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ABSTRACT

In the present paper we introduce a new model for the pricing of implicit options in life insurance contracts.
Many models used so far allow only for one source of uncertainty. Since many options – in particular within
unit-linked contracts – depend on the stochastic behavior of both interest rates and the underlying assets, we
develop a model that includes both risks. Since implicit options in life insurance contracts are often American or
Bermuda-style options, we introduce a multivariate tree structure, where the asset price risk is modeled by a
binomial tree according to the Cox-Ross-Rubinstein model, and interest rates are modeled by a trinomial tree
according to the Hull-White model. We give some possible applications of the model and explain how our
previous work is included in the model as a special case.

1. INTRODUCTION

An implicit option is the right to change some product features or to choose between some alternatives at some
time during the term of a life insurance policy. Some well known examples are the so-called guaranteed
insurability options, where the insured person has the right to increase the death benefit at the occurrence of
certain events (like marriage, birth of a child, etc), the lump sum option in deferred annuities, where the insured
person can choose between a lump sum and a lifelong annuity (see [Di/Ru 99] for a detailed analysis of this
option), or the flexible expiration option, where the insured can terminate his contract at any time during a
predefined interval (see [Di/Ru 00] for a detailed analysis of this option).

Such options can have an extreme impact on the cash flow that results from the policy. Hence, they can bear
significant financial risks that are often not taken into account when the policy is priced. In spite of these risks,
options in life insurance contracts are becoming more and more popular since they make the product more
competitive. Furthermore, in some countries, e.g. Germany, changing a contract by an option that was given at
the beginning is sometimes preferable to a ‘real’ change of the contract because of tax reasons.

Some of these options can be regarded as financial options – either derivatives on the underling assets or on
interest rates. The right to ‘sell’ a lifelong annuity and receive a  lump sum instead is e.g. essentially equivalent
to a European put option on a coupon bond.1 Such interest rate sensitive options are of particular interest in the
German life insurance market, since most German life insurance companies try to give their policy-holders the
same return every year, independent of what they earn on their investment. This smoothening is achieved by
accumulating hidden reserves when the markets perform well, and using these reserves to distribute the same
profits every year, even if the markets perform bad. Hence, there are times when the interest earned on life
insurance contracts is significantly higher than the rates earned in the bond markets, and vice versa. Policy-
holders might use implicit options to profit from these effects. Thus, a detailed analysis of such options and the
risk they impose on the insurance company is required.

Since market shares of unit-linked contracts have risen dramatically over the last years, analyzing the
corresponding options in unit-linked contracts is necessary, too. However, the situation is more complicated
here, since we not only need to model the interest rate behavior but also the price of the underlying asset.

Our paper is organized as follows: In Section 2 and 3, we introduce the Cox-Ross-Rubinstein model and Hull-
White model, respectively. . In Section 4 we introduce our new multivariate tree model and give some possible
applications in Section 5. Section 6 closes with a short summary and an outlook for further research. In Section 7
and 8, we list the references and give some details on the computations done within our multivariate tree model,
respectively.
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2. THE COX-ROSS-RUBINSTEIN MODEL

In [Co/Ro/Ru 79], Cox, Ross, and Rubinstein introduced their discrete-time model for the pricing of options. It is
particularly popular when dealing with non-European style options because of its simplicity. The stock price is
modeled by a binomial tree. In this section, we will give a brief description of this model and how the so-called
principle of risk-neutral-valuation is applied within the model.2

Let us consider a non-dividend-paying stock. Suppose our observation starts at time 0=t and we consider time-
steps of length 0>∆t . Furthermore, we let S denote the price of the stock at the beginning. In each of the small
time intervals, the stock price can either move up or down, that is, it can change to Su or Sd, with 1>u  and

1<d . In the risk-neutral world, the probability for moving up will be denoted by )(S
up . Thus, the probability of a

down movement is )()( 1 S
u

S
d pp −=  (cf. Figure 1).

Figure 1: Stock price movement in time t∆  under the binomial model
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The parameters u, d, and )(S
up  are determined such that both the mean and the variance of the stock price during

a time interval of length t∆  in the binomial tree match their theoretical values. This is where the principle of
risk-neutral-valuation comes into play. It means that any security dependent on the stock price can be valued on
the assumption that the world is risk-neutral. That is, for the purpose of valuing an option, we can assume that
the expected return from all traded securities is the risk-free interest rate. Furthermore, future cash flows can be
valued by discounting their expected values at the risk-free interest rate which we will denote by r.

