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Abstract 

The core idea of life-cycle funds or target-date funds is to decrease the fund’s equity exposure 

and conversely increase its bond exposure towards the fund’s target date. Such funds have 

been gaining significant market share and were recently set as default choice of asset 

allocation in numerous defined contribution schemes or related old age provision products in 

several countries. Hence, an assessment of life-cycle funds’ risk-return profiles – i.e. the 

probability distribution of returns – is essential for sustainable financial planning of a large 

group of investors. This paper studies the risk-return profile of life-cycle funds in particular 

compared to simple balanced or lifestyle funds that apply a constant equity portion throughout 

the fund’s term instead.  

In a Black-Scholes model, we derive balanced funds that reproduce the risk-return profile of 

an arbitrary life-cycle fund for single and regular contributions. We then analyze the accuracy 

of our results under more complex asset models with stochastic interest rates, stochastic 

equity volatility and jumps. We further show that frequently used “rule of thumb 

approximations” that only take into account the life-cycle fund’s average equity portion are 

not suitable to approximate a life-cycle fund’s risk-return profile. Our results on the one hand 

facilitate sustainable financial planning and on the other hand challenge the very existence of 

life-cycle funds since appropriately calibrated balanced funds can offer a similar (often 

dominating) risk-return profile. 

Keywords: Life-cycle Funds, Balanced Funds, Stochastic Modeling, Risk-Return Profiles. 
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1 Introduction 

The demographic transition resulting from a continuing increase in life expectancy combined 

with rather low fertility rates constitutes a severe challenge for government-run pay-as-you-go 

pension systems in many countries. Therefore, the importance of funded private and/or 

occupational old age provision has been increasing and is likely to continue to increase. In 

particular, occupational pension plans provide an essential building block for retirement 

income. Its importance is likely to further increase due to mandatory “auto-enrollment” in 

these plans in many countries.1 Hence, the underlying pension plan’s performance will have a 

significant impact on retirement income. A large number of pension plans allocate their 

contributions to so-called life-cycle or target-date funds2, since – according to Charlson et al. 

(2010) – 96% of the large3 pension plans in the US selected life-cycle funds as their default 

asset allocation and most of the money allocated in these funds is left in the same fund until 

retirement. Further, Charlson et al. (2010) state that “[…] by most measures, target-date funds 

have been a smashing success”. Also in the retail sector, life-cycle funds gain popularity as 

e.g. pointed out in Viceira (2008) who finds that assets under management of life-cycle funds 

in the US have increased from $1bn in 1996 to $120bn in 2006. Therefore, an appropriate 

assessment of life-cycle funds’ risk-return profiles – i.e. the potential losses or gains – is 

highly relevant for sustainable financial planning of a large group of institutional as well as 

retail investors. For assessing the risk-return profile of old age provision products, Graf et al. 

(2012) propose a general methodology and further derive quantitative results for some 

product types offered in many markets. Among others, they compare an artificial balanced 

fund4 and an artificial life-cycle fund and particularly focus on the effect of different premium 

payment patterns.  

In line with the growing success in terms of assets under management, academia has recently 

started to investigate life-cycle funds in more detail. Generally, two main streams of research 

                                                 

1
 The process of automatically enrolling employees to some pension plan has e.g. been implemented by the 

United States or the United Kingdom.  

2
 A life-cycle fund invests in risky and riskless assets according to a pre-specified “glide path” specifying how 

the asset allocation deterministically changes as the target date approaches. 

3
 Defined as including more than 5,000 employees. 

4
 A balanced fund invests in a constant mix of equity and bonds. 
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can be identified. The first one is concerned with comparing possible returns of artificial life-

cycle funds and artificial balanced funds. As a starting point, Blake et al. (2001) provide a 

Value-at-Risk based analysis of different investment strategies including a balanced and a 

life-cycle strategy within a defined contribution plan setting. In addition, in the context of 

mutual funds, various authors such as Schleef and Eisinger (2007), Spitzer and Singh (2008), 

Pang and Warshawsky (2008) or Pfau (2010) – to name only a few – analyze the results of 

some life-cycle strategies compared to some balanced funds using different methodologies 

such as expected utility or shortfall measures in the pre- and post- retirement phase. Due to 

the rather artificial choice of the balanced and life-cycle funds under investigation in the 

different papers, their conclusions differ from preferring life-cycle funds over balanced funds 

(e.g. Pfau, 2010) or vice versa (e.g. Spitzer and Singh, 2008 or Schleef and Eisinger, 2007). In 

line with the controversy in results and conclusions above, e.g. Pang and Warshawsky (2008) 

are indifferent between preferring life-cycle or balanced funds from an investor’s point of 

view. 

The second strain of literature is concerned with finding “optimal” life-cycle funds. E.g. 

Cairns et al. (2006) derive optimal path-dependent life-cycle strategies applying stochastic 

control techniques to maximize expected utility in a defined contribution plan environment. In 

line with their results, Basu et al. (2009) or Antolín et al. (2010) conclude that path-dependent 

strategies are superior to deterministic life-cycle funds using simulation techniques and 

measuring shortfall. In contrast to determining the optimal path-dependent strategy, e.g. 

Maurer et al. (2007) and Gomes et al. (2008) derive the optimal deterministic life-cycle 

strategy, i.e. the optimal pre-specified glide path by maximizing expected utility and conclude 

that the “classical” glide path of starting with rather high equity exposure and then reducing 

the equity exposure over time is optimal. However, Basu and Drew (2009) prefer a 

“contrarian” life-cycle strategy – i.e. starting with moderate equity exposure and increasing 

the equity exposure towards the target date – over the conventional life-cycle due to their so-

called “portfolio size effect”.5 

Summarizing, a sound opinion or common understanding, whether a balanced fund or a life-

cycle fund with some deterministic glide path is preferable does not exist. However, Poterba 

                                                 
5
 The portfolio size effect as introduced by Basu and Drew (2009) means the general increase of invested volume 

when the contract’s maturity approaches and regular contributions are considered. 
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et al. (2009) argue in their quantitative comparison that “the results suggest that the 

distribution of retirement wealth associated with typical life-cycle investment strategies is 

similar to that from age-invariant asset allocation strategies that set the equity share of the 

portfolio equal to the average equity share in the life-cycle strategies”, a “rule of thumb” that 

has already been proposed by Lewis (2008). 

The scope of this paper is therefore to investigate the (presumed) difference of balanced and 

life-cycle funds in more detail. However, in contrast to the research so far we do not compare 

artificial balanced and life-cycle strategies. Instead, for any pre-specified life-cycle fund we 

derive balanced funds that closely match the life-cycle fund’s risk-return profile, i.e. the 

probability distribution of returns at the end of the investment horizon. This gives a better 

understanding of the “difference” between life-cycle and balanced funds and provides 

investors with an easy risk assessment of any given life-cycle investments: Its risk coincides 

with the risk of the matching balanced fund. Moreover, our results challenge the very 

existence of life-cycle funds, since we show that for any given life-cycle an (approximately) 

replicating or even dominating balanced funds does exist.  

We start with deriving closed form solutions for a matching or dominating balanced fund in a 

Black-Scholes economy for single and regular contributions to the funds and further critically 

investigate the rule of thumb proposed by Lewis (2008). Then, we challenge the accuracy of 

our approximations under more complex asset models with stochastic interest rates, stochastic 

equity volatility and jumps.  

The remainder of this paper is organized as follows: Section 2 describes our modeling 

approach of life-cycle and balanced funds whereas Section 3 introduces the financial models 

considered. Section 4 and Section 5 present our results for single and regular contributions 

respectively. Finally, Section 6 concludes. 

2 Modeling life-cycle and balanced funds 

Life-cycle and balanced funds generally invest in a mix of equity and bonds. A balanced fund 

has a constant portion 𝑥𝑆 ∈ [0,1] of its capital invested in equity and the remaining part in 

bonds. We further assume a fixed duration 𝑑 for the bond portion and therefore model the 

bond portfolio by a zero-coupon bond investment with time to maturity 𝑑. In contrast to the 

balanced fund, a life-cycle fund applies a time-dependent (however not path-dependent) asset 

allocation strategy, where (𝑥𝑆,𝑡)𝑡 ∈
[0,1]

 
denotes the equity portion at time 𝑡. We assume a 
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continuous rebalancing between equity and bonds and further deduct a fund management fee 

on a continuous basis.  

Besides deriving some theoretical results, we will consider three different life-cycle strategies 

in additional numerical analyses. We assume their asset mix to be constant throughout each 

year. For given time to maturity 𝑇 > 1, the three considered strategies are: 

- Strategy A defines a “classical” life-cycle strategy that starts with a complete 

investment in equity, i.e. 𝑥𝑆,0 = 1 
and each year linearly decreases its equity exposure 

until it arrives at a complete investment in the zero-bond in the last year, i.e. 𝑥𝑆,𝑇−1 =

0.  

- In contrast, strategy B reverses the life-cycle and is therefore often referred to as 

“contrarian” strategy (cf. Basu and Drew, 2009): It starts with 𝑥𝑆,0 = 0 
and each year 

linearly increases its exposure to the risky asset finally arriving at 𝑥𝑆,𝑇−1 = 1 
.  

- Finally, for investigating the accurateness of the approximations derived in the 

theoretical part of our analyses, strategy C applies a very artificial and extreme non-

standard “life-cycle” model where the life-cycle fund alternates between a complete 

investment in equities and bonds on a yearly basis, i.e. we set 𝑥𝑆,0 = 1, 𝑥𝑆,1 = 0, 𝑥𝑆,2 =

1,… . 

By comparing expected outcome and various percentiles of the resulting wealth distribution, 

Basu and Drew (2009) argue that contrarian strategies are superior to the classical life-cycle 

strategy due to the “portfolio size effect”. In Sections 4 and 5 we will show that contrarian 

strategies in general offer higher returns but also significantly increase the risk especially 

when regular contributions are considered. This is an indication that contrarian strategies are 

not superior but rather suitable for less risk averse clients. However, the scope of this paper is 

not on comparing the performance of different life-cycle strategies but rather on matching 

them with appropriately calibrated balanced funds.  

