A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities

Daniel Bauer,
Alexander Kling,
Jochen Ruß

Tokyo, August 1, 2006
Agenda

- Introduction
- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook
Types of Guarantees

- Variable annuities are unit-linked deferred annuities
 - In the US: Usually single premium contracts
 - Single premium is invested in fund(s)
 - In the 90s, insurance companies started to provide additional guarantees
 - Guaranteed Minimum Death Benefits (GMDB)
 - Guaranteed Minimum Living Benefits (GMLB)
 also called Living Benefit Guarantees (LBG)
 - Fee for the guarantee: annually a certain percentage of the net asset value (NAV)
 - Guarantee provided by the insurance company
 - Risk management
 - “Reinsurance”
 - Internal hedging
Introduction

Variable Annuity Industry Total US Sales (dollars in billions)

- Variable annuity sales in the US strongly increased over the last years
- During the first half of 2005
 - 28% of VA sales offered a guaranteed minimum accumulation benefit (GMAB)
 - 52% of VA sales offered a guaranteed minimum income benefit (GMIB)
 - 78% of VA sales offered a guaranteed minimum withdrawal benefit (GMWB)

→ These types of guarantees are very popular
Agenda

- Introduction
- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook
Types of Guarantees: Guaranteed Death Benefits

Guaranteed Minimum Death Benefits (GMDB)

- Death benefit = max \{NAV ; guaranteed benefit base\}

- Typical forms of guaranteed benefit base:
 - The premium paid by the policyholder
 - Maximum historical NAV of the fund at certain observation dates
 - e.g. once a year \(\rightarrow\) annual ratchet guarantee
 - Annually increasing death benefit
 - Premium compounded by 5% – 6% p.a.

- Typical guarantee fees: 0.15% - 0.35% of the NAV p.a.
Guaranteed Minimum Accumulation Benefits (GMAB)

- Survival benefit = max \{NAV ; guaranteed benefit base\}
- Typical forms of guaranteed benefit base
 - Premium paid
 - Maximum historical NAV of the fund at certain observation dates
 - e.g. once a year → annual ratchet guarantee
- Typical guarantee fees: 0.25% - 0.75% of the NAV p.a.
Types of Guarantees: Guaranteed Living Benefits

- **Guaranteed Minimum Income Benefits (GMI B)**
 - Guaranteed annuity benefit
 - Guaranteed (lifelong or temporary) annuity in case of annuitization during a certain “annuitization period”
 - During the annuitization period, the policyholder may at any time
 - Annuitize the fund NAV at the current annuity conversion rate \tilde{a}_{curt}
 - Receive the fund NAV as a lump sum payment
 - Annuitize the guaranteed benefit base at an annuity conversion rate \tilde{a}_{guar} that has been guaranteed at $t=0$
 - Typical forms of the guaranteed benefit base
 - Maximum historical NAV of the fund
 - Annually increasing benefit (by 5% - 6% p.a.) (above risk free rate!)
 - Typical guarantee fees: 0.5% - 0.75% of the NAV p.a.
Types of Guarantees: Guaranteed Living Benefits

- Guaranteed Minimum Withdrawal Benefits (GMWB)
 - Insurer guarantees that
 - The policyholder may withdraw at least the guaranteed withdrawal benefit base over time (even if the account value drops to 0)
 - As long as the annual withdrawal amount is always below some maximum level
 - Example
 - Guaranteed withdrawal benefit base: premium paid by policyholder
 - Maximum annual withdrawal amount: 7% of gross premium paid
 - Huge variety of options on the market
 - Step-up (increase of guarantee under certain conditions)
 - GMWB for life (lifelong guarantees)
 - Typical guarantee fees: 0.4% - 0.65% of the NAV p.a.
Agenda

- Introduction
- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook
Define state variables to describe the evolution of the contract and the embedded guarantees:

- \(A_t \) net asset value at time \(t \) of the policyholder’s account
- \(W_t \) time \(t \) value of a hypothetical withdrawals account
- \(D_t \) time \(t \) value of a hypothetical death benefit account
- \(G_t^D \) guaranteed minimum death benefit at time \(t \)
- \(G_t^A \) guaranteed minimum accumulation benefit at time \(t \)
- \(G_t^I \) guaranteed minimum income benefit at time \(t \)
- \(G_t^W \) total remaining guaranteed minimum withdrawal amount at time \(t \)
- \(G_t^E \) maximum guaranteed withdrawal amount in year \(t \)

State vector

\[y_t = (A_t, W_t, D_t, G_t^A, G_t^I, G_t^D, G_t^W, G_t^E) \]
Pricing Framework

- **Describe the evolution of the contract and the state variables**
 - If the asset value of the fund changes or
 - If the policyholder
 - withdraws funds as a guaranteed withdrawal of a GMWB option,
 - performs a partial surrender, i.e. withdraws more than the guaranteed withdrawal amount,
 - fully surrenders the contract, or,
 - passes away