As a result, we get
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where σ  denotes the  stock price volatility. These equations can be simplified to
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As a third equation, Cox, Ross, and Rubinstein propose

1−= du . (3)
Equations (1), (2), and (3) imply (cf. [Hu 97])
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2 Cf. e.g. [Du 96] or [Mu/Ru 97].
3 Here, terms of higher order than t∆  are ignored. The exact solutions can e.g. be found in [Hu 97].
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Because of equation (3), the tree is recombining (i.e. an up movement followed by a down movement leads to
the same stock price as a down movement followed by an up movement). In general, the node ),( ji  corresponds
to the time ti∆  with a stock price of jijdSu −  with ij ,...,1,0= . Note that (3) is used in computing the stock price
at each node of the tree in Figure 2 (e.g. SudSu =2 ).

Figure 2: Binomial tree of the stock price

The valuation of an option on this stock is then done by the so-called method of backward induction, beginning
at the time of maturity T of the option. The value of the option at T is known. For example, a put option on the
stock is worth [ ]0;max TSX − , where TS  is the stock price at time T and X is the strike price of the option. In a
risk-neutral world, the value of the option at some time Tti <∆<0 can be computed as the expected value (using
the risk-neutral probability )(S

up ) of the option at time ti ∆+ )1(  discounted for a period t∆  at the risk-free rate r.
If it is not a European-style option, it is necessary to check at each node whether early exercise is preferable to
holding the option for a further time period t∆ . By working backwards through the tree like this, the value of the
option at time zero is eventually obtained.

The same method can be used to price options on dividend-paying stocks, indices, currencies, and futures
contracts (see [Hu 97] for details).

Cox, Ross, and Rubinstein also showed in [Co/Ro/Ru 79] that a special limiting case of their model coincides
with the Black-Scholes model for option pricing, where the stock price is given by the process
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3. THE HULL-WHITE MODEL

In [Hu/Wh 90], Hull and White introduced their model for the term structure. In this section, we give a short
introduction to this one-factor, no-arbitrage model for the short rate which is assumed to follow the Itô-process
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with constant 0, >σa .

This model includes mean reversion, that is, at time t, the short rate )(tr  reverts to at /)(θ  with mean reversion
rate a. Hence, for large values of )(tr , there is a negative drift of )()( tart −θ  that pulls the short rate back to the
time dependent drift term at /)(θ . Similarly, for small values of )(tr , the short rate is pulled up by the drift.

Since the model of Hull and White is a no-arbitrage model, it can be fitted to any given term structure by
adjusting )(tθ .

                                                
4 Cf. [Bl/Sc 73].
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A positive aspect of the Hull-White model is that – even when there exist no closed form solutions (as is the case
with American or Bermuda-style options) – it can easily be implemented. In [Hu/Wh 94], Hull and White
propose the use of a trinomial tree. Its advantage over a binomial tree is that it offers one more degree of
freedom that is helpful in realizing mean reversion.

Figure 3: Branching in trinomial tree

(a) (b) (c)

Usually, the tree branches as in Figure 3(a). If the short rate is small, the tree will branch off as in Figure 3(b).
That reflects the mean reversion which implies a stronger upward drift. In case the short rate is rather large, the
branching pattern as shown in Figure 3(c) will be used. Therefore, the tree will have a structure as shown in
Figure 4.

Figure 4: Trinomial tree of the short rate

In [Hu/Wh 94], the authors give a criterion for the step length r∆  of the short rate in the tree (depending on the
length of the time steps t∆ ). They also give a criterion that specifies the point in time when the branching
patterns given in Figure 3(b) and 3(c) will be used first and the tree will stop growing vertically (cf. Figure 4).
This not only reflects the mean reversion of the model but also has the advantage that the dimension of the tree is
much smaller than that of a binomial tree.

We will not go into all the details of constructing and calibrating this tree but only give an idea about the
different steps of this procedure. For the complete technical details we refer the reader to [Hu/Wh 94].

