The Impact of Medical Cost Inflation and Dynamic Policyholder Behavior on Market Consistent Embedded Value in Health Insurance

Jan-Philipp Schmidt
Marcus C. Christiansen

Session Number: TBR6
Agenda

Motivation

Stochastic Environment

Insurance Company

Dynamic Policyholder Behavior

Results

Conclusion and Outlook
Motivation

▸ What is the shareholder value from long-term insurance contracts?
▸ How do the inflation and medical inflation affect the shareholders value and risk associated with the value?
▸ How is the value affected by dynamic policyholder behavior?

Analysis based on stochastic insurance company model for German private health insurance companies (introduced in Schmidt (2012)).
Framework

Stochastic Environment: (\(\Omega, \mathcal{F}, P\)) prob. space
X_1, \ldots, X_n r.v.
with \(X_i : \Omega \rightarrow \mathbb{R}^T\)
1 \(\leq i \leq n\)

Insurance Company: Cash flows
\(Y = f(X_1, \ldots, X_n)\)

Valuation: Value
e.g. \(\mathbb{E}(g(Y))\)
Agenda

Motivation

Stochastic Environment

Insurance Company

Dynamic Policyholder Behavior

Results

Conclusion and Outlook
Inflation and Medical Inflation in Germany

Analysis of data set from German supervisor (BaFin):

Claim increase: Average annual increase of claim reimbursement (policyholders aged 25-80) for outpatient benefits in all German private health insurance tariffs. Inflation rate: Increase in Consumer Price Index CPI (Germany)
Consider capital market model from Jarrow and Yildirim (2003) with risk factors nominal and real term structure and inflation.

- σ_n, σ_r, σ_I volatility of processes, a_n, a_r mean reversion speed
- (W_n, W_r, W_I) Brownian motion for each risk factor
- Correlations of Brownian motion $\rho_{n,r}$, $\rho_{n,I}$ and $\rho_{r,I}$
- $\vartheta_n(t)$, $\vartheta_r(t)$ functions to fit term structure of interest rates

Medical inflation considered as an additive spread σ on top of the change in the inflation process.

Analysis of impact of inflation and medical inflation by variation of . . .

- . . . medical inflation spread σ
- . . . volatility of inflation process $I(t)$
Agenda

Motivation

Stochastic Environment

Insurance Company

Dynamic Policyholder Behavior

Results

Conclusion and Outlook
Private Health Insurance in Germany

- Whole-life insurance guarantee
- Pricing and reserving similar to life insurance techniques (principle by equivalence, accumulation of actuarial reserve)
- Level premium at beginning of the contract linked to
 - gender
 - age at underwriting
 - risk classification at underwriting
- Insurance company renounces the right of contract cancellation
- Premium development over lifetime of a contract linked to claim and mortality experience in a tariff → Premium adjustment
- Safety loading factor of at least 5% of premium
- Policyholders pay 10% loading on premium until age 60 to accumulate additional reserve for limiting premium increases in case of premium adjustments
Premium Adjustments in German Private Health Insurance

- Annual check of first-order assumptions
 - Claim reimbursement
 - Mortality rates
- Deviation between first-order assumptions and observations above threshold (at least 5%) and deviation not temporarily:
 - Check of all first-order assumptions
 - If necessary: determination of new first-order assumptions
- Adjustment of first-order assumptions at the beginning of the following year based on independent trustee agreement:
 - Adjustment may result in new premium
 - If premium increases: company performs limiting measures (profit sharing)
Impact of Inflation and Medical Inflation on Shareholder Profits

- Premium adjustment allows adjustment of first-order assumptions and in particular adjustments of claim assumptions.
- Aggregation of different surpluses allows balancing of loss from claim development.

Short-term effect: Inflation and medical inflation disadvantageous for shareholders due to negative underwriting surplus (until next premium adjustment).

Long-term effect: Inflation and medical inflation in general advantageous for shareholders due to ‘increased’ insurance coverage.

Which effect dominates?
Agenda

Motivation

Stochastic Environment

Insurance Company

Dynamic Policyholder Behavior

Results

Conclusion and Outlook

Joint IACA, IAAHS and PBSS Colloquium in Hong Kong
www.actuaries.org/HongKong2012/
Dynamic Policyholder Behavior – Introduction

Policyholders’ propensity to exercise options in insurance contracts is influenced by external factors (Kent et al., 2009).

Options of policyholders in German health insurance, e.g.,

- lapse of contract and switch to other insurance company
- tariff switch or change of coverage (e.g. higher deductible)

Policyholder behavior may depend on several factors, e.g.

- age, gender and tariff of policyholder, . . .
- number of premium adjustments, development of premium, . . .
- contract duration, health status, sales channel, . . .
- development of capital market (e.g. term structure of interest rates), . . .
Dynamic Policyholder Behavior – Lapse

- **Policyholders**: Lapse in general disadvantageous in financial terms due to (partial) loss of actuarial reserve.
- **Shareholders**: Lapse rates are part of first-order assumptions in premium and reserve calculation. Impact of lapse is mainly based on those first-order assumptions.

Short-term effect:
- Increase in actual lapse rates: Annual surplus increases

Long-term effect:
- Increase in actual lapse rates: Loss of future profits

Which effect dominates?
Dynamic Policyholder Behavior – Modeling

Data set from German supervisor (BaFin) for male policyholders:

![Graph showing lapse rates](image-url)
Dynamic Policyholder Behavior – Modeling

Based on previous 5 years the lapse rates from the previous slide are adjusted based on the following rule:

Check 1: Number of adjustments?

- ≥ 3
- ≤ 2

Check 2: Premium increase?

- high
 - increase lapse rates by $1 + \ell$
- low
 - no change in lapse rates
 - low
 - decrease lapse rates by $1/(1 + \ell)$

Check 2 compares the premium increase with the change of inflation and medical inflation.
Agenda

Motivation

Stochastic Environment

Insurance Company

Dynamic Policyholder Behavior

Results

Conclusion and Outlook
Results – Medical Inflation (Spread)

Joint IACA, IAAHS and PBSS Colloquium in Hong Kong
www.actuaries.org/HongKong2012/
Results – Medical Inflation (Volatility of Inflation)

PVFP\(_{MC}\) in relation to assets

volatility of inflation process

- threshold 10 %
- threshold 5 %
- threshold 0 %
Results – Dynamic Policyholder Behavior

Parameter of lapse function ℓ

PVFP\textsubscript{MC} in relation to assets

- Threshold 10%
- Threshold 5%
- Threshold 0%

www.actuaries.org/HongKong2012/
Agenda

Motivation

Stochastic Environment

Insurance Company

Dynamic Policyholder Behavior

Results

Conclusion and Outlook
Conclusion and Outlook

- Inflation and medical inflation have a significant impact on shareholders value.
 - Long-term effect dominates: A high medical inflation (spread on top of CPI) may *increase the shareholders value*.
 - Impact of inflation volatility is non-linear.
- Dynamic policyholder behavior affects shareholders value.
 - Long-term effect dominates: A higher policyholder sensitivity decreases shareholders value slightly in our setting.
 - Policyholder behavior influenced by many more external and internal factors.
- Further *empirical studies* necessary to determine the importance of different factors on policyholder behavior in health insurance (work in progress).
Thank you very much for your attention.

Jan-Philipp Schmidt
University of Ulm
Institute of Insurance Science
89069 Ulm
GERMANY
jan-philipp.schmidt@uni-ulm.de
References

