

Modeling lapse rates using machine learning

Ulm Actuarial Session - Convention A

Lucas Reck

- September 19th, 2022
- joint work with Andreas Reuß and Johannes Schupp

Agenda

Introduction

Method

Model Selection

Interactions

Conclusion

References

Introduction

Motivation for a lapse model

Lapse risk is one of the key risk drivers of life business.

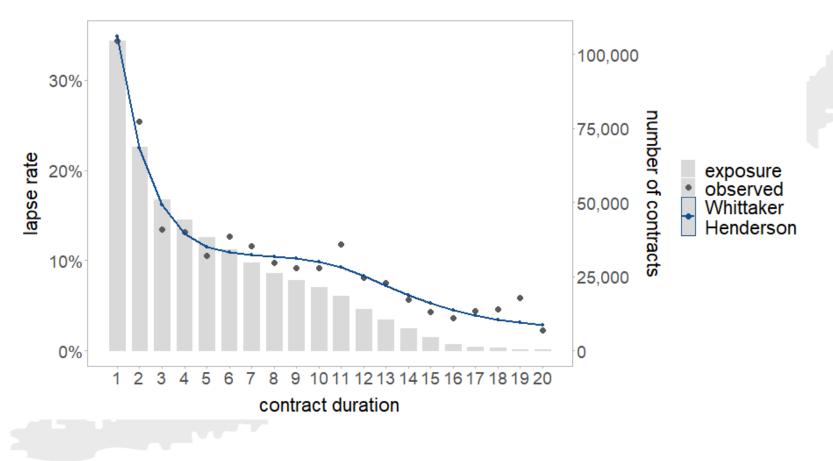
- significant impact on the cash flow profile and the profitability of life insurance business
 - relevant for Asset-Liability-Management and liquidity risk
- Market consistent valuations are based on best estimate future lapse rates.

e.g. Solvency II regulation (also specific risk module that addresses lapse risk)

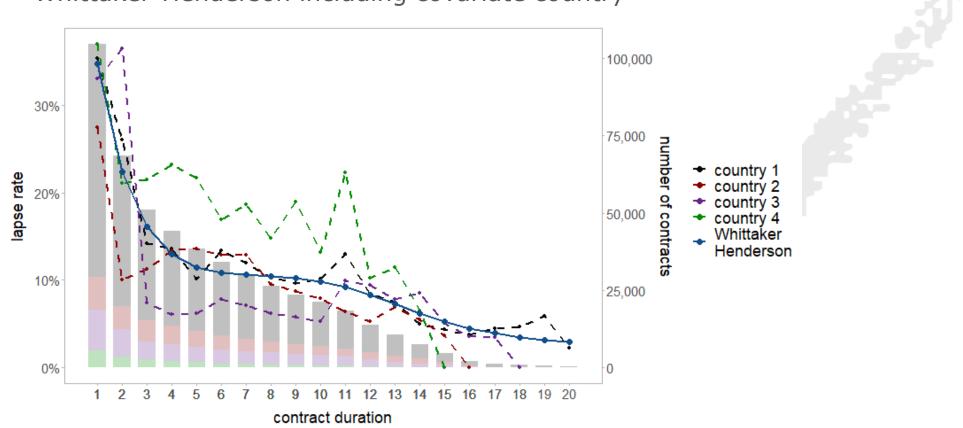
Introduction Common practice

Whittaker-Henderson (univariate smoothing algorithm)

Prespecified covariate (e.g. contract duration)



Introduction Problem of the common practice



Whittaker-Henderson including covariate country

The insurance portfolio is typically divided into sub-portfolios based on contract characteristics like type of contract, country, or distribution channel.

Introduction Motivation for the Lasso

- Multivariate models using all covariates simultaneously.
- GLM lapse model: Eling and Kiesenbauer (2014) and Barucci et al. (2020)
 - number of coefficients \rightarrow considerable effort
 - risk of under- or overfitting
- Data Science methods can be a solution. We use the Lasso approach to derive a lapse model that
 - is calibrated automatically and purely data driven,
 - but remains fully interpretable,
 - is able to detect hidden structures in the covariates.
- We analyze and combine different extensions of Lasso to satisfy the needs of a practical application.

Introduction Data set

Application

- We use data from a European life insurer operating in four countries (runoff portfolio).
- We use 13 covariates and a total sample size of 501,251.
- covariates include standard data of an insurance company, e.g.:
 - contract duration, entry age, sum insured, country, contract type,...