3 Financial models 

In a first step, we apply a version of the analytically tractable Black-Scholes model (cf. Black 

and Scholes, 1973) which will be denoted by “BS” in what follows. Second, we consider a 

more complex model denoted by “CIR-SV”, additionally allowing for stochastic interest rates 

using a Cox-Ingersoll-Ross model (cf. Cox et al., 1985) and modeling stochastic equity 
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volatility using a version of the Heston-model (cf. Heston, 1993). Finally, we add jumps to the 

equity process by means of the Merton-model (cf. Merton, 1976). This hybrid stochastic 

volatility jump diffusion model is then denoted by “CIR-SVJD”.  

Let 𝑟(𝑡) denote the short-rate and 𝑆(𝑡) denote the equity’s spot price at time 𝑡. The (BS) 

model is then entirely described by defining the real-world6 dynamics of the underlying 

equity process as 

𝑑𝑆(𝑡) = 𝑆(𝑡)((𝑟(𝑡) + 𝜆𝑆)𝑑𝑡 + 𝜎𝑆𝑑𝑊1(𝑡)) and 𝑟(𝑡) = 𝑟, ∀𝑡 

where 𝜆𝑆 denotes the equity risk premium, 𝜎𝑆 > 0 is the annualized volatility of the equity 

process and 𝑟 gives the non-random constant risk-less7 interest rate. Further, 𝑊1(𝑡) is a 

Brownian Motion under the considered probability measure.  

The (CIR-SV) model adds stochastic interest rates and stochastic equity volatility to the (BS) 

model and is summarized by 

𝑑𝑆(𝑡) = 𝑆(𝑡) ((𝑟(𝑡) + 𝜆𝑆)𝑑𝑡 + √𝑉(𝑡)𝑑𝑊1(𝑡)) 

𝑑𝑉(𝑡) = 𝜅𝑉(𝜃𝑉 − 𝑉(𝑡))𝑑𝑡 + 𝜎𝑉√𝑉(𝑡)𝑑𝑊2(𝑡) 

𝑑𝑟(𝑡) = 𝜅𝑟(𝜃𝑟 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑟√𝑟(𝑡)𝑑𝑊3(𝑡) 

where 𝑊2(𝑡) and 𝑊3(𝑡) are Brownian Motions under the probability measure. We further 

assume 𝑑𝑊1(𝑡)𝑑𝑊3(𝑡) = 𝑑𝑊2(𝑡)𝑑𝑊3(𝑡) = 0 
and 𝑑𝑊1(𝑡)𝑑𝑊2(𝑡) = 𝜌𝑑𝑡  with 𝜌 ∈ [−1,1]  

driving the correlation between the spot price and its instantaneous variance 𝑉(𝑡). Although 

the random innovations of interest rate and equity markets are assumed to be uncorrelated (i.e. 

𝑑𝑊1(𝑡)𝑑𝑊3(𝑡) = 0), interest rate and equity markets are implicitly correlated due to the 

applied spread model.  

The (CIR-SVJD) model finally extends the (CIR-SV) model by allowing for jumps in the 

equity process and is given by 

𝑑𝑆(𝑡) = 𝑆(𝑡) ((𝑟(𝑡) + 𝜆𝑆)𝑑𝑡 + √𝑉(𝑡)𝑑𝑊1(𝑡) + 𝑑𝐽(𝑡)) 

𝑑𝑉(𝑡) = 𝜅𝑉(𝜃𝑉 − 𝑉(𝑡))𝑑𝑡 + 𝜎𝑉√𝑉(𝑡)𝑑𝑊2(𝑡) 

                                                 
6
 Risk-return profiles should always be assessed under the objective probability measure (cf. Graf et al. 2012). 

7
 We do not consider default risk in this paper. 
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𝑑𝑟(𝑡) = 𝜅𝑟(𝜃𝑟 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑟√𝑟(𝑡)𝑑𝑊3(𝑡) 

where 𝑑𝐽(𝑡) = 𝑍(𝑡)𝑑𝑁(𝑡) gives the jump’s dynamics. Within this setting 𝑁(𝑡) is a Poisson 

counter with intensity 𝜆 indicating the occurrence of a jump and 𝑍(𝑡) gives the random jump 

size. In the spirit of Merton (1976), we assume that the jump sizes are normally distributed 

and hence set 𝑍(𝑡) ∼ 𝒩(𝜇𝑍, 𝜎𝑍
2). 

In the models with stochastic interest rates, zero-bond prices 𝑃(𝑡, 𝑑) at time 𝑡 with time-to-

maturity 𝑑 can be derived using standard no-arbitrage arguments8: 𝑃(𝑡, 𝑑) = 𝐴(𝑑)𝑒−𝐵(𝑑)𝑟(𝑡) 

with 𝐴(𝑑) = [
2⋅ℎ⋅exp((𝜅̃𝑟+ℎ)⋅

𝑑
2⁄ ) 

(𝜅̃𝑟+ℎ)⋅(exp(ℎ⋅𝑑)−1)+2⋅ℎ
]

2𝜅̃𝑟𝜃̃𝑟

𝜎𝑟
2

 and 𝐵(𝑑) =
2⋅(exp(ℎ⋅𝑑 )−1 )

(𝜅̃𝑟+ℎ)⋅(exp(ℎ⋅𝑑)−1 )+2⋅ℎ
 where ℎ =

√𝜅̃𝑟2 + 2 ⋅ 𝜎𝑟2, 𝜅̃𝑟 = 𝜅𝑟 + 𝜆𝑟𝜎𝑟 , 𝜃̃𝑟 =
𝜅𝑟𝜃𝑟

𝜅𝑟+𝜆𝑟𝜎𝑟 
and 𝜆𝑟 denotes the market price of interest rate 

risk. 

In the numerical analyses in Sections 4 and 5, we adopt capital market parameters from Graf 

et al. (2012) summarized in Table 1. 

𝜅𝑟 𝜃𝑟 𝜎𝑟 𝜆𝑟 𝜅𝑉 𝜃𝑉 𝜎𝑉 𝜌 𝜆𝑆 

20% 4.5% 7.5% 0 475% (22%)
2
 55% -57% 3% 

Table 1: Capital market parameters (without jump parameters) 

For reasons of consistency with the (BS) model, we further assume the initial short rate and 

the initial spot volatility (or variance) being equal to their long-term expectations and 

consequently set 𝑟(0) = 4.5% and 𝑉(0) = 22%2.9 

                                                 
8
 Cf. e.g. Bingham and Kiesel (2004). 

9 Note, we could also assume some different short-rate at 𝑡 = 0 which then implies a non-constant but time-

dependent drift term in the (BS) model and thus slightly changes the theoretical results in Sections 4 and 5. 
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Finally, the jump parameters are taken from Eraker (2004) and summarized in Table 2. 

𝜆 𝜇𝑍 𝜎𝑍 

0.5 - 0.4% 6.6% 

Table 2: Jump model parameters 

The Black-Scholes model is then parameterized accordingly by setting 𝑟 = 𝑟(0) and 𝜎𝑆 =

√𝑉(0). Further, zero-bond prices in the (BS) model are given by 𝑃(𝑡, 𝑑) = exp(−𝑟 ⋅ 𝑑). 

4 Single contribution 

First, we analyze a single contribution to an arbitrary life-cycle fund as described in Section 2. 

We derive some closed form solutions within the (BS) model in Section 4.1. Section 4.2 then 

analyzes if these solutions can serve as approximations under the more complex financial 

models introduced above.  

4.1 Matching a balanced fund in the (BS) model 

In what follows, let 𝑉𝐿𝐹(𝑡) denote the spot price at time 𝑡 of a life-cycle fund with time-

dependent equity allocation (𝑥𝑆,𝑡)𝑡, target-duration 𝑑 and management fee 𝑐𝐿𝐹 ≥ 0. In a 

Black-Scholes framework, the dynamics of 𝑉𝐿𝐹(𝑡) are then given by  

𝑑𝑉𝐿𝐹(𝑡) = 𝑉𝐿𝐹(𝑡) ((𝑥𝑆,𝑡(𝑟 + 𝜆𝑆) + (1 − 𝑥𝑆)𝑟 − 𝑐𝐿𝐹)𝑑𝑡 + 𝑥𝑆,𝑡𝜎𝑆𝑑𝑊1(𝑡)) 

which can be solved to 

𝑉𝐿𝐹(𝑡) = exp (∫ (𝑥𝑆,𝑢(𝑟 + 𝜆𝑆) + (1 − 𝑥𝑆,𝑢)𝑟 − 𝑐𝐿𝐹 −
1

2
(𝑥𝑆,𝑢𝜎𝑆)

2
) 𝑑𝑢

𝑡

0

+∫ (𝑥𝑆,𝑢𝜎𝑆)𝑑𝑊1(𝑢)
𝑡

0

) 

Further, let 𝑉𝐵𝐹(𝑡) denote the spot price at time 𝑡 of a balanced fund with constant equity 

portion 𝑥𝑆, the same target-duration 𝑑 and management fee 𝑐𝐵𝐹. 𝑉𝐵𝐹(𝑡) can similarly be 

written as 

𝑉𝐵𝐹(𝑡) = exp((𝑥𝑆(𝑟 + 𝜆𝑆) + (1 − 𝑥𝑆)𝑟 − 𝑐𝐵𝐹 −
1

2
(𝑥𝑆𝜎𝑆)

2) 𝑡 + ∫ (𝑥𝑆𝜎𝑆)𝑑𝑊1(𝑢)
𝑡

0

) 
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PROPOSITION 1 

Consider an investment horizon of 𝑇 years and an arbitrary life-cycle fund characterized by its 

glide-path (𝑥𝑆,𝑡)𝑡 and its management fee 𝑐𝐿𝐹. If the risk premium 𝜆𝑆 is non-negative we 

obtain 

a) a unique balanced fund characterized by its equity portion 𝑥𝑆 ∈ [0,1] and management 

fee 𝑐𝐵𝐹 ≥ 0 which exactly replicates the life-cycle fund’s probability distribution of 

returns at maturity 𝑇. 

b) 𝑐𝐵𝐹 ≥ 𝑐𝐿𝐹.  

c) a balanced fund defined by the equity portion 𝑥𝑆 of the replicating balanced fund 

obtained in part a) and the management fee 𝑐𝐿𝐹 of the life-cycle fund stochastically 

dominates the life-cycle fund. 

Proof: 

Applying above calculations, both 𝑉𝐿𝐹(𝑇) and 𝑉𝐵𝐹(𝑇) follow a lognormal distribution and 

their distributions hence coincide if and only if 𝔼𝒫𝑉𝐿𝐹(𝑇) = 𝔼𝒫𝑉𝐵𝐹(𝑇) and 𝕍𝕒𝕣𝒫𝑉𝐿𝐹(𝑇) =

𝕍𝕒𝕣𝒫𝑉𝐵𝐹(𝑇). From standard algebra and standard results for log-normal distributions it 

follows that the considered funds’ probability distributions of returns coincide if and only if 

∫ (𝑥𝑆𝜎𝑆)
2𝑑𝑢 =

!
𝑇

0

∫ (𝑥𝑆,𝑢𝜎𝑆)
2
𝑑𝑢

𝑇

0

⇒ 𝑥𝑆 = √
1

𝑇
∫ 𝑥𝑆,𝑢

2 𝑑𝑢
𝑇

0

 

and 

𝑇(𝑥𝑆(𝑟 + 𝜆𝑆) + (1 − 𝑥𝑆)𝑟 − 𝑐𝐵𝐹) =
!
∫ (𝑥𝑆,𝑢(𝑟 + 𝜆𝑆) + (1 − 𝑥𝑆,𝑢)𝑟 − 𝑐𝐿𝐹)𝑑𝑢
𝑇

0

 

⇒ 𝑐𝐵𝐹 = 𝑐𝐿𝐹 + 𝜆𝑆 (𝑥𝑆 −
1

𝑇
∫ 𝑥𝑆,𝑢𝑑𝑢
𝑇

0
). 

From the equations above, the balanced fund’s equity portion 𝑥𝑆 and its management fee 𝑐𝐵𝐹 

can be derived such that the distribution of the life-cycle and balanced fund at the end of the 

investment horizon coincide.  

However, it is not yet clear if the calibrated equity portion and management fee actually 

define a “valid” balanced fund, i.e. a balanced fund with an equity portion between 0% and 
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100% and a non-negative management fee. First, we obtain 𝑥𝑆 ∈ [0,1] by construction (cf. 

above equation) and second, the Cauchy-Schwartz inequality yields ∫
1

𝑇
𝑥𝑆,𝑢𝑑𝑢 ≤

𝑇

0

√∫
1

𝑇2
𝑑𝑢 ∫ 𝑥𝑆,𝑢

2 𝑑𝑢
𝑇

0

𝑇

0
= √

1

𝑇
∫ 𝑥𝑆,𝑢

2 𝑑𝑢
𝑇

0
= 𝑥𝑆. Hence, if the risk premium λS is non-negative (as 

it is expected to be), 𝑐𝐵𝐹 ≥ 𝑐𝐿𝐹 ≥ 0 immediately follows.  

In addition, setting up a balanced fund with equity portion 𝑥𝑆 and the same management fee 

as the life cycle fund (𝑐𝐵𝐹 ≔ 𝑐𝐿𝐹) yields a balanced fund with same volatility as the life-cycle 

fund and a higher return which in the setting of log-normal distributed random variables 

means stochastic dominance. 

 

Consequences of Proposition 1 

For single contributions – neglecting parameter and model risk – the very existence of life-

cycle funds is challenged since for any life-cycle fund, a balanced fund exists that delivers 

exactly the same risk-return profile at maturity although it is more expensive than the life-

cycle fund. Hence, if this balanced fund is equipped with the same fee as the life-cycle fund, it 

even dominates the life-cycle fund.  

Since this dominating fund is uniquely defined by its equity portion which is independent of 

the parameters of the Black-Scholes model and the life-cycle fund’s management fee, the 

construction of this balanced fund is not subject to parameter risk. 

For the capital market parameter set as defined in Section 3, Table 3 gives equity portion and 

management fee of the balanced funds calibrated to the sample life-cycle strategies A, B and 

C as introduced in Section 2. In this example, we set the life-cycle funds’ management fee to 

𝑐𝐿𝐹 = 1.3% 𝑝. 𝑎. and assume an investment horizon of 𝑇 = 12 years. 
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Strategy 

Equity portion  

𝒙𝑺 

Management 

fee 𝒄𝑩𝑭 

A 59.04% 1.57% 𝑝. 𝑎. 

B 59.04% 1.57% 𝑝. 𝑎. 

C 70.71% 1.92% 𝑝. 𝑎. 

Table 3: Balanced funds’ calibration – single contribution 

Note that in case of a single contribution and a Markovian capital market model – e.g. the 

considered (BS) model – strategies A and B yield the same risk-return profile and therefore 

obviously correspond to the same balanced fund. Further, strategy C results in the riskiest and 

most expensive balanced fund (in terms of equity portion and management fee, respectively). 

Further, it is worth noting that the average equity portion of the considered life-cycle 

strategies A, B and C over time equals 50%. Hence, the rule of thumb as proposed by Lewis 

(2008) would approximate all three funds with the same balanced fund although the 

differences are quite substantial (cf. Table 3 and Figure 1).  

Figure 1 shows the probability densities of the internal rate of return of the three different life-

cycle strategies (or equivalently the corresponding balanced funds as given in Table 3) 

assuming the (BS) model and an investment horizon of 𝑇 = 12 years. We also display a 

balanced fund with a constant equity portion of 50% and a management fee of 1.3% 𝑝. 𝑎. 

applying the rule of thumb calibration technique.10  

                                                 
10

 The rule of thumb calibration is obtained by setting 𝑥𝑆 =
1

𝑇
∫ 𝑥𝑆
𝑇

0
𝑑𝑠 and 𝑐𝐵𝐹 = 𝑐𝐿𝐹. 
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Figure 1: Life-cycle vs. balanced fund – single contribution (BS) 

Hence, even in the “simple” single contribution case, the rule of thumb completely fails to 

approximate the risk-return profiles of the considered life-cycle funds and is therefore of only 

very limited explanatory value.  

Finally, Table 4 summarizes some percentiles of the underlying probability distributions of 

returns, again stressing the weaknesses of the rule of thumb approximation. 

Strategy 5% 25% Median 75% 95% 

Life-cycle / 

Balanced A/B 
−2.29% 1.33% 3.92% 6.58% 10.53% 

Life-cycle / 

Balanced C 
−3.83% 0.45% 3.54% 6.73% 11.48% 

Rule Of Thumb -1.13% 1.96% 4.17% 6.43% 9.76% 

Table 4: Key figures – single contribution (BS) 

4.2 Model risk 

We will now analyze the impact of model risk by applying the more complex financial 

models as introduced in Section 3. Since under these models no analytical solutions exist, we 
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compare the life-cycle funds’ and balanced funds’ risk-return profiles by means of Monte-

Carlo simulation techniques.11 We perform a daily rebalancing of the assets and daily 

deduction of the management fee and assume that each month consists of 21 trading days. 

Further, for simulating the underlying stochastic processes (𝑆(𝑡), 𝑉(𝑡), 𝑟(𝑡)) we assume a 

step size of Δ𝑡 =
1

12⋅21⋅5
, i.e. we simulate these processes “5 times a trading day”. Considering 

the projection of the underlying square root processes (𝑉(𝑡), 𝑟(𝑡)), we apply the “full 

truncation method” as described by Andersen (2008) and introduced respectively analyzed in 

great detail by Lord et al. (2010). 

As an approximation for the life-cycle funds, we still use the balanced funds derived in the 

(BS) model (cf. Table 3) and now analyze whether these funds still constitute good 

approximations for the life-cycle funds when more randomness is introduced in the financial 

models.  

Note that the (CIR-SV) model adds stochastic interest rates and stochastic volatility to the 

(BS) model. Figure 2 illustrates the empirical probability density of the considered life-cycle 

and balanced funds after applying a Kernel-smoother using 20,000 Monte-Carlo trajectories.  

                                                 
11

 Cf. e.g. Fishman (1996) or Glassermann (2004) for a thorough introduction of Monte-Carlo simulation 

techniques. 
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Figure 2: Life-cycle vs. balanced fund – single contribution (CIR-SV) 

Compared to Figure 1, the distribution of the considered funds are generally less 

“concentrated” and a summary of some estimated percentiles in Table 5 further indicates 

“fatter” tails when compared to the (BS) model.  

Strategy 5% 25% Median 75% 95% 

Balanced 

A/B 

−2.99% 1.34% 4.09% 6.81% 10.64% 

Life-cycle 

A/B 

−2.98% 1.28% 4.09% 6.90% 10.68% 

Balanced C −4.66% 0.49% 3.76% 7.01% 11.63% 

Life-cycle C −4.68% 0.40% 3.75% 6.98% 11.38% 

Table 5: Key figures – single contribution (CIR-SV) 

However, our main focus is not on analyzing the effects of the change of model on the 

observed returns but rather on investigating whether the calibrated balanced funds still 

provide an accurate approximation for the life-cycle funds. Figure 2 and Table 5 indicate that 

the distributions of the life-cycle funds are very similar to their respective approximating 

balanced funds. We performed a two-sample Kolmogorov-Smirnov and a two-sample 
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Anderson-Darling test with the null-hypothesis that the above empirical distributions were 

drawn from the same origin distributions. Assuming a significance level of 5%, the null-

hypothesis was not rejected.12 Obviously, this is not a proof that they actually have the same 

underlying probability distributions but at least a good indicator that the distributions do not 

differ too much. However, since the percentiles shown in Table 5 are “just” point estimates 

after a simulation of one “bucket” of 20,000 trajectories, Appendix C shows the percentiles’ 

confidence intervals with a level of 95% after applying a more in depth Monte-Carlo study. 

Following these results, we conclude from Table 12 in Appendix C, that e.g. considering the 

5
th

 percentile of above distributions a difference of roughly 0.2% for strategy A/B and 0.1% 

for strategy C with their corresponding balanced funds’ 5
th

 percentiles is likely. In summary, 

we can conclude that the balanced funds appropriately approximate a very large part of the 

life-cycle funds’ risk-return profiles. 

The (CIR-SVJD) model additionally allows for jumps in equity returns. The corresponding 

results are shown in Figure 3 and Table 6.  

 

Figure 3: Life-cycle vs. balanced fund – single contribution (CIR-SVJD) 
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 The results of the test statistics are summarized in Appendix B. 
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Again, the distributions of life-cycle and balanced funds’ returns in Figure 3 look very 

similar. Hence, the matching balanced funds derived in the simple (BS) model allow for a 

good assessment of the life-cycle funds’ risk-return profiles.. 

Strategy 5% 25% Median 75% 95% 

Balanced 

A/B 

−3.03% 1.14% 3.89% 6.71% 10.63% 

Life-cycle 

A/B 

−3.17% 1.09% 3.96% 6.75% 10.67% 

Balanced C −4.74% 0.22% 3.52% 6.88% 11.62% 

Life-cycle C −4.88% 0.14% 3.54% 6.84% 11.57% 

Table 6: Key figures – single contribution (CIR-SVJD) 

From Table 6, we can see that as expected, the additional introduction of jumps negatively 

affects the returns as compared to the previous (CIR-SV) model. However, the returns are not 

tremendously changed due to the rather long investment horizon and the relatively small 

(expected) jump sizes (cf. Table 2). Further, the impact of adding jumps to the equity process 

seems to affect balanced and life-cycle funds in a similar way and hence the distributions still 

appear reasonably similar. The null-hypothesis that the observed returns were drawn from the 

same origin distribution is again not rejected (cf. Appendix B) although estimated p-Values 

generally decrease. In line with the results for the (CIR-SV) model, some minor difference of 

the resulting risk-return profiles of life-cycle and corresponding balanced funds is likely, e.g. 

when the confidence intervals for their 5
th

 percentile are considered (cf. Table 13 in Appendix 

C). 

Summarizing, the balanced funds derived by Proposition 1 provide accurate approximations 

of the considered life-cycle funds’ risk-return profiles even under more complex financial 

models and hence seem an appropriate tool for quickly assessing risk-return profiles of life-

cycle funds. Further, the very existence or additional value of life-cycle investment is 

challenged when single contributions are considered and only returns at maturity are relevant.  

Our results also have serious policy implications: We show that life-cycle funds yield the 

same result as a suitably calibrated (and much simpler) balanced fund. Moreover, if this 
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balanced fund is equally expensive as the life-cycle fund, it even dominates the risk-return 

profile of the life-cycle fund. Hence, using life-cycle funds as a default choice should in our 

opinion be reconsidered by pension plan managers since it adds complexity and reduces 

expected return. 

5 Regular contributions  

In this section we will analyze the case of regular contributions. We again start in a (BS) 

economy in Section 5.1 and then switch to more complex asset models in Section 5.2. 

5.1 Matching a balanced fund in the (BS) model 

In contrast to the single contribution case, analytical solutions for the considered probability 

distributions do not exist for regular contributions even in the simple (BS) economy.13 

Therefore, we rely on a moment matching procedure to calibrate the balanced funds under 

consideration, i.e. we determine the balanced fund’s equity portion 𝑥𝑆 and its management fee 

𝑐𝐵𝐹 such that the first and second moment of the resulting distribution of wealth coincide with 

the corresponding moments of the life-cycle fund at maturity 𝑇. For ease of notation and 

without loss of generality we assume a yearly
14

 contribution of 1 unit of currency.  

Let 𝑊𝐿𝐹(𝑇) denote the wealth at time 𝑇 obtained after annually contributing to the life-cycle 

fund. Hence, we obtain 𝑊𝐿𝐹(𝑇) = ∑
𝑉𝐿𝐹(𝑇)

𝑉𝐿𝐹(𝑖 )
𝑇−1
𝑖=0 =

𝑉𝐿𝐹(𝑇)

𝑉𝐿𝐹(𝑇−1)
⋅ (1 +𝑊𝐿𝐹(𝑇 − 1)) which can be 

calculated recursively applying 𝑊𝐿𝐹(1) =
𝑉𝐿𝐹(1)

𝑉𝐿𝐹(0)
.  

Further, let 𝑍𝐿𝐹(𝑡) ≔
𝑉𝐿𝐹(𝑡)

𝑉𝐿𝐹(𝑡−1)
 

denote the annual returns of the life-cycle fund. Assuming a 

(BS) economy, we obtain 𝑍𝐿𝐹(𝑡) ∼ ℒ𝒩(𝜇𝐿𝐹(𝑡), 𝜎𝐿𝐹
2 (𝑡)) with 𝜇𝐿𝐹(𝑡) = ∫ (𝑥𝑆,𝑢(𝑟 + 𝜆𝑆) +

𝑡

𝑡−1

(1 − 𝑥𝑆,𝑢)𝑟 − 𝑐𝐿𝐹 −
1

2
(𝑥𝑆,𝑢𝜎𝑆)

2
)𝑑𝑢 and 𝜎𝐿𝐹

2 (𝑡) = ∫ (𝑥𝑆,𝑢𝜎𝑆)
2𝑡

𝑡−1
 since 𝑍𝐿𝐹(𝑡) =

exp (∫ (𝑥𝑆,𝑢(𝑟 + 𝜆𝑆) + (1 − 𝑥𝑆,𝑢)𝑟 − 𝑐𝐿𝐹 −
1

2
(𝑥𝑆,𝑢𝜎𝑆)

2
) 𝑑𝑢

𝑡

𝑡−1
+ ∫ (𝑥𝑆,𝑢𝜎𝑆)𝑑𝑊1(𝑢)

𝑡

𝑡−1
). In 

                                                 
13

 When regular contributions are considered, essentially a treatment of a sum of log-normal distributed random 

variables is necessary. E.g. Dufresne (2004) provides an analysis of different approximations of this type of 

random variable. 

14
 The same ideas can be applied to arbitrary regular contributions such as quarterly or monthly premium 

contributions. 
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addition, 𝑍𝐿𝐹(1),… , 𝑍𝐿𝐹(𝑇) are stochastically independent random variables due to the 

independent increments of the underlying Brownian Motion.  

Therefore, the first moment 𝔼𝒫𝑊𝐿𝐹(𝑇) is derived as 𝔼𝒫𝑊𝐿𝐹(𝑇) = 𝔼𝒫𝑍𝐿𝐹(𝑇) ⋅ (1 +

𝔼𝒫𝑊𝐿𝐹(𝑇 − 1)) and recursively calculated using 𝔼𝒫𝑊𝐿𝐹(1) = 𝔼𝒫𝑍𝐿𝐹(1). Further, the second 

moment 𝔼𝒫𝑊𝐿𝐹
2 (𝑇) is given by 𝔼𝒫𝑊𝐿𝐹

2 (𝑇) = 𝔼𝒫𝑍𝐿𝐹
2 (𝑇) ⋅ (1 + 2𝔼𝒫𝑊𝐿𝐹(𝑇 − 1) +

𝔼𝒫𝑊𝐿𝐹
2 (𝑇 − 1)) which is again determined recursively using 𝔼𝒫𝑊𝐿𝐹

2 (1) = 𝔼𝒫𝑍𝐿𝐹
2 (1). 

Finally, the first and second moment of the distribution of wealth when investing annually in 

a balanced fund are derived similarly. This yields the following proposition for regular 

contributions in a (BS) model. 

PROPOSITION 2 

Consider regular contributions and an investment horizon of 𝑇 years for an arbitrary life-cycle 

fund characterized by its glide-path (𝑥𝑆,𝑡)𝑡 and its management fee 𝑐𝐿𝐹.  

If, for the solution (𝑥0, 𝑦0) of a corresponding two-dimensional polynomial equation set, the 

conditions 𝑦0 ≤ 𝑥0
2 exp(𝜎𝑆

2) and 𝑥0 ≤ exp (𝑟 + 𝜆𝑆√
log𝑦0−2 log𝑥0

𝜎𝑆
2 ) hold, a unique balanced 

fund with 𝑥𝑆 ∈ [0,1] and 𝑐𝐵𝐹 ≥ 0 exists that exactly matches the first and second moment of 

the life-cycle fund’s distribution of wealth at maturity 𝑇.  

Proof: 

see Appendix A.  

In this appendix, we first show that deriving a balanced fund to match the first and second 

moment of life-cycle fund’s distribution of wealth at maturity 𝑇 is closely related to solving a 

two-dimensional polynomial equation set. We further show that unique solutions – say 𝑥0 and 

𝑦0– to this problem exist. If the above conditions hold, we can derive a valid balanced fund – 

that is 𝑥𝑆 ∈ [0,1] and 𝑐𝐵𝐹 ≥ 0 – from 𝑥0 and 𝑦0. 

 

 



Life-cycle Funds: Much Ado about Nothing?  

18 

Consequences of Proposition 2 

In case of regular contributions and if the above conditions hold, there exists a balanced fund 

which yields the same expected return and variance of wealth at maturity as a given life-cycle 

fund. Further, although no analytical solution of the distribution of 𝑊𝐿𝐹(𝑇) is available, the 

moments and hence the calibrated balanced fund can be derived analytically.  

The following analyses show that the moment-matching balanced fund closely matches the 

risk-return profile of the corresponding life-cycle fund. As shown in Appendix A, calibrating 

the balanced fund is essentially equivalent with solving a polynomial equation set which then 

boils down to solving for roots of a polynomial.15 Applying this methodology, Table 7 

displays the balanced funds calibrated to the different life-cycle strategies A, B and C as 

introduced in Section 2. Similar with Section 4, we set the life-cycle funds’ management fee 

to 𝑐𝐿𝐹 = 1.3% 𝑝. 𝑎., apply the (BS) model as parameterized in Section 3 and assume an 

investment horizon of 𝑇 = 12 years. In addition, Appendix D provides even more numerical 

examples on different life-cycle strategies and their corresponding balanced fund 

counterparts. 

 

Strategy 

Equity portion  

𝒙𝑺 

Management 

fee 𝒄𝑩𝑭 

A 35.88% 1.32% 𝑝. 𝑎.  

B 76.08% 1.63% 𝑝. 𝑎. 

C 67.25% 1.91% 𝑝. 𝑎. 

Table 7: Balanced funds’ calibration – regular contributions 

Comparing the regular with the single contribution case (cf. Table 3) shows a massive impact 

of the premium payment mode on the calibrated balanced funds and hence on the risk-return 

profiles of the considered life-cycle funds. In contrast to the single contribution setting where 

life-cycle strategy A and B resulted in exactly the same risk-return profile and hence were 

matched with the same balanced fund, the classical life-cycle strategy A is now associated 

                                                 
15

 Standard numerical packages contain solvers for deriving polynomial’s roots, most of them relying on 

versions of an algorithm introduced by Jenkins and Traub (1970).  
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with a far more conservative balanced fund than strategy B. This results from the amount of 

capital that is exposed to the risky asset: Strategy A decreases its equity exposure over time. 

Hence, the more capital has been invested, the less risky it is allocated. Strategy B does the 

exact opposite and is now even more aggressive than strategy C which was the “riskiest” life-

cycle strategy in the single contribution case. Further it is worth noting that similar with the 

results in Section 4, all balanced funds require higher management fees than the considered 

life-cycle funds.  

We now analyze the quality of the approximation through the matching balanced funds. 

Figure 4 and Table 8 summarize the empirical distribution of internal rates of return obtained 

by applying 20,000 Monte-Carlo trajectories assuming the (BS) model. We additionally 

compare a balanced fund with equity portion 𝑥𝑆 = 50% and 𝑐𝐵𝐹 = 𝑐𝐿𝐹 = 1.3% 𝑝. 𝑎. as 

derived by the rule-of-thumb calibration technique which does not distinguish between single 

and regular contributions. 

 

Figure 4: Life-cycle vs. balanced fund – regular contributions (BS) 

The rule of thumb approximation now completely fails to approximate the considered life-

cycle funds’ return distributions and is hence of only very limited explanatory value to 

financial advisors and their clients. Further, the calibrated balanced funds seem to deliver 

appropriate and accurate approximations for the life-cycle funds’ risk-return profiles.  
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However, Table 8 shows some deviations, e.g. the balanced funds’ 5
th

 percentile under (over-) 

estimates the life-cycle funds’ 5
th

 percentile for strategy A (B). 

Strategy 5% 25% Median 75% 95% 

Balanced A −0.26% 2.31% 4.06% 5.80% 8.42% 

Life-cycle 

A 
0.08% 2.33% 4.00% 5.75% 8.40% 

Balanced B −5.04% 0.34% 4.05% 7.76% 13.37% 

Life-cycle 

B 
−5.38% 0.24% 4.06% 7.85% 13.39% 

Balanced C −4.29% 0.46% 3.74% 7.01% 11.95% 

Life-cycle 

C 
−4.15% 0.48% 3.71% 7.05% 11.96% 

Table 8: Key figures – regular contributions (BS) 

Hence, although the first two moments of the balanced funds and the corresponding life-cycle 

funds coincide, the balanced funds do not exactly match the life-cycle funds’ risk-return 

profiles. In this case, for strategy A the null hypothesis is rejected for a confidence level of 

5% mainly due to the difference of the probability distributions in the lower tail (see 

Appendix B). In addition, comparing above point estimates for the different percentiles with 

their confidence intervals (cf. Table 14 in Appendix C) further yields some (minor) difference 

in upper percentiles (e.g. 75
th

 or 95
th

) as well. 

Roughly speaking, the balanced fund under- (over-) estimates the lower tail of the life-cycle 

fund’s distribution if the life-cycle fund’s glide path decreases (increases) its equity exposure 

over time. Since strategy C applies a permanent reallocation of risky and riskless asset, both 

effects “cancel out” partly and hence the estimate of the balanced fund’s lower tail is more 

close to the life-cycle fund’s lower tail.
  

Bearing these limitations in mind, the introduced approach still supports financial advisors 

and clients since it allows for an easy assessment of the risk and upside potential of life-cycle 

funds by just considering the respective matching balanced funds. Moreover, similar to the 
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single contribution case, the additional value of investing in a life-cycle strategy is challenged, 

in particular when taking into account that matching balanced funds would require higher 

management fees (cf. Table 7).  

In other words: If the balanced funds were equipped with the life-cycle funds’ management 

fee (1.3% 𝑝. 𝑎. in our example) the expected return would exceed the life-cycle funds’ 

expected returns. This is of particular relevance since it should be possible to manage the 

much simpler balanced funds at the same (or even lower) cost as life-cycle funds. Hence, even 

in the setting of regular contributions balanced funds may stochastically dominate the life-

cycle fund investment if only returns at maturity are considered. 

5.2 Model risk 

As in Section 4.3, we will now analyze the accuracy of the approximation under more 

complex asset models. In what follows, we only display the results of the (CIR-SVJD) model 

since for the (CIR-SV) model similar results (in terms of accuracy of the approximation) are 

obtained. Again note that the balanced funds calibrated according to proposition 2 and 

summarized in Table 7 are analyzed. 

Figure 5 shows the empirical returns of the considered life-cycle funds and their 

corresponding balanced funds assuming the (CIR-SVJD) model as introduced in Section 3 

applying 20,000 Monte-Carlo trajectories. 
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Figure 5: Life-cycle vs. balanced fund – regular contributions (CIR-SVJD) 

Again, the empirical densities look very similar and the balanced funds seem to appropriately 

approximate the life-cycle funds’ risk-return profile. However, similar with the results in the 

(BS) model, the distributions do not entirely coincide which can also be seen in Table 9 and is 

further confirmed by the test statistics in Appendix B where for strategies A and B the null 

hypothesis is rejected. 16  

                                                 
16

 The corresponding confidence intervals summarized in Table 15 in Appendix C also (naturally) detect the 

differences. 
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Strategy 5% 25% Median 75% 95% 

Balanced A −1.00% 2.05% 4.04% 5.95% 8.75% 

Life-cycle 

A 
−0.81% 1.95% 3.92% 5.94% 9.02% 

Balanced B −6.19% 0.11% 4.12% 7.99% 13.55% 

Life-cycle 

B 
−6.74% 0.13% 4.26% 8.11% 13.36% 

Balanced C −5.29% 0.24% 3.79% 7.22% 12.14% 

Life-cycle 

C 
−5.28% 0.22% 3.81% 7.25% 12.08% 

Table 9: Key figures – regular contributions (CIR-SVJD) 

The discrepancies between the lower percentiles of the life-cycle and their corresponding 

balanced funds are similar as in the (BS) model. Further, the upper percentiles (e.g. the 95
th

-

percentile) now also show some differences. In line with the (BS) model, the 5
th

-
 
and

 
95

th
-

percentile are roughly (under-) overestimated when a decreasing (increasing) equity share in 

the life-cycle funds’ glide path is applied.  

In summary, the calibration algorithm that is based on a moment matching procedure is able 

to capture a major part (e.g. 5
th

–95
th

-percentile) of the considered life-cycle funds’ return 

distributions, however fails in exactly reproducing the tails of the underlying life-cycle 

investments. Therefore, the approximation’s appropriateness from a statistical point of view is 

rejected. These shortcomings might however be acceptable from a practitioner’s point of 

view, in particular since the approximation is clearly superior to the previously proposed rule 

of thumb. Further, the very existence of life-cycle funds is challenged, at least for buy and 

hold investors. Therefore, even considering the case of regular contributions, the choice of 

life-cycle funds as a default investment option might need to be revisited. 

6 Conclusion and outlook  

In this paper we have analyzed the risk-return profiles – i.e. the probability distribution of 

returns at the end of the investment horizon – of life-cycle funds and balanced funds. In 
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contrast to previous research, we have not focused on comparing the return distribution of 

more or less arbitrarily selected life-cycle and balanced funds, but provided methodologies to 

construct balanced funds matching or dominating the risk-return profile of any given life-

cycle fund.  

For a single contribution in a Black-Scholes economy, we have provided closed form 

solutions for balanced funds exactly matching the risk-return profile of any given life-cycle 

fund. We have further identified that a balanced fund exists that stochastically dominates the 

given life-cycle fund. Further, applying Monte-Carlo techniques we have shown that – even 

when more complex asset models are considered – the approximations derived in a Black-

Scholes economy deliver appropriate results and statistical tests detect no difference between 

the underlying risk-return profiles.  

Regarding regular contributions and assuming a Black-Scholes economy, we have shown that 

a unique balanced fund exists matching the first two moments of the wealth distribution for 

any given life-cycle fund if some additional conditions are fulfilled. These approximations 

were able to explain a major part of the life-cycle fund’s risk-return profile even under more 

complex asset models. However, the quality of the approximation is somewhat lower in the 

tails and hence the applied statistical tests rejected the “equality” of the corresponding 

distributions. Nevertheless, the approximations still seem useful from a practical point of 

view, since the difference was of minor magnitude especially when compared to rule of 

thumb approximations previously proposed in the literature and used by practitioners so far. 

In addition, potentially dominating balanced funds may be constructed as well. 

Therefore, our results on the one hand facilitate financial planning by allowing for an easy 

assessment of the risk-return profile of “complex” life-cycle funds by their less complex 

balanced fund counterparts. On the other hand, the results challenge the very existence of (the 

considered types of) life-cycle funds since balanced funds delivering a very similar risk-return 

profile or even dominating the return distribution are available.  

Our results should therefore be of great interest to pension plan providers and regulators. The 

choice of life-cycle funds as a default investment option is seriously questioned by our 

analyses. Although life-cycle funds might be perceived as a “safe” investment strategy (due to 

the lower risk close to retirement), they bear the same risk exposure as a suitably calibrated 

(and much simpler) balanced funds. Moreover, if a corresponding balanced fund is equally 
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expensive as the life-cycle fund, it often dominates the risk-return profile of the life-cycle 

fund. Hence, life-cycle funds add complexity while at the same time reducing expected return 

(at a given level of risk).  

Of course, our research allows for refinement and amendments. The approximations may be 

derived applying a Black-Scholes model with time-dependant drift in order to match a given 

term structure of interest rates at outset. Further, challenging the approximations’ 

appropriateness using some historical data e.g. within a Bootstrap approach seems 

worthwhile. Finally, our findings were based on the investment vehicles’ returns at maturity 

neglecting what happens during the investment phase. In particular in the case of regular 

contributions and for investors who do not only focus on the utility derived from the maturity 

value of their investment, there might be reasons why life-cycle funds could be preferred over 

balanced funds. 
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A Matching for regular contributions – Proof of proposition 2 

In order to proof proposition 2, we will investigate the matching of first and second moment 

of the wealth distribution in the regular premium case. We consider a Black-Scholes model as 

defined in Section 3 and further assume annual contributions of 1 unit of currency to some 

life-cycle/balanced fund.  

For 𝑡 = 1, …𝑇 let 𝑍(𝑡) denote independent copies of a log-normal distributed random 

variable 𝑍 ∼ ℒ𝒩(𝜇, 𝜎2). In what follows – assuming an annual contribution of 1 unit of 

currency to an investment delivering returns equal to the log-normal distributed random 

variables 𝑍(𝑡) – we will show how to derive 𝜇 and 𝜎2 such that first and second moment of 

this investment and an annual contribution to some arbitrary life-cycle fund coincide. Then, 

we will state sufficient conditions on 𝜇 and 𝜎2 such that a valid
17

 balanced fund can be 

derived from 𝜇 and 𝜎2 accordingly. Note, if one defines a balanced fund with some equity 

portion 𝑥𝑆 and some management fee 𝑐𝐵𝐹, one obtains 
𝑉𝐵𝐹(𝑡)

𝑉𝐵𝐹(𝑡−1)
∼ ℒ𝒩(𝜇𝐵𝐹, 𝜎𝐵𝐹

2 ) with 

𝜇𝐵𝐹 = 𝑟 + 𝑥𝑆𝜆𝑆 − 𝑐𝐵𝐹 −
1

2
(𝑥𝑆𝜎𝑆)

2 and 𝜎𝐵𝐹
2 = (𝑥𝑆𝜎𝑠)

2. 

The proof of proposition 2 is now split in three parts: First, we state the required calibration 

procedure as a problem of solving a polynomial equation set. Second, we derive sufficient 

conditions to obtain a unique and valid balanced fund to solve these equations and then close 

the analysis with a discussion of the sufficient conditions.  

Solving a polynomial equation set to calibrate first and second moment 

In what follows, let 𝑊(𝑇) = ∑
𝑉(𝑇)

𝑉(𝑖 )
𝑇−1
𝑖=0 =

𝑉(𝑇)

𝑉(𝑇−1)
⋅ (1 +𝑊(𝑇 − 1)) denote the outcome of an 

annual investment of 1 unit of currency in the underlying copies of 𝑍, i.e, set 𝑉(𝑡) ≔

∏ 𝑍(𝑡)𝑡
𝑖=1   and further set 𝑥 ≔ 𝔼𝒫𝑍 = exp (𝜇 +

1

2
𝜎2) and 𝑦 ≔ 𝔼𝒫𝑍

2 = exp(2𝜇 + 2𝜎2) . It 

is easily shown (e.g. by induction) that 𝔼𝒫𝑊(𝑇) = ∑ 𝑥𝑗𝑇
𝑗=1

 

holds. Further, the second 

moment of 𝑊(𝑇) is characterized by the following lemma. 

                                                 
17

 i.e. solutions with “admissible” equity portion (not less than 0% and not greater than 100%) and admissible 

management fee not less than 0% p.a. 
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LEMMA 1 

𝔼𝒫𝑊
2(𝑇) = 𝑦𝑇 +∑(2∑𝑥𝑗 + 1

𝑇−𝑖

𝑗=1

)

⏟          
≔𝑎𝑖(𝑥)

𝑦𝑖
𝑇−1

𝑖=1

 

Proof by induction: 

𝑇 = 1  

𝔼𝒫𝑊
2(1) = 𝔼𝒫𝑍

2(1) = 𝑦 holds by definition. 

𝑇 − 1 → 𝑇   

Similar calculus as performed in Section 5 gives (applying the induction hypothesis) 

𝔼𝒫𝑊
2(𝑇) = 𝑦(1 + 2𝔼𝒫𝑊(𝑇 − 1) + 𝔼𝒫𝑊

2(𝑇 − 1)) 

= (2∑𝑥𝑗 + 1

𝑇−1

𝑗=1

)𝑦 + 𝑦 ⋅ (𝑦𝑇−1 +∑(2 ∑ 𝑥𝑗 + 1

𝑇−1−𝑖

𝑗=1

)𝑦𝑖
𝑇−2

𝑖=1

) 

= (2∑𝑥𝑗 + 1

𝑇−1

𝑗=1

)𝑦 + 𝑦𝑇 +∑(2 ∑ 𝑥𝑗 + 1

𝑇−1−𝑖

𝑗=1

)𝑦𝑖+1
𝑇−2

𝑖=1

 

= (2∑𝑥𝑗 + 1

𝑇−1

𝑗=1

)𝑦 + 𝑦𝑇 +∑(2 ∑ 𝑥𝑗 + 1

𝑇−1−(𝑖−1)

𝑗=1

)𝑦𝑖
𝑇−1

𝑖=2

 

= 𝑦𝑇 + ∑ (2∑ 𝑥𝑗 + 1𝑇−𝑖
𝑗=1 )𝑦𝑖𝑇−1

𝑖=1 . 

 



Life-cycle Funds: Much Ado about Nothing?  

30 

Therefore, the first and second moment of 𝑊(𝑇) match the first and second moment of 

𝑊𝐿𝐹(𝑇) if (real) roots of 𝑓𝑇(𝑥) and 𝑔𝑥,𝑇(𝑦) defined as follows can be computed. 

𝑓𝑇(𝑥) ≔∑𝑥𝑖
𝑇

𝑖=1

− 𝔼𝒫𝑊𝐿𝐹(𝑇) 

𝑔𝑥,𝑇(𝑦) ≔ 𝑦𝑇 +∑(2∑𝑥𝑗 + 1

𝑇−𝑖

𝑗=1

)𝑦𝑖
𝑇−1

𝑖=1

− 𝔼𝒫𝑊𝐿𝐹
2 (𝑇) 

If real roots (e.g. 𝑥0 and 𝑦0) were found, we obtained a log-normal distribution 𝑍 with 𝜇 and 

𝜎2 from which (possibly) a balanced fund’s equity portion 𝑥𝑆 and its management fee 𝑐𝐵𝐹 can 

be derived. However, it is not yet guaranteed if 𝑥𝑆 and 𝑐𝐵𝐹 indeed define a “valid” balanced 

fund, that is 0% ≤ 𝑥𝑆 ≤ 100% and 𝑐𝐵𝐹 ≥ 0% 𝑝. 𝑎. 

In what follows, we will therefore first prove the (unique) existence of above roots and 

provide sufficient conditions for the validity of the derived balanced fund from these roots. 

Sufficient conditions for obtaining unique and valid balanced funds 

LEMMA 2 

Unique positive real roots 𝑥0 and 𝑦0 of 𝑓𝑇(𝑥) and 𝑔𝑥0,𝑇(𝑦) exist.  

Proof: 

It is easily shown that 𝔼𝒫𝑊𝐿𝐹(𝑇) > 0 and 𝔼𝒫𝑊𝐿𝐹
2  (𝑇) > 0 holds. We further obtain 𝑓𝑇(0) =

−𝔼𝒫𝑊𝐿𝐹(𝑇) < 0 and lim
𝑥→∞

𝑓𝑇(𝑥) = ∞ and therefore (at least) one real solution 𝑥0 > 0 with 

𝑓𝑇(𝑥0) = 0 exists applying the intermediate value theorem. Similar arguments yield to (at 

least one) real solution 𝑦0 > 0 with
 
𝑔𝑥0,𝑇(𝑦0) = 0. Further, Descartes’ rule of signs gives at 

most one positive real solution for the polynomials considered.18 Therefore, the solutions 𝑥0 

and 𝑦0 are unique.  

 

                                                 
18

 Published by René Descartes in his work “La Géometrie” in 1637 and often revisited nowadays e.g. in 

Anderson et al. (1998). 



Life-cycle Funds: Much Ado about Nothing?  

31 

Although 𝑥0 and 𝑦0 guarantee to match the first moments of the life-cycle fund, it is not yet 

ensured if 𝑥0 and 𝑦0 are actually moments of a valid balanced fund or even generated by a 

valid lognormal distributed random variable. Note, for defining a valid log-normal distributed 

random variable 𝜎2 > 0 is essentially required in this setting. In the next lemma, we propose 

sufficient conditions for 𝑥0 and 𝑦0 actually being generated by a valid balanced fund. 

LEMMA 3 

If 𝑦0 > 𝑥0
2, 𝑦0 ≤ 𝑥0

2 exp(𝜎𝑆
2) and 𝑥0 ≤ exp (𝑟 + 𝜆𝑆√

log𝑦0−2log𝑥0

𝜎𝑆
2 ), then the balanced fund 

equipped with equity portion 𝑥𝑆 ≔ √
log𝑦0−2 log𝑥0

𝜎𝑆
2  and management fee 𝑐𝐵𝐹 ≔ 𝑟 + 𝜆𝑆𝑥𝑆 −

log 𝑥0 is valid. Further, an annual contribution of 1 unit of currency into this balanced fund 

yields to the same first and second moment of annually contributing to the considered life-

cycle fund. 

Proof: 

Solving 𝑥0 and 𝑦0 for 𝜇 and 𝜎2 gives 𝜇 = log 𝑥0 −
1

2
𝜎2 and 𝜎2 = log 𝑦0 − 2 log 𝑥0. Hence, if 

𝑦0 > 𝑥0
2 holds, we obtain 𝜎2 > 0 and thus in first instance a valid lognormal distribution.  

Now, consider a balanced fund with equity portion 𝑥𝑆 ≔ √
𝜎2

𝜎𝑆
2 and management fee 𝑐𝐵𝐹 ≔ 𝑟 +

𝜆𝑆𝑥𝑆 − log 𝑥0. Then, we obtain  

0 ≤ 𝑥𝑆 = √
𝜎2

𝜎𝑆
2 = √

log 𝑦0 − 2 log 𝑥0

𝜎𝑆
2 ≤ √

log(𝑥0
2 exp(𝜎𝑆

2)) − 2 log 𝑥0

𝜎𝑆
2 = 1 

𝑐𝐵𝐹 ≥ 𝑟 + 𝜆𝑆𝑥𝑆 − (𝑟 + 𝜆𝑆√
𝜎2

𝜎𝑆
2) = 0 

and thus indeed a valid balanced fund.  

Further, this balanced fund is log-normal distributed (since we are positioned in a (BS) model) 

and we get 𝜇𝐵𝐹 = 𝑟 + 𝑥𝑆𝜆𝑆 − 𝑐𝐵𝐹 −
1

2
(𝑥𝑆𝜎𝑆)

2 = log 𝑥0 −
1

2
𝜎2 = 𝜇 and 𝜎𝐵𝐹

2 = (𝑥𝑆𝜎𝑠)
2 = 𝜎2. 

Hence, the balanced fund’s returns are similarly distributed as the initial log-normal random 
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variable 𝑍 we started with and therefore (by construction of 𝑥0 and 𝑦0) yields to the required 

solution. 

 

Some thoughts on the sufficient conditions 

We start with investigating the condition 𝑦0 > 𝑥0
2 which can be shown to be fulfilled in 

general. For the following analysis, let 𝑓𝑇(𝑥) ≔ 𝑓𝑇(𝑥) + 𝔼𝒫𝑊𝐿𝐹(𝑇) and 𝑔̃𝑥,𝑇(𝑦) ≔

𝑔𝑥,𝑇(𝑦) + 𝔼𝒫𝑊𝐿𝐹
2 (𝑇).  

Note that 𝑔̃𝑥,𝑇
′ (𝑦) > 0 ∀𝑦 > 0 for any fixed 𝑥 > 0, i.e. 𝑔̃𝑥,𝑇(𝑦) is monotonically increasing 

for positive 𝑥 and 𝑦. Hence, for ensuring 𝑦0 > 𝑥0
2 it is sufficient to show 𝑔̃𝑥0,𝑇(𝑦0) >

𝑔̃𝑥0,𝑇(𝑥0
2). First, we show 𝑔̃𝑥,𝑇(𝑥

2) = 𝑓𝑇
2(𝑥) again using induction. 

𝑇 = 1  

𝑓1
2(𝑥) = 𝑥2 = 𝑔̃𝑥,1(𝑥) 

𝑇 − 1 → 𝑇  

𝑔̃𝑥,𝑇(𝑥
2) is written as 

𝑔̃𝑥,𝑇(𝑥
2) = 𝑥2𝑇 +∑(2∑𝑥𝑗

𝑇−𝑖

𝑖=1

+ 1  ) 𝑥2𝑖
𝑇−1

𝑖=1

 

= 𝑥2𝑇 +∑𝑥2𝑖
𝑇−1

𝑖=1

+ 2∑𝑥2𝑖∑𝑥𝑗
𝑇−𝑖

𝑗=1

𝑇−1

𝑖=1

 

Using the induction hypothesis then gives 

𝑓𝑇
2(𝑥) = (∑𝑥𝑖

𝑇

𝑖=1

)

2

= 𝑥2𝑇 + 2𝑥𝑇∑𝑥𝑖
𝑇−1

𝑖=1

+ (∑𝑥𝑖
𝑇−1

𝑖=1

)

2

 

= 𝑥2𝑇 + 2𝑥𝑇∑𝑥𝑖
𝑇−1

𝑖=1

+ 𝑥2(𝑇−1) +∑(2 ∑ 𝑥𝑗 + 1

𝑇−1−𝑗

𝑗=1

)

𝑇−2

𝑖=1

𝑥2𝑖   
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= 𝑥2𝑇 + 2𝑥𝑇∑𝑥𝑖
𝑇−1

𝑖=1

+ 𝑥2(𝑇−1) + 2∑ ∑ 𝑥𝑗+2𝑖

𝑇−1−𝑗

𝑗=1

𝑇−2

𝑖=1

+∑𝑥2𝑖
𝑇−2

𝑖=1

 

=  𝑥2𝑇 +∑𝑥2𝑖
𝑇−1

𝑖=1

+ 2𝑥𝑇∑𝑥𝑖
𝑇−1

𝑖=1

+ 2∑𝑥2𝑖 ∑ 𝑥𝑗
𝑇−1−𝑗

𝑗=1

𝑇−2

𝑖=1

 

Fairly simple algebra (e.g. using Geometric row expansion) then yields 

∑ 𝑥2𝑖 ∑ 𝑥𝑗 =𝑇−𝑖
𝑗=1

𝑇−1
𝑖=1 𝑥𝑇 ∑ 𝑥𝑖𝑇−1

𝑖=1 + ∑ 𝑥2𝑖 ∑ 𝑥𝑗
𝑇−1−𝑗
𝑗=1

𝑇−2
𝑖=1  which  completes the proof. 

If the life-cycle fund’s wealth distribution 𝑊𝐿𝐹(𝑇) further allows for a positive variance19, we 

finally obtain 𝑔̃𝑥0,𝑇(𝑦0) = 𝔼𝒫(𝑊𝐿𝐹
2 (𝑇)) > 𝔼𝒫(𝑊𝐿𝐹(𝑇))

2
= 𝑓𝑇

2(𝑥0) = 𝑔̃𝑥0,𝑇(𝑥0
2) and hence 

𝑦0 > 𝑥0
2.  

Unfortunately, we are not able to show if the conditions 𝑦0 ≤ 𝑥0
2 exp(𝜎𝑆

2) and 𝑥0 ≤

exp (𝑟 + 𝜆𝑆√
log𝑦0−2 log𝑥0

𝜎𝑆
2 )

 

are fulfilled in general. However, our numerical analyses in 

Appendix D indicate that they at least hold for a broad type of different assumptions on the 

life-cycle’s glide path. Hence, there is some indication that these conditions may hold in 

general. 

B Results of statistical tests  

This section summarizes the statistical tests – especially their p-values – we performed within 

our analyses. We used the computational package R (2010) and further RExcel as developed 

by Baier and Neuwirth (2007). Results for the single contribution case are given in Table 10 

whereas results in the regular contribution case are summarized in Table 11. 
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 which in the (BS) model is fulfilled when the underlying asset strategy does not consist of a pure investment 

in the risk-free asset only. 
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Capital market 

model 
Strategy 

Kolmogorov-

Smirnov 
Anderson-Darling 

CIR-SV 

A 0.6609 0.4242 

C 0.7842 0.3521 

CIR-SVJD 

A 0.2921 0.3043 

C 0.3592 0.3533 

Table 10: Test for equality of distributions – single contribution 

Capital market 

model 
Strategy 

Kolmogorov-

Smirnov 
Anderson-Darling 

BS 

A 0.018 0.000 

B 0.359 0.104 

C 0.890 0.478 

CIR-SVJD 

A 0.000 0.000 

B 0.149 0.015 

C 0.830 0.613 

Table 11: Test for equality of distributions – regular contributions 

C Confidence intervals for point estimates 

This section gives confidence levels for the point estimates of different percentiles estimated 

by means of Monte-Carlo simulation in Sections 4.2 and 5.  

For deriving the following 95% confidence intervals, we repeated the Monte-Carlo analyses 

of projecting buckets of 20,000 trajectories 200 times and then estimated the respective point 
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estimates’ mean (say 𝜇𝑝𝑒𝑟𝑐) and its standard error (say 𝜎𝑝𝑒𝑟𝑐). The confidence intervals were 

then derived by [𝜇𝑝𝑒𝑟𝑐 − 𝑧95% ⋅ 𝜎𝑝𝑒𝑟𝑐 , 𝜇𝑝𝑒𝑟𝑐 + 𝑧95% ⋅ 𝜎𝑝𝑒𝑟𝑐] where 𝑧95% gives the 95
th 

percentile of the standard normal distribution. Following tables show the mean of the different 

percentiles obtained in italic font after repeating the Monte-Carlo procedure and further give 

the corresponding confidence intervals. 

Single contribution 

Strategy 5% 25% Median 75% 95% 

Balanced A/B 

-2.87% 1.28% 4.06% 6.77% 10.59% 

(-2.97% , -2.76%) (1.21% , 1.35%) (4.00% , 4.12%) (6.70% , 6.84%) (10.49% , 10.68%) 

Life-cycle A/B 

-3.07% 1.24% 4.07% 6.81% 10.63% 

(-3.18% , -2.96%) (1.17% , 1.30%) (4.01% , 4.13%) (6.74% , 6.87%) (10.54% , 10.72%) 

Balanced C 

-4.51% 0.41% 3.72% 6.97% 11.56% 

(-4.63% , -4.39%) (0.33% , 0.49%) (3.65% , 3.79%) (6.89% , 7.05%) (11.45% , 11.67%) 

Life-cycle C 

-4.64% 0.37% 3.70% 6.94% 11.49% 

(-4.76% , -4.52%) (0.28% , 0.45%) (3.62% , 3.78%) (6.86% , 7.02%) (11.37% , 11.60%) 

Table 12: Confidence intervals – single contribution (CIR-SV) 
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Strategy 5% 25% Median 75% 95% 

Balanced A/B 

-3.08% 1.12% 3.96% 6.73% 10.66% 

(-3.18% , -2.98%) (1.05% , 1.19%) (3.89% , 4.02%) (6.66% , 6.79%) (10.56% , 10.76%) 

Life-cycle A/B 

-3.27% 1.09% 3.97% 6.77% 10.71% 

(-3.38% , -3.16%) (1.02% , 1.16%) (3.91% , 4.04%) (6.70% , 6.84%) (10.61% , 10.81%) 

Balanced C 

-4.76% 0.21% 3.59% 6.91% 11.63% 

(-4.89% , -4.64%) (0.13% , 0.29%) (3.51% , 3.67%) (6.83% , 6.99%) (11.51% , 11.76%) 

Life-cycle C 

-4.88% 0.19% 3.59% 6.90% 11.58% 

(-5.01% , -4.76%) (0.11% , 0.27%) (3.51% , 3.66%) (6.82% , 6.98%) (11.46% , 11.70%) 

Table 13: Confidence intervals – single contribution (CIR-SVJD) 



Life-cycle Funds: Much Ado about Nothing?  

37 

Regular contributions 

Strategy 5% 25% Median 75% 95% 

Balanced A 

-0.24% 2.30% 4.07% 5.85% 8.43% 

(-0.30% , -0.18%) (2.26% , 2.34%) (4.03% , 4.10%) (5.81% , 5.89%) (8.37% , 8.50%) 

Life-cycle A 

0.08% 2.30% 3.96% 5.74% 8.51% 

(0.03% , 0.13%) (2.26% , 2.33%) (3.93% , 4.00%) (5.70% , 5.78%) (8.43% , 8.58%) 

Balanced B 

-5.00% 0.33% 4.07% 7.85% 13.39% 

(-5.13% , -4.88%) (0.25% , 0.42%) (3.99% , 4.15%) (7.76% , 7.93%) (13.24% , 13.53%) 

Life-cycle B 

-5.36% 0.28% 4.13% 7.94% 13.38% 

(-5.49% , -5.22%) (0.19% , 0.37%) (4.04% , 4.21%) (7.85% , 8.02%) (13.24% , 13.53%) 

Balanced C 

-4.26% 0.46% 3.76% 7.09% 11.97% 

(-4.37% , -4.15%) (0.38% , 0.53%) (3.69% , 3.83%) (7.02% , 7.16%) (11.84% , 12.09%) 

Life-cycle C 

-4.12% 0.47% 3.73% 7.06% 11.97% 

(-4.23% , -4.01%) (0.39% , 0.55%) (3.66% , 3.81%) (6.98% , 7.14%) (11.85% , 12.09%) 

Table 14: Confidence intervals – regular contributions (BS) 
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Strategy 5% 25% Median 75% 95% 

Balanced A 

-0.99% 2.07% 4.07% 6.00% 8.73% 

(-1.07% , -0.91%) (2.02% , 2.12%) (4.02% , 4.11%) (5.95% , 6.04%) (8.66% , 8.80%) 

Life-cycle A 

-0.82% 1.95% 3.94% 5.97% 9.06% 

(-0.89% , -0.75%) (1.90% , 2.00%) (3.89% , 3.98%) (5.93% , 6.02%) (8.98% , 9.15%) 

Balanced B 

-6.16% 0.14% 4.21% 8.10% 13.55% 

(-6.33% , -5.99%) (0.05% , 0.23%) (4.12% , 4.29%) (8.01% , 8.19%) (13.40% , 13.69%) 

Life-cycle B 

-6.70% 0.16% 4.34% 8.18% 13.31% 

(-6.89% , -6.50%) (0.06% , 0.27%) (4.25% , 4.43%) (8.09% , 8.27%) (13.18% , 13.44%) 

Balanced C 

-5.30% 0.27% 3.87% 7.32% 12.13% 

(-5.45% , -5.16%) (0.19% , 0.36%) (3.79% , 3.95%) (7.23% , 7.40%) (12.00% , 12.26%) 

Life-cycle C 

-5.29% 0.27% 3.85% 7.29% 12.09% 

(-5.46% , -5.13%) (0.18% , 0.35%) (3.77% , 3.92%) (7.20% , 7.37%) (11.98% , 12.21%) 

Table 15: Confidence intervals – regular contributions (CIR-SVJD) 
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D More life-cycle and corresponding balanced funds for regular contributions 

Table 16 shows the matching balanced funds for more examples of different life-cycle funds when annual contributions are considered. We assume 

capital market parameters as given in Table 1, glide paths as indicated below and a management fee of 1.3% 𝑝. 𝑎. The first three rows of Table 16 

show strategies A, B, C, the next four give results for “wild” combinations of these strategies. Next, the following 12 rows treat strategies with only 

one year of complete investment in the risky asset whereas during the other years, the life-cycle funds considered are invested in the risk-free asset. 

Finally, the last 12 rows show results for the exact opposite. 

Life-cycle fund‘s glide path given by their equity portion over time Equity portion 𝑥𝑆 Management fee 𝑐𝐵𝐹 

1 0.9091 0.8182 0.7273 0.6364 0.5455 0.4545 0.3636 0.2727 0.1818 0.0909 0 35.88% 1.323% 

0 0.0909 0.1818 0.2727 0.3636 0.4545 0.5455 0.6364 0.7273 0.8182 0.9091 1 76.08% 1.630% 

1 0 1 0 1 0 1 0 1 0 1 0 67.25% 1.911% 

1 0.9091 0.8182 0.7273 0.6364 0.5455 0.5455 0.6364 0.7273 0.8182 0.9091 1 79.70% 1.389% 

0 0.0909 0.1818 0.2727 0.3636 0.4545 0.4545 0.3636 0.2727 0.1818 0.0909 0 26.27% 1.391% 

1 0.0909 1 0.7273 0.3636 0 0.4545 0.6364 1 0.1818 0.9091 0 61.47% 1.665% 

1 0.0909 0.8182 0 0.3636 0.5455 1 0.6364 0.2727 0 0.9091 0 56.54% 1.695% 

1 0 0 0 0 0 0 0 0 0 0 0 4.63% 1.394% 

0 1 0 0 0 0 0 0 0 0 0 0 9.08% 1.484% 

0 0 1 0 0 0 0 0 0 0 0 0 13.36% 1.571% 

0 0 0 1 0 0 0 0 0 0 0 0 17.46% 1.653% 

0 0 0 0 1 0 0 0 0 0 0 0 21.40% 1.732% 

0 0 0 0 0 1 0 0 0 0 0 0 25.17% 1.807% 

0 0 0 0 0 0 1 0 0 0 0 0 28.79% 1.879% 

0 0 0 0 0 0 0 1 0 0 0 0 32.25% 1.948% 

0 0 0 0 0 0 0 0 1 0 0 0 35.58% 2.013% 

0 0 0 0 0 0 0 0 0 1 0 0 38.76% 2.075% 
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0 0 0 0 0 0 0 0 0 0 1 0 41.81% 2.135% 

0 0 0 0 0 0 0 0 0 0 0 1 44.72% 2.191% 

0 1 1 1 1 1 1 1 1 1 1 1 99.78% 1.340% 

1 0 1 1 1 1 1 1 1 1 1 1 99.33% 1.370% 

1 1 0 1 1 1 1 1 1 1 1 1 98.71% 1.393% 

1 1 1 0 1 1 1 1 1 1 1 1 97.97% 1.410% 

1 1 1 1 0 1 1 1 1 1 1 1 97.16% 1.422% 

1 1 1 1 1 0 1 1 1 1 1 1 96.29% 1.431% 

1 1 1 1 1 1 0 1 1 1 1 1 95.40% 1.438% 

1 1 1 1 1 1 1 0 1 1 1 1 94.51% 1.442% 

1 1 1 1 1 1 1 1 0 1 1 1 93.63% 1.445% 

1 1 1 1 1 1 1 1 1 0 1 1 92.79% 1.447% 

1 1 1 1 1 1 1 1 1 1 0 1 91.98% 1.449% 

1 1 1 1 1 1 1 1 1 1 1 0 91.21% 1.451% 

Table 16: More numerical examples of life-cycle and their corresponding balanced funds 

It is worthwhile noting that the sufficient conditions of Lemma 3 in Appendix A hold for all of these very different glide paths and hence a 

corresponding balanced fund can be derived. Further, we conclude the calibrated management fee 𝑐𝐵𝐹 ≥ 1.3% 𝑝. 𝑎. for all life-cycle funds 

considered. Hence, a balanced fund equipped with above equity portion 𝑥𝑆 and a management fee of exactly 1.3% 𝑝. 𝑎. (equal to the life-cycle’s 

management fee) may yield an expected return higher than when investing in the life-cycle fund and at the same time may provide a similar 

variability in returns. 


