A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities

Daniel Bauer, Alexander Kling, Jochen Ruß

Tokyo, August 1, 2006

ifa

Institut für Finanz- und Aktuarwissenschaften

Helmholtzstraße 22 D-89081 Ulm phone +49 (0) 731/50-31230 fax +49 (0) 731/50-31239 email ifa@ifa-ulm.de

Introduction

Types of guarantees

- Guaranteed Minimum Death Benefits
- Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook

2

ifa

Institut für Finanz- und

Types of Guarantees

Variable annuities are unit-linked deferred annuities

- In the US: Usually single premium contracts
- Single premium is invested in fund(s)
- In the 90s, insurance companies started to provide additional guarantees
 - Guaranteed Minimum Death Benefits (GMDB)
 - I Guaranteed Minimum Living Benefits (GMLB) also called Living Benefit Guarantees (LBG)
- Fee for the guarantee: annually a certain percentage of the net asset value (NAV)
- Guarantee provided by the insurance company
- Risk management
 - Reinsurance
 - Internal hedging

ita

Institut für Finanz- und

Introduction

Variable Annuity Industry Total US Sales (dollars in billions)

Y	ear	Variable	
1	985	\$5.3	
1	986	9.3	
1	987	12.7	
1	988	11.8	
1	989	13.5	
1	990	17.2	
1	991	21.5	
1	992	30.7	
1	993	46.6	
1	994	50,2	
1	995	51.3	
1	996	74.3	
1	997	88.2	
1	998	99.8	
1	999	123.0	
2	000	137.3	
2	001	113.3	
2	002	115.0	
2	003	126.4	
2	004	129.7	

Source: NAVA, Momingstar, Inc., and LIMRA Int'l

© August 06

Variable annuity sales in the US strongly increased
over the last years

- During the first half of 2005
 - 28% of VA sales offered a guaranteed minimum accumulation benefit (GMAB)
 - 52% of VA sales offered a guaranteed minimum income benefit (GMIB)
 - 78% of VA sales offered a guaranteed minimum withdrawal benefit (GMWB)

 \rightarrow These types of guarantees are very popular

ita

Institut für Finanz- und

Aktuarwissenschaften

Guaranteed Minimum Benefits

4

Introduction

- Types of guarantees
 - Guaranteed Minimum Death Benefits
 - I Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook

ifa

Institut für Finanz- und

Types of Guarantees: Guaranteed Death Benefits

- Guaranteed Minimum Death Benefits (GMDB)
 - Death benefit = max {NAV ; guaranteed benefit base}
 - Typical forms of guaranteed benefit base
 - The premium paid by the policyholder
 - Maximum historical NAV of the fund at certain observation dates
 - e.g. once a year \rightarrow annual ratchet guarantee
 - Annually increasing death benefit
 - Premium compounded by 5% 6% p.a.
 - Typical guarantee fees: 0.15% 0.35% of the NAV p.a.

ita

Institut für Finanz- und

Types of Guarantees: Guaranteed Living Benefits

- Guaranteed Minimum Accumulation Benefits (GMAB)
 - Survival benefit = max {NAV ; guaranteed benefit base}
 - Typical forms of guaranteed benefit base
 - Premium paid
 - Maximum historical NAV of the fund at certain observation dates
 - e.g. once a year \rightarrow annual ratchet guarantee
 - **Typical guar**antee fees: 0.25% 0.75% of the NAV p.a.

ita

Institut für Finanz- und

Types of Guarantees: Guaranteed Living Benefits

Guaranteed Minimum Income Benefits (GMIB)

- Guaranteed annuity benefit
 - Guaranteed (lifelong or temporary) annuity in case of annuitization during a certain "annuitization period"
- During the annuitization period, the policyholder may at any time
 - Annuitize the fund NAV at the current annuity conversion rate \ddot{a}_{curr}
 - Receive the fund NAV as a lump sum payment
 - Annuitize the guaranteed benefit base at an annuity conversion rate \ddot{a}_{guar} that has been guaranteed at t=0
- Typical forms of the guaranteed benefit base
 - Maximum historical NAV of the fund
 - Annually increasing benefit (by 5% 6% p.a.) (above risk free rate!)
 - Typical guarantee fees: 0.5% 0.75% of the NAV p.a.

Institut für Finanz- und Aktuarwissenschaften

ita

Types of Guarantees: Guaranteed Living Benefits

Guaranteed Minimum Withdrawal Benefits (GMWB)

- I Insurer guarantees that
 - The policyholder may withdraw at least the guaranteed withdrawal benefit base over time (even if the account value drops to 0)
 - As long as the annual withdrawal amount is always below some maximum level
- Example
 - Guaranteed withdrawal benefit base: premium paid by policyholder

ifa

Institut für Finanz- und

- Maximum annual withdrawal amount: 7% of gross premium paid
- Huge variety of options on the market
 - Step-up (increase of guarantee under certain conditions)
 - GMWB for life (lifelong guarantees)
- Typical guarantee fees: 0.4% 0.65% of the NAV p.a.