Method Logistic regression

- Logistic regression
 - Y_i is Bernoulli distributed.
 - $\blacksquare E(Y_i) = p(x_i)$
 - Transform $p(x_i)$ and assume a linear relationship:

$$logit(p(x_i)) = ln\left(\frac{p(x_i)}{1 - p(x_i)}\right) = \beta_0 + \beta_1 x_{i1} + ... + \beta_m x_{im}$$

Likelihood function:

$$L(\beta, X, y) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{(1 - y_i)}$$

Method Lasso

Lasso (Least Absolute Shrinkage and Selection Operator)

Include a regularisation term:

min
$$-\log(L(\beta, X, y)) + \lambda \sum_{j=1}^{J} g(\beta_j)$$

Shrinkage-Factor: $\lambda \ge 0$ Controlling the impact of regularisation and goodnessof-fit

Regularisation: Penalty term for the coefficients Regular Lasso: $g(\beta_i) = \sum_{i=1}^{p_j} |\beta_{j,i}|$

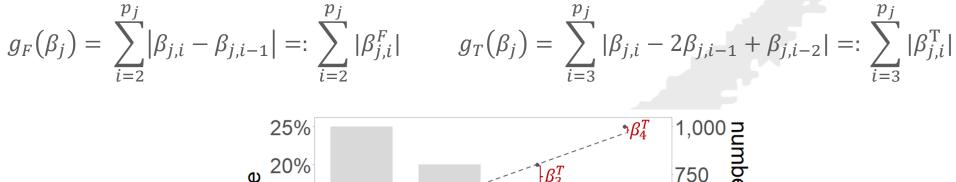
Method

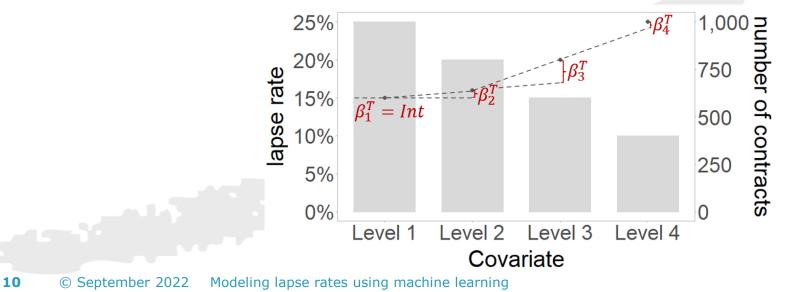
Extension: Fused Lasso and Trend Filtering Tibshirani and Taylor (2011)

Now we extend the Lasso: min $-\log(L(\beta, X, y)) + \lambda \sum_{j=1}^{J} g_j(\beta_j)$

- **Regular Lasso:** $g_R(\beta_j) = \|\beta_j\|_1 = \sum_{i=1}^{p_j} |\beta_{j,i}|$
- Fused Lasso:

Trend Filtering:





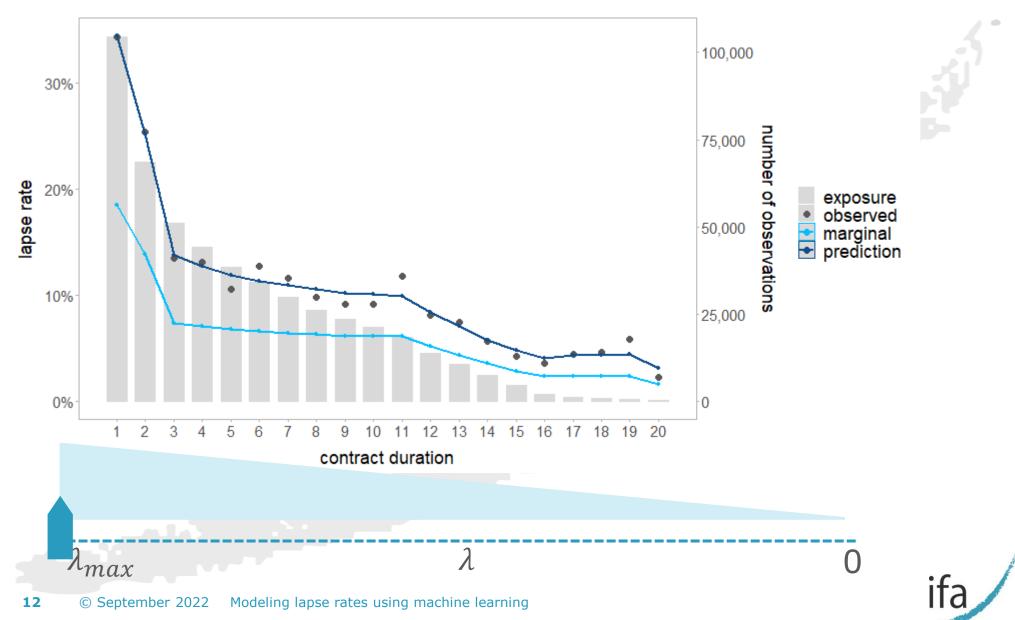
Model Selection Preparation

- R interface for H2O
- Assign a penalty term for each covariate:
 - Contract duration \rightarrow trend
 - $\blacksquare Entry age \rightarrow fused$
 - $\blacksquare Sum insured \rightarrow trend$
 - $\bullet Country \rightarrow regular$