- **Development of the state variables is completely determined by the asset process and the policyholder’s actions**

- **Any variable annuity contract with any combination of guarantees can be modeled within this framework**
Pricing Framework

- **Customer strategy**
 - F_t-measurable process (X), which determines the amount E_t to be withdrawn depending on the state y_t of the system
 \[X(t, y_t) = E_t \]

- “Payoff” of the contract following a given strategy (X) is then completely determined by the asset process
 - Thus, the value $V_0((X))$ of the contract is given

- Value of the contract assuming a “rational policyholder” is more complex
 \[V_0 = \sup_{(X) \in \Xi} V_0((X)) \]

where Ξ is the set of all admissible customer strategies
Agenda

- Introduction
- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook
Numerical Analysis

- Use Geometric Brownian motion for the underlying assets
 \[
 \frac{dS_t}{S_t} = r dt + \sigma dZ_t, \quad S_0 = 1
 \]

- Numéraire process
 \[
 \frac{dB_t}{B_t} = r dt, \quad B_0 > 0
 \]

- Use Monte-Carlo-Simulation to calculate the contract value \(V_0(X) \) for any given strategy \((X)\)

- Use a multidimensional discretization approach to calculate the contract value \(V_0 \) under rational policyholder behavior
 - Generalizing Tanskanen and Lukkarinen (2004):
 - determination of a quasi-analytic solution
 - discretization of the problem via a finite mesh
 - Similar to a methodology proposed in “Risk Neutral Valuation of With-Profits Life Insurance Contracts” by Bauer, Kiesel, Kling and Ruß (also presented at this conference)
Numerical Analysis

What’s new? compared to Bauer et al.

- High dimensionality
 - adequate interpolation scheme
 - complexity / computational time:
 - adequate grids
- Policyholder’s strategy
 - not only: surrender vs. not surrender
 - but also: many possibilities whether, when and how much to withdraw (our algorithm finds optimal strategy)
 - adequate discretization needed, additional level of complexity
- Details are rather complex
 - see paper
Agenda

- Introduction
- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook
Results

How to determine the “fair fee”:

Contract value including guarantees = Premium paid
Results

- Fair guarantee fee for contracts with GMDB under different customer behavior

<table>
<thead>
<tr>
<th>strategy</th>
<th>contract</th>
<th>Money-back guarantee</th>
<th>Ratchet benefit base</th>
<th>6% roll-up benefit base</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: no withdrawals or surrenders</td>
<td>0.01%</td>
<td>0.04%</td>
<td>0.14%</td>
<td></td>
</tr>
<tr>
<td>2: “typical” deterministic surrender probability</td>
<td>< 0%</td>
<td>< 0%</td>
<td>0.05%</td>
<td></td>
</tr>
</tbody>
</table>

- fair guarantee fee for all the GMDB contracts analyzed is rather low
- the fair guarantee fee strongly decreases if a “typical” surrender pattern is assumed
 - customers have paid fees before surrendering but will not receive any benefits from the corresponding options
 - surrender fees can be used to subsidize the value of the guarantees of the clients who do not surrender
- typical charges in the market exceed the fair guarantee fee
Results

- Fair guarantee fee for contracts with GMAB under different customer behavior

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Money-back guarantee w/o DB</th>
<th>Money-back guarantee with DB</th>
<th>Ratchet benefit base w/o DB</th>
<th>Ratchet benefit base with DB</th>
<th>6% roll-up benefit base w/o DB</th>
<th>6% roll-up benefit base with DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: no withdrawals or surrenders</td>
<td>0.07%</td>
<td>0.23%</td>
<td>0.76%</td>
<td>0.94</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2: deterministic surrender probability</td>
<td>< 0%</td>
<td>0.12%</td>
<td>0.57%</td>
<td>0.74%</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

- fair guarantee fees for the contracts differ significantly
 - no fair guarantee fee for a 6% roll-up benefit base
 - value of the contract for rational customer behavior only slightly above strategy 1
 - mostly due to assumed surrender fee of 5%
Results

Fair guarantee fee for contracts with GMIB under different customer behavior ($\bar{a} = \bar{a}_{curr}/\bar{a}_{guar}$)

<table>
<thead>
<tr>
<th>strategy</th>
<th>contract, \bar{a}</th>
<th>Money-back guarantee</th>
<th>Ratchet benefit base</th>
<th>6% roll-up benefit base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/o DB, with DB</td>
<td>w/o DB, with DB</td>
<td>w/o DB, with DB</td>
<td>w/o DB, with DB</td>
</tr>
<tr>
<td>1: no withdrawals or surrenders</td>
<td>$\bar{a}=1.2$</td>
<td>0.14%</td>
<td>0.31%</td>
<td>1.55%</td>
</tr>
<tr>
<td></td>
<td>$\bar{a}=1.0$</td>
<td>0.07%</td>
<td>0.23%</td>
<td>0.76%</td>
</tr>
<tr>
<td></td>
<td>$\bar{a}=0.8$</td>
<td>0.03%</td>
<td>0.18%</td>
<td>0.25%</td>
</tr>
<tr>
<td></td>
<td>$\bar{a}=0.6$</td>
<td>0.01%</td>
<td>0.16%</td>
<td>0.05%</td>
</tr>
<tr>
<td>2: deterministic surrender probability</td>
<td>$\bar{a}=1.2$</td>
<td>0.04%</td>
<td>0.18%</td>
<td>1.24%</td>
</tr>
<tr>
<td></td>
<td>$\bar{a}=1.0$</td>
<td>< 0%</td>
<td>0.12%</td>
<td>0.57%</td>
</tr>
<tr>
<td></td>
<td>$\bar{a}=0.8$</td>
<td>< 0%</td>
<td>0.10%</td>
<td>0.15%</td>
</tr>
<tr>
<td></td>
<td>$\bar{a}=0.6$</td>
<td>< 0%</td>
<td>0.08%</td>
<td>< 0%</td>
</tr>
</tbody>
</table>

- Value of the guarantee depends heavily on \bar{a} (which is not known!)
- Surrender assumption strongly influences the fair guarantee fee
- Value strongly increases for rational policyholder behavior
 - E.g. 6% roll-up benefit, $\bar{a}=0.6$: from 2.32% to > 4%
Results

- **Fair guarantee fee for contracts with GMWB under different customer behavior**

<table>
<thead>
<tr>
<th>strategy</th>
<th>contract</th>
<th>without DB</th>
<th>with DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: withdrawals of 700 p.a.</td>
<td>j=1: 0.19%</td>
<td>0.23%</td>
<td></td>
</tr>
<tr>
<td>2: withdrawals of 700 if $A_t < G^w_t$</td>
<td>0.19%</td>
<td>0.28%</td>
<td></td>
</tr>
</tbody>
</table>

- The difference between the two strategies is rather small.
- The additional fee for including a GMDB option is significantly lower than for the GMAB and GMIB contracts.
- Fair guarantee fees are lower than the prices of these guarantees.
- However, the fair guarantee fee under rational customer behavior is extremely higher.
Results

- Influence of the capital market parameters r and σ on the fair guarantee fee for a contract with GMI B

<table>
<thead>
<tr>
<th>Volatility</th>
<th>$r=3%$</th>
<th>$r=4%$</th>
<th>$r=5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma = 10%$</td>
<td>0.46%</td>
<td>0.28%</td>
<td>0.20%</td>
</tr>
<tr>
<td>$\sigma = 15%$</td>
<td>1.09%</td>
<td>0.76%</td>
<td>0.56%</td>
</tr>
<tr>
<td>$\sigma = 20%$</td>
<td>1.94%</td>
<td>1.40%</td>
<td>1.05%</td>
</tr>
</tbody>
</table>

- Fair guarantee fee is a decreasing function of the risk-free rate of interest
 - The risk-neutral value of a guarantee decreases with increasing interest rates

- Fair guarantee fee is an increasing function of the asset volatility
 - For any risk-free rate r, the fair guarantee fee for $\sigma = 20\%$ is more than four times as high as the one for $\sigma = 10\%$
Agenda

- Introduction
- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook
Summary & Outlook

- Some of these guarantees are underpriced
 - insurers assume cross subsidizations from other fees and,
 - insurers assume their customers to not act rational
 - irrational surrender and withdrawal behavior
 - customers not exercising GMIB-annuitization options even when in the money

- Calculation based on irrational policyholder behavior is risky
 - customers may become more educated about their options and might thus exercise these in the most beneficial way
 - market participants might specialize in finding arbitrage possibilities and speculating against insurers
 - strategically buying such policies in the secondary market
 - consulting policyholders about optimal behavior
Summary & Outlook

Future research
- Different asset model
 - e.g. of Lévy type
 - including stochastic interest rates
- Analysis of an ongoing risk-management of the considered guarantees
 - implementation of efficient hedging strategies
 - sensitivity of the Delta with respect to different policyholder behavior
- Analyze optimal strategies
- Price new features of GMWB contracts
A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities

Daniel Bauer,
Alexander Kling,
Jochen Ruß

Tokyo, August 1, 2006