In a first step, the tree is constructed for the simple process )()()( ** tdWdttartdr σ+−= . This process is
symmetric around 0* =r  and its increments are normally distributed. In a second step, the difference process

)()()( * trtrt −=α , that is, dttattd ))()(()( α−θ=α , is used to compute the values of r(t). This means that in
every node we compute the interest rate for the next t∆  period in the tree. However, this is not the instantaneous
short rate r, but it can of course be computed from it (cf. [Hu 97]). Together with the explicit formula of bond
prices within the model, we are able to compute the prices of zero bonds (and thus the entire term structure) in
every node of the tree.
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In order to compute the values of the short rate, the transitions probabilities in each node ),( ji  to all its possible
succeeding nodes need to be specified first. They not only depend on the position of the node within the tree, but
also on the model parameters θ  and σ . According to [Hu/Wh 94], they are chosen such that both the expected
change and the expected variance of the short rate for the next time step t∆  in the tree fit the corresponding
values under the risk-neutral measure. As a third condition, the sum of all three transition probabilities has to be
one. In the case of the standard branching shown in Figure 3(a), the probabilities are given by (cf. [Hu /Wh 94])
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Similarly, if the branching has the form shown in Figure 3(b), the probabilities are
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Finally, for the branching of Figure 3(c), the probabilities are
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So if we let ti ∆*  denote the point in time where the interest rate tree uses the non-standard branching pattern
shown in Figure 3(b) and 3(c) for the first time, then for { }l,2,1,0∈i  and { }iiiij ~,1~,,0,,1~,~ −+−−∈ ll  with

[ ]*;min~ iii = , the node ),( ji  in the tree corresponds to time ti∆  with a short rate of ( )tirj ∆α+∆ .5

The valuation of any security using this tree is analogous to the valuation using backward induction in a
binomial tree as described in the previous section.

4. TRIBINOMIAL MODEL

In order to analyze implicit options in unit-linked contracts we need to combine the model for the interest rate
with the model for the stock price. Thus, we have
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(4)

with two (in general correlated) Wiener processes )(1 tW  and )(2 tW .

Since we want to be able to price options that can be exercised not only at a single point in time, it seems to be
natural to combine the two tree structures described above into one single tree, allowing for correlation. We will
call this combined tree a tribinomial tree, which is a discrete version of (4).

As a consequence, at each node in the new tree there are six possible succeeding nodes. In the standard case,
they correspond to a combination of a movement of the stock (up or down) and a movement of the interest rate
(up, down, or no change), as illustrated in Figure 5 (a).

                                                
5 The exact condition for *i  can be found in [Hu/Wh 94].



Similar to the trinomial tree of the short rate, we have a different branching pattern when interest rates are very
low, i.e. the tree branches according to Figure 5 (b), or very high, i.e. the tree branches according to Figure 5 (c).

Figure 5: Branching in tribinomial tree

Since this tree has three dimensions, each node can be characterized by some triple ),,( kji , with { }�,2,1,0∈i ,

{ }iiiij ~,1~,,0,,1~,~ −+−−∈ �� , and { }ik ,,2,1,0 �∈ , with [ ]*;min~ iii =  as introduced in the previous section.
Here, the node ),,( kji  corresponds to time ti∆  with a short rate of ( )tirj ∆+∆ α  and a stock price of ikk dSu −

(cf. Sections 2 and 3).

Furthermore, we will denote the transition probabilities in node ),,( kji  by ),,( kjipµν , with { }dmu ,,∈µ  and
{ }du,∈ν . In order for the tribinomial tree too be consistent with both a given trinomial tree of the short rate and

a given binomial tree of the stock price, these probabilities have to satisfy all of the following equations:
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µ  and ),()( kip S
ν  refer to the probabilities of the trinomial tree for the short rate and the binomial

tree for the stock price, respectively (cf. Sections 2 and 3).
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In order to simplify the notation, we will drop the index ),,( kji  of the probabilities. Furthermore, we will use
),( jiRR =  as the random variable of the short rate at node ),,( kji  with rjiR ~),( = . Similarly, we will use
),( kiSS =  as the random variable of the stock price at node ),,( kji  with skiS ~),( = . The relative change in the

stock price over a period of t∆  will be denoted by ