Solvency II and Nested Simulations – a Least-Squares Monte Carlo Approach

Daniel Bauer
Georgia State University

Daniela Bergmann
Ulm University

Andreas Reuß
Institute for Finance and Actuarial Sciences (ifa)

ARIA Annual Meeting 2009
Providence (RI), August 5, 2009
1 Motivation

2 Solvency II Requirements

3 Numerical Approaches
 - Nested Simulations Approach
 - Least-Squares Monte Carlo Approach

4 Results

5 Summary and Outlook
Motivation

- **Solvency II**: New regulatory framework for insurance companies in the European Union
- **Key aspect**: Determine required risk capital (SCR) for a one-year time horizon based on a market-consistent valuation of assets and liabilities
- **Standard model**: Approximation of SCR via square-root formula ⇒ Various deficiencies (cf. Pfeifer/Strassburger (2008), Sandström (2007)).
- **Alternative**: Multivariate approach based on stochastic model for the insurance company (Internal Model).
- **Problems**:
 - Valuation of life insurance contracts in closed form not possible (due to embedded options and guarantees)
 - Unsolved numerical and computational problems

⇒ This paper provides a mathematical framework for the calculation of the SCR and discusses different approaches for the numerical implementation.
Definitions

Assessment of solvency position can be split into two components:

1. Available Capital (AC_0)
 - Amount of financial resources available at time $t = 0$ which can serve as a buffer against risks and absorb financial losses.

Market consistent valuation of assets and liabilities

\[AC_0 := MVA_0 - MVL_0 = MCEV_0 \]

- $MCEV_0$ denotes the market consistent embedded value, i.e. $MCEV_0 = ANAV_0 + PVFP_0 - CoC_0$, where
 - $ANAV_0$ is derived from statutory shareholders’ equity,
 - $PVFP_0$ is the present value of past-taxation shareholder cash flows from the assets backing (statutory) liabilities and
 - CoC_0 is the Cost-of-Capital charge (not discussed further here).

- Main computational issue: calculation of $PVFP_0$.
Definitions

Assessment of solvency position can be split into two components:

2. Solvency Capital Requirement (SCR)
 - SCR is based on the Available Capital at $t = 1$, where $AC_1 := MCEV_1 + X_1$ and X_1 denotes shareholder cash flows at $t = 1$.
 - Intuition: An insurance company is considered solvent under Solvency II if its Available Capital at $t = 1$ is positive with a probability of at least $\alpha = 99.5\%$.
 - Therefore consider loss function $L := AC_0 - AC_1/(1 + i)$ where i denotes the one-year risk-free rate at $t = 0$.

SCR definition

$$SCR := \arg\min_x \left\{ P \left(\frac{AC_0 - AC_1}{1 + i} > x \right) \leq 0.5\% \right\} = \text{VaR}_{99.5\%}(L)$$

- Main computational issue: calculation of 99.5%-quantile of $-AC_1$.
Mathematical Framework

- Complete filtered probability space \((\Omega, \mathcal{F}, \mathcal{P}, \mathbb{F} = (\mathcal{F}_t)_{t\in[0,T]})\)
 - \(\mathcal{P}\) so-called real-world (physical) measure
 - Risk-neutral measure \(Q\) equivalent to \(\mathcal{P}\)
- State process: \((Y_t)_{t\in[0,T]} = \left(Y_{t}^{(1)}, \ldots, Y_{t}^{(d)}\right)_{t\in[0,T]}\) of sufficiently regular Markov processes that describes the stochasticity of the market
 - Numéraire process: \(B_t = \exp\left(\int_0^t r_u du\right), r_t = r(t, Y_t)\)
- Cash flow projection model, i.e. the future profits of the insurance company \(X_t (t = 1, \ldots, T)\) can be described as
 \[X_t = f_t(Y_s, s \in [0, t])\]
Valuation at $t = 0$

- Target: $AC_0 = ANAV_0 + \mathbb{E}^{Q} \left[\sum_{t=1}^{T} \exp\left(-\int_{0}^{t} r_u \, du\right) X_t \right]$
 from statutory balance sheet
 $=: V_0$

- Problem: No closed form solution for V_0

- Monte Carlo simulations: $\tilde{V}_0(K_0) = \frac{1}{K_0} \sum_{k=1}^{K_0} \sum_{t=1}^{T} \exp\left(-\int_{0}^{t} r_u^{(k)} \, du\right) X_t^{(k)}$
Valuation at $t = 1$

Target: Distr. of $AC_1 = ANAV_1 + \mathbb{E}^Q \left[\sum_{t=2}^{T} \exp(- \int_1^t r_u du) X_t \bigg| (Y_1, D_1) \right] + X_1 \sim F =: V_1$

Simulate N first-year paths "under $P":\ (Y_1^{(i)}, D_1^{(i)})$
Simulate K_1 paths "under $Q"$ starting in $(Y_1^{(i)}, D_1^{(i)})$: determine $V_1^{(i)}$

$N \times K_1$ paths
Estimator in the Nested Simulations Approach

Estimated SCR

We now have

1. \(\widetilde{AC}_0(K_0) = \text{ANAV}_0 + \widetilde{V}_0(K_0) \)

2. \(\widetilde{AC}_1^{(i)}(K_1) := \text{ANAV}_1^{(i)} + \widetilde{V}_1^{(i)}(K_1) + X_1^{(i)}, 1 \leq i \leq N. \)

Hence, we can estimate SCR by

\[
\widetilde{SCR} = \widetilde{AC}_0 + \frac{\widetilde{z}(m)}{1 + i}
\]

where \(\widetilde{z}(m) \) is the \(m^{th} \) order statistic of \(-\widetilde{AC}_1^{(i)} \) and \(m = \lceil N \cdot 0.995 + 0.5 \rceil \).

- Within the estimation process, we have three sources of error:
 1. Estimation of \(AC_0 \) with only \(K_0 \) sample paths
 2. Estimation of the quantile with only \(N \) real-world scenarios
 3. Estimation of \(AC_1^{(i)} \) with only \(K_1 \) inner simulations \(\forall i \)

⇒ Analysis of the resulting error in our estimate \(\widetilde{SCR} \)
Variance-Bias Tradeoff – Choice of K_0, N and K_1

▶ Idea: minimize the Mean-Square Error (MSE)

$$\text{MSE} = \mathbb{E} \left[(\widehat{\text{SCR}} - \text{SCR})^2 \right] = \text{Var}(\widehat{\text{SCR}}) + \left[\mathbb{E}(\widehat{\text{SCR}}) - \text{SCR} \right]^2 \text{bias}$$

▶ Similar to Gordy/Juneja (2008), we obtain:

Optimization problem in K_0, N and K_1

$$\frac{\sigma_0^2}{K_0} + \frac{\alpha(1 - \alpha)}{(N + 2)f^2(\text{SCR})} + \frac{\theta_\alpha^2}{K_1^2 \cdot f^2(\text{SCR})} \rightarrow \min$$

subject to the effort restriction $K_0 + N \cdot K_1 = \Gamma$.

▶ Can be solved using Lagrangian multipliers (for given computational budget Γ).

▶ Note: bias is positive in practical applications resulting in a **systematic overestimation of the SCR**.

▶ Problem: To make bias small (for 99.5% confidence level), K_1 may not be chosen "too small" → **Immense computational effort!**
Least-Squares-Algorithm

- Based on LSM approach by Longstaff/Schwartz (2001) for the valuation of non-European options (see also Clément et al. (2002)).

Algorithm:
- Simulate N scenarios (first year \mathcal{P}, other years \mathcal{Q})

\[
PV_{1}^{(i)}(\omega_{i}) := \sum_{t=2}^{T} \exp \left\{ - \int_{1}^{t} r_{s}(\omega_{i}) \, ds \right\} \Psi_{t}(\omega_{i}) = \mathbb{E}^{Q} \left[PV_{1}^{(i)} \mid \mathcal{F}_{1} \right] + \varepsilon_{i}, \quad 1 \leq i \leq N
\]

- 1^{st} step: Approximate V_{1} by finite sum of appropriate basis functions

\[
V_{1} = \mathbb{E}^{Q} \left[\sum_{t=2}^{T} \exp(- \int_{1}^{t} r_{u} \, du) \Psi_{t} \mid (Y_{1}, D_{1}) \right] \approx \hat{V}_{1}^{(M)}(Y_{1}, D_{1}) = \sum_{k=1}^{M} \alpha_{k} \cdot e_{k}(Y_{1}, D_{1})
\]

- 2^{nd} step: Estimate unknown parameter vector α via regression:

\[
\hat{\alpha}^{(N)} = \arg \min_{\alpha \in \mathbb{R}^{M}} \left\{ \sum_{i=1}^{N} \left[PV_{1}^{(i)} - \sum_{k=1}^{M} \alpha_{k} \cdot e_{k} \left(Y_{1}^{(i)}, D_{1}^{(i)} \right) \right]^{2} \right\}
\]

- Estimate Available Capital:

\[
\hat{AC}_{1}^{(i)} = \text{ANAV}_{1}^{(i)} + \sum_{k=1}^{M} \hat{\alpha}_{k}^{(N)} \cdot e_{k}(Y_{1}^{(i)}, D_{1}^{(i)}) + \Psi_{1}^{(i)}(\omega_{i}), \quad 1 \leq i \leq N
\]
Least-Squares-Algorithm: Does it work?

Issues to consider:

► Suitability of regression approach
► Convergence of the algorithm
► Bias (finite number of basis functions, estimation of regression parameters)
► Choice of regression function

⇒ Ultimate test: How well does it perform in a somewhat realistic framework?
Example: A Participating Life Insurance Contract

- Term-fix insurance contract with minimum interest rate guarantee
- Bonus distribution models obligatory payments to the policyholder (MUST-case from Bauer et al. (2006))
- No mortality \Rightarrow no biometric risk
- Dividends d_t are paid to the shareholders
- Company obtains additional contribution c_t from its shareholders in case of a shortfall
- Asset model: Extended Black-Scholes model with stochastic interest rates (see Bauer/Zaglauer (2008))
Bias in Nested Simulations, $N = 100,000$

- Choice of K_1 significantly affects SCR!
- Estimation of θ_α via pilot simulation with $N = 100,000$, $K_1 = 100$ and regression/finite difference approximation:
 \[\hat{\theta}_\alpha \approx 0.027 \Rightarrow (K_0; N; K_1) = (2,500,000; 550,000; 400) \text{ approx. optimal} \]
- Calculation takes about 35 minutes.
Comparison of different \((K_0; N; K_1)\) with \(\Gamma = 222,500,000\)

Based on 120 runs of simulations (approx. 35 min each)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Mean (\widetilde{\text{SCR}})</th>
<th>Empirical Variance</th>
<th>Estimated Bias</th>
<th>Estimated MSE</th>
<th>Corrected Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(275,000)</td>
<td>(800)</td>
<td>1319.6</td>
<td>28.0</td>
<td>1.5</td>
<td>30.2</td>
<td>1318.1</td>
</tr>
<tr>
<td>(550,000)</td>
<td>(400)</td>
<td>1320.5</td>
<td>19.3</td>
<td>3.0</td>
<td>28.2</td>
<td>1317.5</td>
</tr>
<tr>
<td>(1,100,000)</td>
<td>(200)</td>
<td>1323.1</td>
<td>8.8</td>
<td>5.9</td>
<td>43.9</td>
<td>1317.2</td>
</tr>
<tr>
<td>(2,200,000)</td>
<td>(100)</td>
<td>1328.9</td>
<td>4.4</td>
<td>11.8</td>
<td>143.2</td>
<td>1317.1</td>
</tr>
</tbody>
</table>

Table: Choice of \(N\) and \(K_1\) \((K_0 = 2,500,000)\), 120 runs
Choice of the Regression Function in the LSM Approach

<table>
<thead>
<tr>
<th>#</th>
<th>Regression Function</th>
<th>Mean (SCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1$</td>
<td>921.1</td>
</tr>
<tr>
<td>2</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2$</td>
<td>1141.9</td>
</tr>
<tr>
<td>3</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1$</td>
<td>1309.2</td>
</tr>
<tr>
<td>4</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1 + \hat{\alpha}_4^{(N)} \cdot r_1^2$</td>
<td>1330.1</td>
</tr>
<tr>
<td>5</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1 + \hat{\alpha}_4^{(N)} \cdot r_1^2 + \hat{\alpha}_5^{(N)} \cdot L_1$</td>
<td>1297.5</td>
</tr>
<tr>
<td>6</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1 + \hat{\alpha}_4^{(N)} \cdot r_1^2 + \hat{\alpha}_5^{(N)} \cdot L_1 + \hat{\alpha}_6^{(N)} \cdot x_1$</td>
<td>1302.5</td>
</tr>
<tr>
<td>7</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1 + \hat{\alpha}_4^{(N)} \cdot r_1^2 + \hat{\alpha}_5^{(N)} \cdot L_1 + \hat{\alpha}_6^{(N)} \cdot x_1 + \hat{\alpha}_7^{(N)} \cdot A_1 \cdot e^{r_1}$</td>
<td>1309.2</td>
</tr>
<tr>
<td>8</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1 + \hat{\alpha}_4^{(N)} \cdot r_1^2 + \hat{\alpha}_5^{(N)} \cdot L_1 + \hat{\alpha}_6^{(N)} \cdot x_1 + \hat{\alpha}_7^{(N)} \cdot A_1 \cdot e^{r_1}$ (+ \hat{\alpha}_8^{(N)} \cdot L_1 \cdot e^{r_1})</td>
<td>1316.5</td>
</tr>
<tr>
<td>9</td>
<td>$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1 + \hat{\alpha}_2^{(N)} \cdot A_1^2 + \hat{\alpha}_3^{(N)} \cdot r_1 + \hat{\alpha}_4^{(N)} \cdot r_1^2 + \hat{\alpha}_5^{(N)} \cdot L_1 + \hat{\alpha}_6^{(N)} \cdot x_1 + \hat{\alpha}_7^{(N)} \cdot A_1 \cdot e^{r_1}$ (+ \hat{\alpha}_8^{(N)} \cdot L_1 \cdot e^{r_1} + \hat{\alpha}_9^{(N)} \cdot e^{A_1/10000})</td>
<td>1317.5</td>
</tr>
</tbody>
</table>

Table: Estimated SCR for different choices of the regression function, $N = 550,000$

- Influence of basis function is quite pronounced.
- For "good" choices, the estimated SCR is close to the result obtained via Nested Simulations.
- "Good" choices appear to remain "good" for different parameters.
- Calculation takes only about 30 seconds.
Comparison of different N in the LSM Approach

![Graph showing comparison of different N](image)

<table>
<thead>
<tr>
<th>N</th>
<th>Mean (\hat{SCR})</th>
<th>Empirical Variance</th>
<th>Solvency Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>275,000</td>
<td>1316.9</td>
<td>87.5</td>
<td>132%</td>
</tr>
<tr>
<td>550,000</td>
<td>1317.5</td>
<td>62.6</td>
<td>132%</td>
</tr>
<tr>
<td>1,100,000</td>
<td>1317.4</td>
<td>23.5</td>
<td>132%</td>
</tr>
<tr>
<td>2,200,000</td>
<td>1317.2</td>
<td>10.5</td>
<td>132%</td>
</tr>
</tbody>
</table>

Table: Results for the LSM estimator, 120 runs
Summary

▶ Nested Simulations:
 → Inadequate choice of \((K_0, N, K_1)\) in nested simulations may yield erroneous outcomes.
 → Immense computational effort to achieve accurate results.

▶ LSM:
 → Fast approach to achieve relatively accurate results.
 → Results are similarly positive when calculating SCR for longer time horizons ("richer sigma field").
 → Care is required in choice of regression function even though simple algorithms yield good results in our applications.
 → Open question: theoretical results regarding validity of approximation.

Future Research

▶ Improvement of the Nested Simulations Approach by variance reduction techniques, QMC and screening procedures.
▶ Use of statistical methods to determine the regression function.
▶ Analysis of other risk measures, such as TVaR.
Literature

Thanks for your attention!