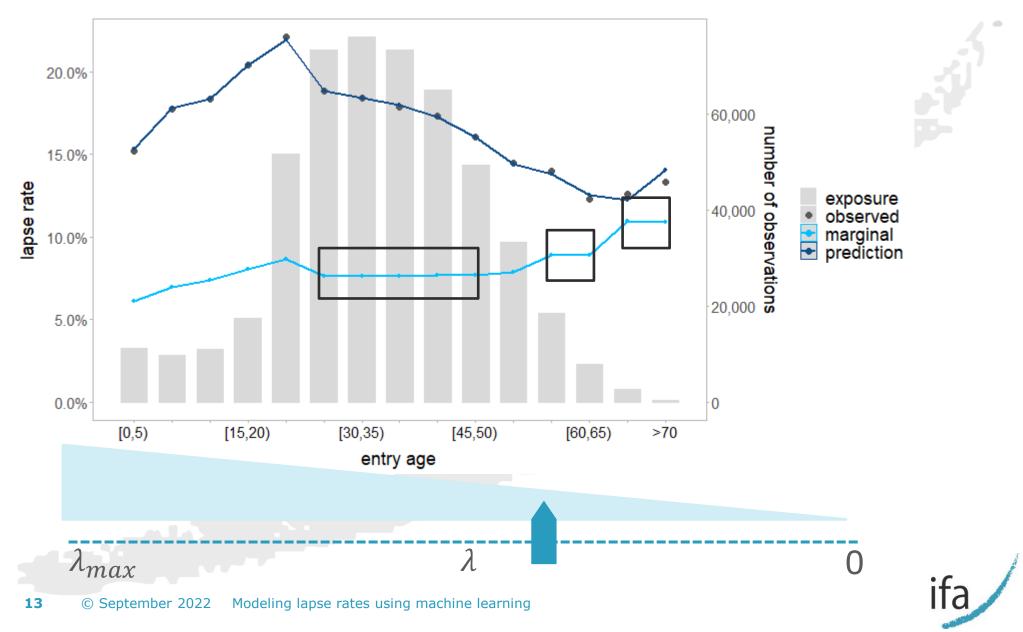
....

- Hyperparameter λ is based on 5-fold cross validation with one standard error rule.
- Residual Deviance as measure for goodness of fit

