates, where we use KAV

0 = K0
2 = 125, 000

and KAV
1 = K1

2 pairs of sample paths in our comparison. We notice two effects: On the one
hand, the use of antithetic variates clearly improves the estimate significantly indicating
considerable gains in the efficiency of the estimation; on the other hand, it now seems that
the estimator based on shareholder cash flows is superior. This is in contrast to the analysis
without variance reduction where the estimator based on policyholder cash flows generally
performs better.

These findings are also illustrated by Table 5, where different optimal parameter combi-
nations in the sense of Section 3.3 are displayed. We observe that for a fixed computational
budget of Γ = 97, 500, 000, the use of antithetic variates reduces the MSE for the estimator
based on policyholder (PH) cash flows by about 70%. The effect for the estimator based on
shareholder (SH) cash flows is even more pronounced. Here, the MSE is reduced by almost
90%. Consequently, with antithetic variates, only a budget of 15,760,000 (PH) and 2,352,000
(SH) is necessary in order to obtain results of a similar accuracy as measured by the MSE.

When applying antithetic variates to the derivation of confidence intervals based on
the screening procedure as described in Section 5, and using a computational budget of
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N K1, K0 Mean Emp. Est. Est. Corrected
KAV

1 (S̃CR, Var Bias MSE Mean

S̃CR
AV

)
PH with AV 1,070,000 45 600,000 1,247.7 4.6 1.7 7.4 1,246.0
PH with AV 310,000 25 130,000 1,248.8 13.8 3.0 23.1 1,245.7
PH w/o AV 320,000 300 1,500,000 1,249.3 15.8 2.9 24.0 1,246.4
SH with AV 1,375,000 35 625,000 1,247.4 5.2 1.5 7.4 1,246.0
SH with AV 115,000 10 26,000 1,250.9 46.0 5.3 73.7 1,245.7
SH w/o AV 105,000 920 900,000 1,250.4 48.7 4.4 68.4 1,246.0

Table 5: Comparison of nested simulations approach with and without antithetic variates
for different parameters

Γ = 97, 500, 000 as in Section 6.2.3, our pilot simulation suggests that for KAV
0 = 750, 000 and

KAV
1,1 = 75, N1 = 200, 000 is approximately optimal for the estimator based on policyholder

cash flows. The resulting confidence interval is given by [1, 222.7; 1, 257.0] which corresponds
to about 3% of S̃CR

screen
.

Considering our “first” confidence interval from Section 6.2.2 with a length of approxi-
mately 28% of S̃CR, this efficiency gain by relying on more advanced techniques is remark-
able. However, it is necessary to note that although our example company model is quite
simple and we rely on 97,500,000 scenarios, the length of the confidence interval is still about
3% of the SCR corresponding to approximately 30 bps of the balance sheet total.

7 Conclusion

In this paper, we provide a detailed discussion on how to determine the Solvency Capital
Requirement within the framework of Solvency II based on nested simulations. In particular,
we adapt several advanced techniques from the literature on portfolio risk measurement
and illustrate their potential for application in the insurance context based on numerical
experiments.

A first important finding is that the allocation of the computational budget significantly
affects the results. More precisely, a small number of inner simulations may yield a severe
overestimation of the capital requirement due to a bias in the estimation, whereas an in-
creased empirical variance may render the results useless if the number of outer simulations
is small. A pilot simulation based on a small number of outer scenarios can be used to
determine an approximately optimal allocation.

Clearly, the practical usefulness of the nested simulations estimator depends on its accu-
racy, which may be assessed via the length of a confidence interval. However, it turns out
that these intervals are very wide even if computational resources are suitably allocated. In
order to increase the efficiency, aside from conventional variance reduction techniques, so-
called screening procedures can be applied, which screen out scenarios that are not likely to
belong to the tail of the distribution. These screening procedures – particularly when com-
bined with conventional variance reduction techniques – are able to increase the efficiency
tremendously: Our experiments show that the length of the confidence interval may be de-
creased by more than a factor of ten. However, within our application, although the example
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company is quite simple and although we rely an a relatively large number of scenario, the
confidence interval may still be too wide to be practicable.

It is arguable that this last result can be interpreted as an indication of a general imprac-
ticability of the nested simulations approach in the present context. While there are many
parallels between estimating the risk of a portfolio of financial derivatives and determining
the capital requirement for an insurance portfolio, there is at least one important difference:
In a portfolio of financial derivatives, the single instruments can be valuated independently
and hence, the pricing errors diversify away when the portfolio is large (see Gordy and Juneja
(2010)). This is generally not the case for an insurance portfolio. Due to management rules
being applied at company level (e.g. strategic asset allocation and profit participation), the
cash flows of different insurance contracts usually depend on each other. Therefore, we need
to simulate the whole portfolio simultaneously based on the same stochastic scenarios and
valuation errors in the inner simulation will not diversify away when the portfolio is large.

Nevertheless, we are convinced that in the long run, advanced numerical approaches as
presented here should allow for a computationally feasible and sufficiently accurate assess-
ment of an insurer’s solvency position.
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Appendix

Proof of Proposition 5.1:
Let i ∈ I which implies

∑

j 6=i

1



L̃(i)(K1,1)<L̃(j)(K1,1)−t
f(i,j),1−δ

√√√√
(

σ̃
(i)
1 (K1,1)

)2
+

(
σ̃
(j)
1 (K1,1)

)2

(1+s(0,1))2K1,1





< N1 − ψ + 1.

Now assume that i /∈ Ĩ. Then we have

L̃(i)(K1,1) < L̃(π1(ψ))(K1,1)− tmax,1−δ

√√√√
(
σ̃

(i)
1 (K1,1)

)2
+ (σ̃max(K1,1))

2

(1 + s(0, 1))2K1,1

< L̃(π1(j))(K1,1)− tf (i,π1(j)),1−δ

√√√√
(
σ̃

(i)
1 (K1,1)

)2
+

(
σ̃

(π1(j))
1 (K1,1)

)2

(1 + s(0, 1))2K1,1

for j = ψ, . . . , N1. Hence,
∑

j 6=i

1



L̃(i)(K1,1)<L̃(j)(K1,1)−t
f(i,j),1−δ

√√√√
(

σ̃
(i)
1 (K1,1)

)2
+

(
σ̃
(j)
1 (K1,1)

)2

(1+s(0,1))2K1,1





≥ N1 − ψ + 1,

which is a contradiction.

Proof of Proposition 5.2:
Following Lan et al. (2010), we assume that PV

(k)
0 and PV

(i,k)
1 are normally distributed.

While this assumption may not be suitable for small samples, the CLT ascertains that it
approximately holds for large samples. Since we are looking to prove an asymptotic result, we
adopt it without much loss of generality. We denote by P(.|(Y1, D1)(1),...,(N1)) the probability
measure conditional on the event that (Y (1)

1 , D
(1)
1 ), . . . , (Y (N1)

1 , D
(N1)
1 ) are the simulated real-

world scenarios in the first step.

(a) Screening
Let γ denote the set of the “true” N1−ψ+1 tail scenarios. In a first step, we show that
the probability of correct screening, i.e. the probability of γ ⊆ I, is greater or equal to
1− αscreen, where we follow the proof for correct screening in Lan et al. (2010).

Let

Bij := 1



L̃(i)(K1,1)<L̃(j)(K1,1)−t
f(i,j),1−δ

√√√√
(

σ̃
(i)
1 (K1,1)

)2
+

(
σ̃
(j)
1 (K1,1)

)2

(1+s(0,1))2K1,1





.

