On the Pricing of Longevity-Linked Securities

Daniel Bauer Matthias Börger Jochen Ruß

ifa

March 2009

Institut für Finanz- und

Aktuarwissenschaften

Helmholtzstraße 22 D-89081 Ulm phone +49 (0) 731/50-31230 fax +49 (0) 731/50-31239 email ifa@ifa-ulm.de

Agenda

- Introduction
- Different Approaches for Pricing Longevity-Linked Securities
- Theoretical Comparison of the Approaches
- Empirical Comparison of the Approaches
- An Option-Type Longevity Derivative
- Conclusion

2

ifa

Institut für Finanz- und

Introduction

- Longevity risk = The risk that future mortality improvement exceeds today's assumptions
 - I Important risk factor for annuity providers and pension funds
 - Importance of this risk will increase in the future
 - reduction of benefits from public pension systems
 - tax incentives for annuitization
 - I Securitization is seen as a solution for managing this risk:
 - In the literature: Survivor bonds; survivor swaps, longevity bonds,...
 - In practice: First attempt to issue a longevity linked security failed.
 - However: There appears to be a consensus that suitable instruments will be available in the near future

ita

Institut für Finanz- u

Aktuarwissenschaften

- Interesting question: How to price such instruments
 - What are suitable (actuarial or economic) methods?
 - How can such methodologies be applied (calibration, etc.)?

Different Approaches for Pricing Longevity-Linked Securities

- Price of a longevity derivative depends on the estimate of uncertain future mortality trends and the degree of uncertainty of this estimate → Mortality risk premium (MRP)
- Problem: There are no liquidly traded securities → MRP can not be observed in the market
- **Consequence:** Different pricing methods have been proposed
- CAPM/CCAPM based approach (Friedberg and Webb 2007)
 - MRP suggested by the models is very low (MRP-puzzle similar to equity premium puzzle)
 - Probably limited applicability of this approach
- Instantaneous Sharpe Ratio (ISR) based approach (Milevsky et al. 2005; Bayraktar et al. 2008)
 - Investor in longevity risk requires compensation according to some ISR (λ)
 - **Return in excess** of risk free return = λ * standard deviation (after diversifiable risk is "hedged")

ifa

Institut für Finanz- und

Aktuarwissenschaften

- For large portfolio size this coincides with a change of probability measure (P→Q) with a constant market price of risk
- Wang Transform based approach (Lin and Cox 2005, 2006)
 - Adjust the cdf of the future lifetime by a Wang transform to account for risk:

$$q_x^Q = \Phi(\Phi^{-1}(_t q_x^P) - \theta)$$
 or $_t q_x^Q = \Psi(\Phi^{-1}(_t q_x^P) - \theta)$

© March 2009 On the Pricing of Longevity-Linked Securities

Theoretical Comparison of the Approaches

Our methodology: Establish the different approaches in a common framework

- "Forward Mortality Framework" (Details see Bauer et al. (2008))
- $\hat{\mu}_{t}(T, x_{0}) = -\partial_{\partial T} \log \left\{ E_{P} \left[T p_{x_{0}} \middle| \mathfrak{S}_{t} \right] \right\}$
- Dynamics $d\hat{\mu}_t(T, x_0) = \hat{\alpha}(t, T, x_0) dt + \hat{\sigma}(t, T, x_0) dW_t$, $\hat{\mu}_0(T, x_0) > 0$
- Drift condition: $\hat{\alpha}$ only depends on volatility (as in HJM forward interest rate modeling)
- Here:
 - W finite dimensional Brownian motion
 - $\hat{\sigma}$ and market price of risk deterministic
 - Volatilities and hence dynamics under measures P and Q coincide
- Initial "risk-adjusted" forward mortality curves derived from best estimate curve using both pricing methods

5

ifa

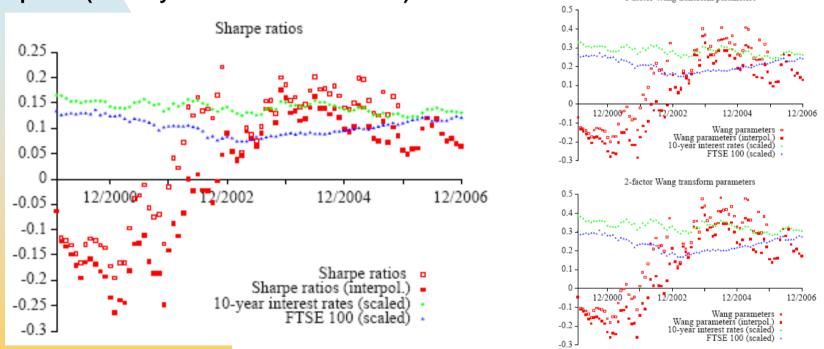
Institut für Finanz- und

Theoretical Comparison of the Approaches (ctd.)

If there is one, which is the better of the two approaches?

- Wang transform not coherent with a "generic" pricing model in the forward framework if more than one age cohort is considered.
- In line with Pelsser (2008): Inconsistency with arbitrage-free prices
- Hence, the Sharpe ratio approach is the more general and better approach

What is a good basis for determining θ and λ ?


- Loeys et al.: (Sharpe ratio from) stock markets
 - But: different characteristics
 - Adequacy questionable!
- Lin & Cox: Annuity Prices
 - Strong empirical evidence that there is a significant mortality risk premium embedded in annuity prices
 - Possibly, there are also risk premiums for other sources of risk (e.g. non-systematic mortality risk)
 - Hence, annuity prices provide at least an upper bound for risk premiums in longevity derivative pricing

Institut für Finanz- und

Aktuarwissenschaften

Empirical Comparison of the Approaches

- We use the "Volatility of Mortality" model from Bauer et al (2008) and recalibrate to UK data
- We derive Sharpe Ratios and Wang Transform parameters from monthly UK annuity quotes (January 2000 to December 2006)
 1-factor Wang transform parameters

We find significant correlation between the market price of mortality risk and stock markets / interest rates

Assumption of independence between risk-adjusted mortality evolution and financial markets seems to be inadequate

© March 2009 On the Pricing of Longevity-Linked Securities

Institut für Finanz- und Aktuarwissenschaften

Empirical Comparison of the Approaches (ctd.)

- We then apply different pricing methodologies to the EIB/BNP-Bond
 - Best estimate valuation
 - Sharpe Ratio calibrated to UK annuity quotes
 - Sharpe Ratio from stock markets
 - 1 factor Wang Transform calibrated to UK annuity quotes
 - 1 factor Wang Transform calibrated to US annuity quotes (Calibration from Lin and Cox 2005)
 - 2 factor Wang Transform calibrated to UK annuity quotes
 - I 2 factor Wang Transform calibrated to US annuity quotes (Calibration from Lin and Cox 2006)

Design of the EIB/BNP-Bond

- Notional = GBP 50m; Pays annual coupons for 25 years
- **Coupons depend on mortality experience of English and Welsh males aged 65 in 2003**

The EIB/BNP-Bond was offered at GBP 540m

8

ifa

Institut für Finanz- un

Empirical Comparison of the Approaches (ctd.)

- Lin and Cox (2006): Risk premium is very high \rightarrow Bond is unattractive
 - Conclusion is based on a Wang Transform approach
- **Cairns et al. (2006): Price seems reasonable**
 - Conclusion is based on an approach similar to an Instantaneous Sharpe Ratio approach
- We "repriced" the bond using the 7 methods above and two hypothetical bonds of the same design but being offered in November 2002 and November 2006, respectively

	11/2002	11/2004	11/2006
Actual	па	540	па
BE	512.80	528.85	548.15
SRUK	520.25	550.33	561.68
SRLOE	555.10	576.16	600.94
1WTUK	527.16	569.67	572.84
1WTLC	544.75	559.42	578.89
2WTUK	526.83	566.71	568.49
2WTLC	530.36	544.36	563.23

- Significant differences between issue dates and 7 pricing models
 - Due to changes in interest rates, mortality projections and Sharpe Ratio / Wang Transform parameter calibrations
- All "risk-adjusting" models result in values that exceed the quoted price
- Quoted price in the middle of best estimate and risk-adjusted valuation
 - → The Bond seems to have been a "good deal" or at least fairly priced if a

Empirical Comparison of the Approaches (ctd.)