Model Selection Trend filtering for contract duration

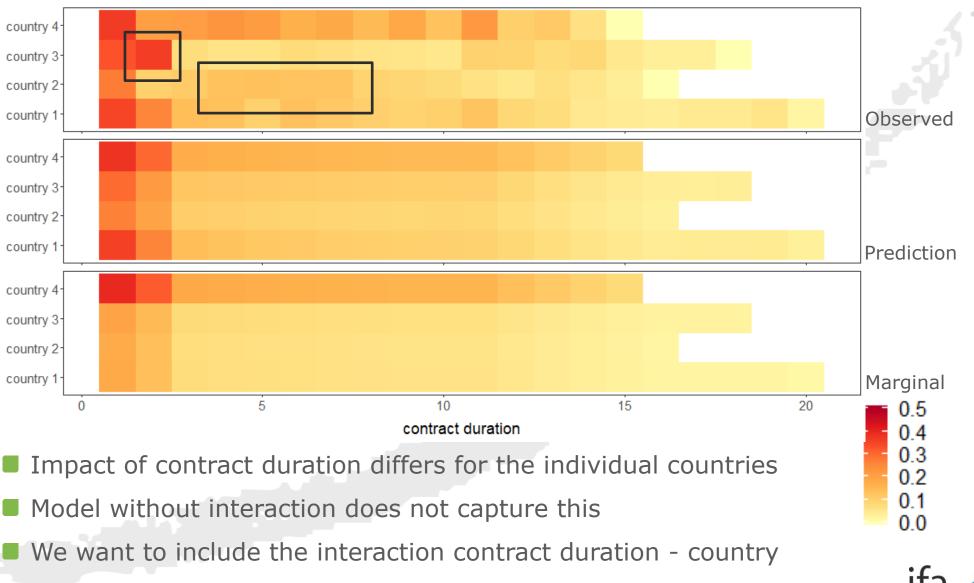


Model Selection Fused Lasso for entry age



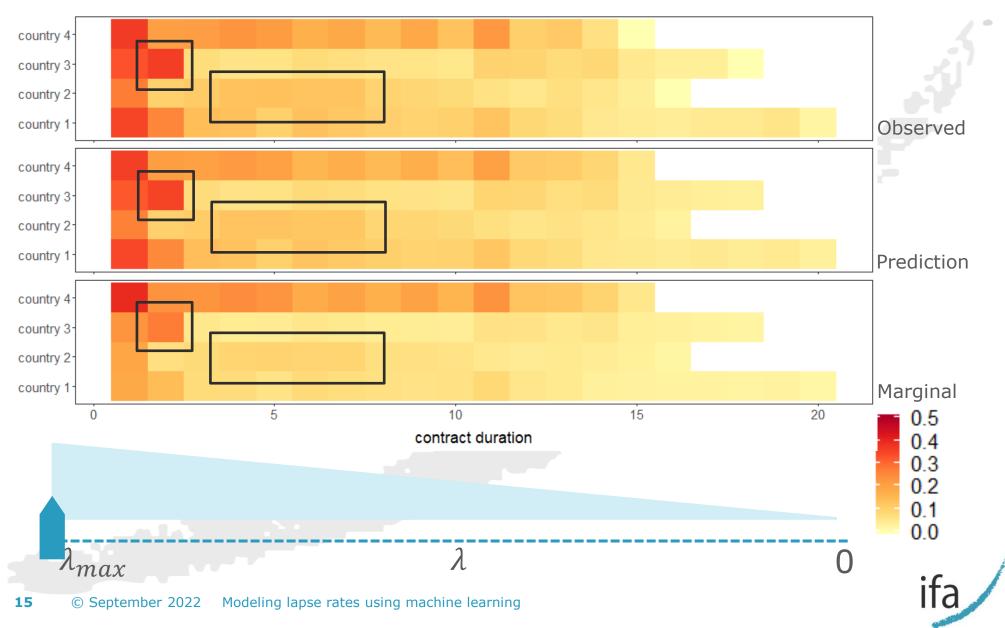
Interactions

Motivation – Problem of the model without interactions



Interactions

Model with the interaction contract duration - country



Conclusion Results

Model	Number of parameters	1 - Deviance/ Null Deviance
Intercept Only	1	0%
Whittaker-Henderson	20	6.7%
Lasso without interaction	44 (out of 77)	12.1%
Lasso with interaction	79 (out of 145)	12.9%

10

- Advantages The resulting model
 - is multivariate and estimates lapse rates using all covariates simultaneously,
 - is calibrated automatically and purely data driven,
 - remains fully interpretable,
 - is able to detect hidden structures in the covariates.

Conclusion

Further results and outlook for future research

Sensitivity analysis:

- Base Model
- "Screening" vs "Selecting" property of the Lasso
- Penalty types
- Macroeconomic covariates
- Elastic net approach
- Offset model for interactions
- Outlook for future research

Model	Number of parameters	1 – <i>D/D</i> ₀
Lasso without interaction	44	12.1%
"Screening" Lasso	30	12.1%
Lasso all regular	70	12.2%
Macroeconomic	72	13.3%
Elastic net, $a = 50\%$	55	12.2%
Offset model	64	12.7%

- Other machine learning approaches (random forest, neural networks, etc.)
- Multistate model (active, paid-up, lapse)

References

- Eling, M. and Kiesenbauer, D. (2014). What Policy Features Determine Life Insurance Lapse? An Analysis of the German Market. Journal Risk and Insurance 81: 241-269
- Barucci, E., Colozza, T., Marazzina, D. and Rroji, E. (2020). The determinants of lapse rates in the Italian life insurance market. Eur. Actuar. J. 10, 149 - 178
- Tibshirani, R. and Taylor, J. (2011). The solution path of the generalized lasso. The Annals of Statistics 39(3), 1335-1371
- Devriendt, S., Antonio, K., Reynkens, T., & Verbelen, R. (2018). Sparse regression with multi-type regularized feature modeling. Insurance: Mathematics and Economics, 96, 248–261.
- Kiesenbauer, D. (2012). Main Determinants of Lapse in the German Life Insurance Industry. North American Actuarial Journal 16:1, 52–73.
- Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67: 91–108.

Contact

Lucas Reck

+49 731 20644-239 l.reck@ifa-ulm.de

Andreas Reuß

+49 731 20644-251 a.reuss@ifa-ulm.de

Johannes Schupp

+49 731 20644-241 j.schupp@ifa-ulm.de