Introduction

Types of guarantees

- Guaranteed Minimum Death Benefits
- Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook

ifa

Institut für Finanz- und

Pricing Framework

- Define state variables to describe the evolution of the contract and the embedded guarantees
 - A_t net asset value at time t of the policyholder's account
 - W_t time t value of a hypothetical withdrawals account
 - **D**_t time t value of a hypothetical death benefit account
 - $\mathbf{I} \quad \mathbf{G}_t^{\mathcal{D}} \text{ guaranteed minimum death benefit at time } t$
 - G_t^A guaranteed minimum accumulation benefit at time t
 - G_t^I guarantee d minimum income benefit at time t
 - G_t^w total remaining guaranteed minimum withdrawal amount at time t

ita

Institut für Finanz- und

- G_t^E maximum guaranteed withdrawal amount in yeat t
- State vector

$$\boldsymbol{y}_{t} = \left(\boldsymbol{A}_{t}, \boldsymbol{W}_{t}, \boldsymbol{D}_{t}, \boldsymbol{G}_{t}^{A}, \boldsymbol{G}_{t}^{I}, \boldsymbol{G}_{t}^{D}, \boldsymbol{G}_{t}^{W}, \boldsymbol{G}_{t}^{E}\right)$$

Pricing Framework

Describe the evolution of the contract and the state variables

- If the asset value of the fund changes or
- I If the policyholder
 - withdraws funds as a guaranteed withdrawal of a GMWB option,
 - performs a partial surrender, i.e. withdraws more than the guaranteed withdrawal amount,
 - fully surrenders the contract, or,
 - passes away
- Development of the state variables is completely determined by the asset process and the policyholder's actions
- Any variable annuity contract with any combination of guarantees can be modeled within this framework

ita

Institut für Finanz- und

Pricing Framework

Customer strategy

- *F_t*-measurable process (*X*), which determines the amount *E_t* to be withdrawn depending on the state *y_t* of the system $\boldsymbol{X}(t, \boldsymbol{y}_t) = \boldsymbol{E}_t$
- Payoff" of the contract following a given strategy (X) is then completely determined by the asset process
 - **1** Thus, the value $V_0(\mathbf{X})$ of the contract is given
- Value of the contract assuming a "rational policyholder" is more complex

$$V_0 = \sup_{(X) \in \Xi} V_0((X))$$

where Ξ is the set of all admissible customer strategies

Institut für Finanz- und

Introduction

Types of guarantees

- Guaranteed Minimum Death Benefits
- Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook

ifa

Institut für Finanz- und

Numerical Analysis

Use Geometric Brownian motion for the underlying assets

$$\frac{dS_t}{S_t} = rdt + \sigma dZ_t, S_0 = 1$$

ss
$$\frac{dB_t}{B_t} = r dt, B_0 > 0$$

- Numéraire process
- B_{t} Use Monte-Carlo-Simulation to calculate the contract value $V_{\rho}(X)$ for any given strategy (X)
- Use a multidimensional discretization approach to calculate the contract value V_o under rational policyholder behavior
 - Generalizing Tanskanen and Lukkarinen (2004):
 - determination of a quasi-analytic solution
 - discretization of the problem via a finite mesh
 - Similar to a methodology proposed in "Risk Neutral Valuation of With-L Profits Life Insurance Contracts" by Bauer, Kiesel, Kling and Ruß (also presented at this conference)

Institut für Finanz- und

Numerical Analysis

- What's new? compared to Bauer et al.
 - I High dimensionality
 - adequate interpolation scheme
 - complexity / computational time:
 - adequate grids
 - Policyholder's strategy
 - not only: surrender vs. not surrender
 - but also: many possibilities whether, when and how much to withdraw (our algorithm finds optimal strategy)
 - → adequate discretization needed, additional level of complexity

ifa

Institut für Finanz- und

Aktuarwissenschaften

- Details are rather complex
 - see paper

© August 06

Introduction

Types of guarantees

- Guaranteed Minimum Death Benefits
- Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook

ifa

Institut für Finanz- und

© August 06

- How to determine the "fair fee":
- Contract value including guarantees = Premium paid

Institut für Finanz- und Aktuarwissenschaften

Fair guarantee fee for contracts with GMDB under different customer behavior

strategy	contract	Money-back guarantee	Ratchet benefit base	6% roll-up benefit base
1: no witho surrenders		0.01%	0.04%	0.14%
2: "typical" surrender	' deterministic probability	< 0%	< 0%	0.05%

- **fair guarantee fee for all the GMDB contracts analyzed is rather low**
- the fair guarantee fee strongly decreases if a "typical" surrender pattern is assumed
 - customers have paid fees before surrendering but will not receive any benefits from the corresponding options
 - surrender fees can be used to subsidize the value of the guarantees of the clients who do not surrender
- typical charges in the market exceed the fair guarantee fee