If the EIB/BNP-Bond was a fair if not good deal, two questions arise:

- Why did Lin & Cox regard the Bond as too expensive?
 - They used a different yield curve and survival rates based on realized mortality rates in
 2003 as opposed to projections
- Why was it not successfully placed?
 - Based on population as opposed to inureds (basis risk)
 - Fixed maturity of the bond \rightarrow tail risk is not hedged
 - Capital intensive hedge
- → We conclude that the financial engineering and not the pricing was the reason for the failure of the EIB/BNP-Bond.
 - **Therefore, in the final section, we analyzed a call-option-type longevity derivative**

© March 2009 On the Pricing of Longevity-Linked Securities

10

ifa

Institut für Finanz- ur

An Option-Type Longevity Derivative

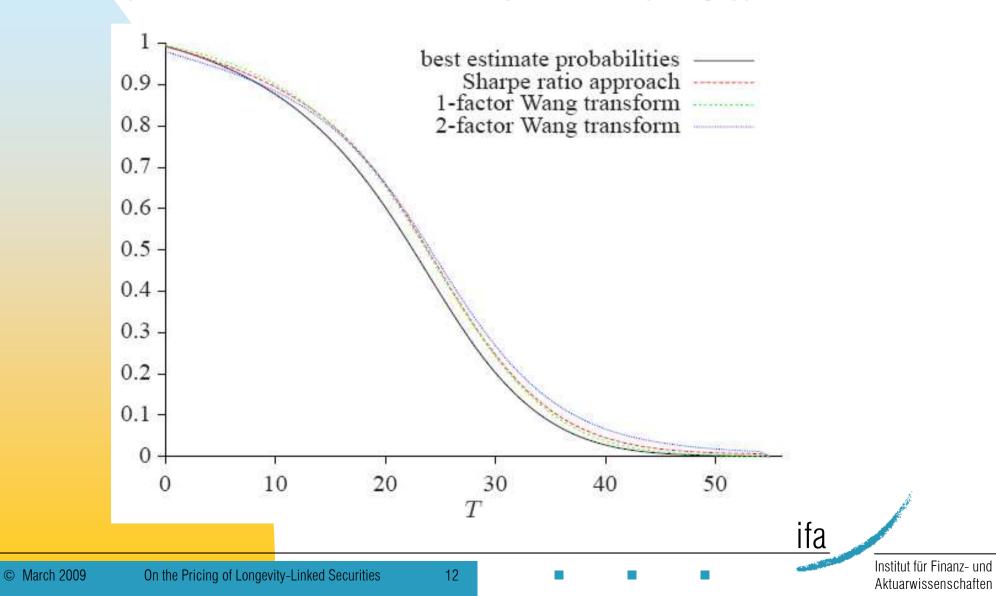
Payoff:
$$C_T = ({}_T p_{x_0} - K(T))^+$$
 with strike $K(T) = (1+a)E_P[{}_T p_{x_0}], a > 0$

- By suitable adjustment of the strike (choice of the parameter a), the insurer can decide, which portion of the risk to keep
- **Such derivatives can be priced within our framework with a Black-type formula (Bauer 2007)**

a		T = 5	T = 10	T = 15	T = 20	T = 25	T = 30
2%	BE	0.00197	0.01513	0.02911	0.03424	0.02759	0.01555
	SRUK (0.00247	0.01943	0.03912	0.04840	0.04122	0.02501
	SRLOE	0.00450	0.03605	0.07968	0.11015	0.10587	0.07515
	1WTUK	0.00422	0.02204	0.03936	0.04666	0.03978	0.02415
	1WTLC	0.00524	0.02473	0.04336	0.05166	0.04495	0.02800
	2WTUK	0.00073	0.01615	0.03679	0.04826	0.04425	0.02982
	2WTLC	0.00063	0.01532	0.03537	0.04633	0.04217	0.02825
5%	BE	0.00024	0.00934	0.02409	0.03082	0.02567	0.01473
	SRUK	0.00033	0.01245	0.03299	0.04413	0.03875	0.02390
	SRLOE	0.00078	0.02547	0.07048	0.10357	0.10194	0.07332
	1WTUK	0.00071	0.01440	0.03321	0.04248	0.03737	0.02306
	1WTLC	0.00097	0.01645	0.03681	0.04721	0.04235	0.02682
	2WTUK	0.00006	0.01006	0.03091	0.04299	0.04167	0.02860
	2WTLC	0.00005	0.00947	0.02964	0.04217	0.03966	0.02706
10%	BE	0.00024	0.00368	0.01726	0.02576	0.02275	0.01345
	SRUK	0.00033	0.00525	0.02442	0.03768	0.03492	0.02216
	SRLOE	0.00078	0.01283	0.05663	0.09316	0.09559	0.07033
	1WTUK	0.00071	0.00628	0.02460	0.03619	0.03362	0.02136
	1WTLC	0.00097	0.00742	0.02757	0.04048	0.03831	0.02495
	2WTUK	0.00006	0.00404	0.02272	0.03756	0.03767	0.02666
	2WTLC	0.00005	0.00375	0.02170	0.03592	0.03577	0.02519

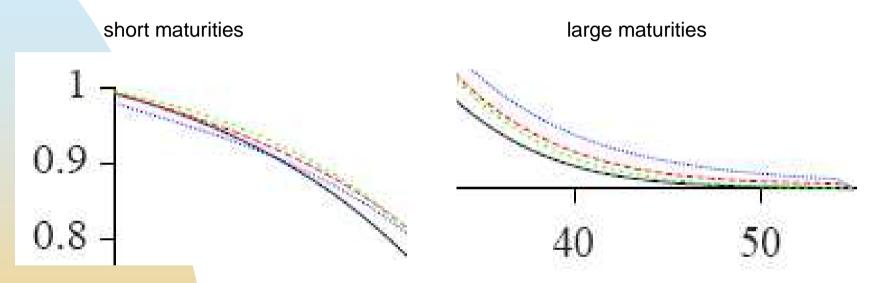
- As expected: 71 in T
- As expected: **** in a
- Sometimes large differences despite calibration to the same data
- 2 questions:
 - Where do these differences come from?
 - Which approach yields the "correct" price?

ifa



© March 2009

On the Pricing of Longevity-Linked Securities


An Option-Type Longevity Derivative

The risk premium allocations differ considerably between the pricing approaches

An Option-Type Longevity Derivative

The risk premium allocations differ considerably between the pricing approaches

- red: Sharpe ratio approach
- green: 1-factor Wang transform approach
- **blue: 2-factor Wan**g transform approach
- Sharpe ratio approach: risk premium proportional to aggregated risk
- Wang Transform: risk premium allocation independent of actual risk → Adequacy of the Wang Transform again questionable

© March 2009

13

Institut für Finanz- und Aktuarwissenschaften

Conclusion

- Overview and comparison of different pricing approaches
- Risk premium implied by the Wang Transform induces inconsistencies if securities on different ages are traded
 - Even if just one security is traded, the "risk premium allocation" appears questionable
- We conclude that currently a "market price of longevity risk" should be derived from annuity quotes
 - Adopting Sharpe Ratios from equity markets appears to have weaknesses
- We identify significant correlation between the market price of longevity risk and stock markets / interest rates
 - Assuming independence between risk-adjusted mortality evolution and financial markets seems to be inadequate
- The EIB/BNP-Bond appears to have been offered at a fair if not good price
 - Reason for failure was financial engineering rather than pricing

14

Institut für Finanz- und Aktuarwissenschaften

mortalityrisk.org

www.mortalityrisk.org

- Exchange plattform for latest papers and results on mortality/longevity risk and modeling
- Run by a Research Training Group at Ulm University
- Please feel encouraged to submit your papers!
- submission@mortalityrisk.org

15

Institut für Finanz- und Aktuarwissenschaften

References

- Bauer, D., 2007. Stochastic Mortality Modeling and Securitization of Mortality Risk. ifa-Verlag, Ulm (Germany).
- Bauer, D., B"orger, M., Ruß, J., Zwiesler, H.-J., 2008. The Volatility of Mortality. The Asia-Pacific Journal of Risk and Insurance, 3: 184–211.
- Bayraktar, E., Milevsky, M.A., Promislow, S.D., Young, V.R., 2008. Valuation of Mortality Risk via the Instantaneous Sharpe Ratio: Applications to Life Annuities. To appear in: Journal of Economic Dynamics and Control.
- Cairns, A.J., Blake, D., Dawson, P., Dowd, K., 2006. Pricing the Risk on Longevity Bonds. Life and Pensions, October 2005: 41–44.
- Friedberg, L., Webb, A., 2007. Life is Cheap: Using Mortality Bonds to Hedge Aggregate Mortality Risk. The B.E. Journal of Economic Analysis & Policy, 7.
- Lin, Y., Cox, S., 2005. Securitization of Mortality Risks in Life Annuities. The Journal of Risk and Insurance, 72: 227–252.
- Lin, Y., Cox, S., 2008. Securitization of Catastrophe Mortality Risks. Insurance: Mathematics
- and Economics, 42: 628–637.
- Loeys, J., Panigirtzoglou, N., Ribeiro, R.M., 2007. Longevity: a market in the making. Working Paper, JPMorgan Global Market Strategies.
- Milevsky, M.A., Promislow, S.D., Young, V.R., 2005. Financial Valuation of Mortality Risk via the Instantaneous Sharpe Ratio. Working Paper, York University and University of Michigan.

16

- Pelsser, A., 2008. On the Applicability of the Wang Transform for Pricing Financial Risks. ASTIN
- Bulletin, 38: 171–181.