

Extension, Compression, and Beyond

A Unique Classification System for Mortality Evolution Patterns

- September, 8th 2015
- Martin Genz
- Joint work with Matthias Börger and Jochen Ruß
- Institute for Finance and Actuarial Sciences and University of Ulm, Germany

Agenda

Classification of mortality evolutions in the past

Shortcomings

A new classification framework

Requirements

Details

Application

Summary

Key question

Life expectancy increases in many countries.

But changes in life expectancy (and other typically used statistics) are only a consequence of the underlying change of the age distribution of deaths.

Key question: How does the shape of these curves change over time?

Shortcomings

- There exists a variety of literature on the question how the age distribution of deaths changes over time. We have identified some shortcomings there:
 - Different notions for certain observations have been established but often these scenarios were defined imprecisely, e.g.:
 - compression (≈ vertical deformation of the deaths curve)
 - extension (≈ horizontal deformation of the deaths curve)
 - rectangularization (≈ survival curve becomes more and more rectangular)
 - **—** ...
 - Some of these scenarios were supposed to be **mutually exclusive**, but there are counterexamples.
 - Several often used statistics are insufficient or even misleading.
 - Often effects caused by the choice of a certain age range under observation were not considered.
- In our paper, we give some examples for each of these shortcomings.

Shortcomings

Shortcomings

Exclusiveness of scenarios:

E.g., **compression** and **shifting mortality** are assumed to be opposing scenarios.

Neither compression nor shifting mortality prevail.

Compression and shifting mortality coexist.

Shortcomings

Shortcomings

The choice of the age range matters:

The age range should be chosen depending on the question at hand.

A new classification framework

Requirements

In light of these shortcomings of previous approaches, we postulate that a new classification system should...

- ... capture every observed mortality evolution,
- ... allow for mixed scenarios,
- ... be applicable to different age ranges,
- ... build on statistics that can be feasibly calculated and easily interpreted,
- ... be extendable by additional components if needed.

Our new approach:

- We use the deaths curve as basis for the framework.
- We define 4 characteristics of the deaths curve for a unique classification of observed mortality evolutions.

A new classification framework Details

A new classification framework Details

Each scenario is defined by a **4-dimensional vector** where each component can have three specifications:

component	attainable states
Μ	right shift / neutral / left shift
UB	extension / neutral / contraction
DoI	compression / neutral / decompression
d(M)	concentration / neutral / diffusion

This allows for 3⁴=81 different scenarios (some of which might not be relevant in practice)

- The framework satisfies the requirements:
 - Each observed mortality evolution can uniquely be classified in one of those scenarios.
 - Pure and mixed scenarios are included.
 - The framework can be applied to age ranges starting at any given age up to UB.
 - Feasible and easily interpretable statistics are used.
 - The framework is extendable by additional statistics if needed.

In the paper, we discuss different issues in estimating these statistics, e.g. how to estimate UB.

A new classification framework

Application: The mortality evolution of Swedish females

age range 10 to UB:

Scenario Component	Statistic Used	1860s	1870s	1880s	1890s	1900s	1910s	1920s	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
1	м		right	-shift			r	eutra	l –			right-shift					
2	UB			exter	nsion			neutral					extension				
3	Dol		neu	tral			compression					neu	tral	con	npress	sion	
4	d(M)	neu	tral			concentration							tral	concentration			

Each component of the vector develops independently from the others (no redundant information).

We observe mixed scenarios (rather the rule than an exception).

age rang	e 60 to	UB:
----------	---------	-----

Scenario	Statistic	1860s	1870s	1880s	1890s	1900s	1910s	1920s	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
component	Useu																
1	м		right	-shift			r	neutra			right-shift						
2	UB	extension						r	eutra	ıl	extension						
3	Dol	de	ecomp	oressio	on	compression											
4	d(M)	neutral						concentration			n	diffu	sion	cond	centra	tion	

We observe different scenarios for different age ranges (age range matters).

In the paper, we analyze this application in more detail.

Summary

In the paper, we have...

- ... identified shortcomings of previous approaches for classification of mortality scenarios,
- ... derived requirements for a new framework,
- ... identified 4 central **characteristics** of the deaths curve,
- ... derived a new classification framework based on these characteristics, which
 - ... builds on clear scenario definitions,
 - ... provides a unique classification for each mortality evolution,
 - ... allows for mixed scenarios,
 - ... is applicable for different age ranges,
- ... **applied the framework** to concrete data.

Thank you for your attention!

Martin Genz (M.Sc.)

+49 (731) 20 644-264 m.genz@ifa-ulm.de