Institut für Finanz- und Aktuarwissenschaften

Fair guarantee fee for contracts with GMAB under different customer behavior

	contract Money-back guarantee		Ratchet benefit base		6% roll-up benefit base		
strategy		w/o DB	with DB	w/o DB	with DB	w/o DB	with DB
1: no withd	rawals or	0.07%	0.23%	0.76%	0.94		
surrenders							
2: determin	istic	< 0%	0.12%	0.57%	0.74%		
surrender p	<mark>robab</mark> ility						

- **fair guarantee fees for the contracts differ significantly**
 - no fair guarantee fee for a 6% roll-up benefit base
- value of the contract for rational customer behavior only slightly above strategy 1

ita

Institut für Finanz- und

Aktuarwissenschaften

mostly due to assumed surrender fee of 5%

Fair guarantee fee for contracts with GMIB under different customer behavior ($\ddot{a} = \ddot{a}_{curr} / \ddot{a}_{auar}$)

	contract	Money-ba guarantee		Ratchet be base	enefit	6% roll-u base	p benefit
strategy		w/o DB	with DB	w/o DB	with DB	w/o DB	with DB
1: no	<i>ä</i> =1.2	0.14%	0.31%	1.55%	1.83%		
withdrawals	<i>ä</i> =1.0	0.07%	0.23%	0.76%	0.94%		
or surrenders	<i>ä</i> =0.8	0.03%	0.18%	0.25%	0.40%		
	<mark>ä=</mark> 0.6	0.01%	0.16%	0.05%	0.19%	2.32%	3.76%
2:	<i>ä</i> =1.2	0.04%	0.18%	1.24%	1.40%		
deterministic	ä= 1.0	< 0%	0.12%	0.57%	0.74%		
surrender probability	<i>ä</i> =0.8	< 0%	0.10%	0.15%	0.29%	> 4%	> 4%
	<i>ä</i> =0.6	< 0%	0.08%	< 0%	0.11%	1.45%	1.88%

value of the guarantee depends heavily on ä (which is not known!)

- surrender assumption strongly influences the fair guarantee fee
- value strongly increases for rational policyholder behavior
 - e.g. 6% roll-up benefit, *ä*=0.6: from 2.32% to > 4%

© August 06

Institut für Finanz- und Aktuarwissenschaften

ifa

Fair guarantee fee for contracts with GMWB under different customer behavior

contract	without DB	with DB
1: withdrawals of 700 p.a.	<i>j</i> =1: 0.19%	0.23%
2: withdrawals of 700 if $A_t < G_t^{W}$.	0.19%	0.28%

- difference between the two strategies is rather small
- additional fee for including a GMDB option is significantly lower than for the GMAB and GMIB contracts,
- **I** fair guarantee fees are lower than the prices of these guarantees
- I however, the fair guarantee fee under rational customer behavior is extremely higher
 ifa

Institut für Finanz- und

Influence of the capital market parameters r and σ on the fair guarantee fee for a contract with GMIB

risk	-free rate	<i>r</i> =3%	<i>r</i> =4%	<i>r</i> =5%
volatility				
<i>σ</i> = 10%		0.46%	0.28%	0.20%
σ = 15%		1.09%	0.76%	0.56%
<i>σ</i> = 20%		1.94%	1.40%	1.05%

- **1** fair guarantee fee is a decreasing function of the risk-free rate of interest
 - the risk-neutral value of a guarantee decreases with increasing interest rates
- **I** fair guarantee fee is an increasing function of the asset volatility
 - for any risk-free rate r, the fair guarantee fee for $\sigma = 20\%$ is more than four times as high as the one for $\sigma = 10\%$

ita

Institut für Finanz- und

Introduction

Types of guarantees

- Guaranteed Minimum Death Benefits
- Guaranteed Minimum Living Benefits
- Pricing Framework
- Numerical Analysis
- Results
- Summary & Outlook

ifa

Institut für Finanz- und

Summary & Outlook

Some of these guarantees are underpriced

- \rightarrow insurers assume cross subsidizations from other fees and,
- \rightarrow insurers assume their customers to not act rational
 - irrational surrender and withdrawal behavior
 - customers not exercising GMIB-annuitization options even when in the money
- Calculation based on irrational policyholder behavior is risky
 - customers may become more educated about their options and might thus exercise these in the most beneficial way
 - market participants might specialize in finding arbitrage possibilities and speculating against insurers

ita

Institut für Finanz- und

Aktuarwissenschaften

- strategically buying such policies in the secondary market
- consulting policyholders about optimal behavior

© August 06

Summary & Outlook

Future research

- Different asset model
 - e.g. of Lévy type
 - including stochastic interest rates
- Analysis of an ongoing risk-management of the considered guarantees
 - implementation of efficient hedging strategies
 - sensitivity of the Delta with respect to different policyholder behavior

ita

Institut für Finanz- und

Aktuarwissenschaften

- Analyze optimal strategies
- Price new features of GMWB contracts

26

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities

Daniel Bauer, Alexander Kling, Jochen Ruß

Tokyo, August 1, 2006

ifa

Institut für Finanz- und Aktuarwissenschaften

Helmholtzstraße 22 D-89081 Ulm phone +49 (0) 731/50-31230 fax +49 (0) 731/50-31239 email ifa@ifa-ulm.de