Then, we have

N1∑

i=1

Bij

{
< N1 − ψ + 1 , if i ∈ I

≥ N1 − ψ + 1 , if i /∈ I
.
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Therefore, we obtain

P(γ ⊆ I| (Y1, D1)(1),...,(N1))
≥ P(∀i ∈ γ, j /∈ γ, Bij = 0| (Y1, D1)(1),...,(N1))

≥ 1−
∑

i∈γ

∑

j /∈γ

P(Bij = 1| (Y1, D1)(1),...,(N1))

= 1−
∑

i∈γ

∑

j /∈γ

P




(
L̃(j)(K1,1)− L̃(i)(K1,1)

)
(1 + s(0, 1))

√
K1,1

√(
σ̃

(i)
1 (K1,1)

)2
+

(
σ̃

(j)
1 (K1,1)

)2
> tf (i,j),1−δ

∣∣∣∣∣∣∣∣
(Y1, D1)(1),...,(N1)




= 1−
∑

i∈γ

∑

j /∈γ

P




(
ÃC

(i)

1 (K1,1)− ÃC
(j)

1 (K1,1)
)√

K1,1

√(
σ̃

(i)
1 (K1,1)

)2
+

(
σ̃

(j)
1 (K1,1)

)2
> tf (i,j),1−δ

∣∣∣∣∣∣∣∣
(Y1, D1)(1),...,(N1)




≥ 1− (
N1 − ψ + 1

) · (ψ − 1
) · αscreen

(N1 − ψ + 1)(ψ − 1)
= 1− αscreen.

The equation is a simple consequence of the t-test, where the degrees of freedom are
calculated by the Welch-Satterthwaite equation.

(b) Inner Simulation

P
({

[LB, UB] ⊆ [L̂B, ÛB]
}
∩ {γ ⊆ I}

∣∣∣ (Y1, D1)(1),...,(N1)
)

= P
(
{γ ⊆ I}| (Y1, D1)(1),...,(N1)

)
×

P
({

[LB, UB] ⊆ [L̂B, ÛB]
}∣∣∣ {γ ⊆ I}, (Y1, D1)(1),...,(N1)

)

≥ P
(
{γ ⊆ I}| (Y1, D1)(1),...,(N1)

)
× P

(
L(i) ∈ Ci, ∀i ∈ I

∣∣∣ {γ ⊆ I}, (Y1, D1)(1),...,(N1)
)

≥ P
(
{γ ⊆ I}| (Y1, D1)(1),...,(N1)

)
× P

(
ÃC0 − zAC0 ≤ AC0 ≤ ÃC0 + zAC0

)
×

∏

i∈I

P
(

ÃC
(i)

1 − z
(i)
AC1

· (1 + s(0, 1)) ≤ AC(i)
1 ≤ ÃC

(i)

1 + z
(i)
AC1

(1 + s(0, 1))
∣∣∣∣ (Y1, D1)(1)...(N1)

)

= (1− αscreen) (1− αAC0)
∏

i∈I

(1− ε)

= (1− αscreen) (1− αAC0) (1− αAC1) .

Hence, we obtain

P
({

[LB, UB] ⊆ [L̂B, ÛB]
}
∩ {γ ⊆ I}

)

= E
[
P

({
[LB, UB] ⊆ [L̂B, ÛB]

}
∩ {γ ⊆ I}

∣∣∣ (Y1, D1)(1)...(N1)
)]

≥ (1− αscreen) (1− αAC0) (1− αAC1) .
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(c) Total confidence level

P(SCR ∈ [L̂B, ÛB])

≥ P
(
{γ ⊆ I} ∩ {SCR ∈ [LB, UB]} ∩ {[LB,UB] ⊆ [L̂B, ÛB]}

)

≥ 1− P ({SCR /∈ [LB,UB]})− P
((
{[LB,UB] ⊆ [L̂B, ÛB]} ∩ {γ ⊆ I}

)C
)

= 1− αout − (1− (1− αscreen) (1− αAC0) (1− αAC1))
= 1− αout − αin.
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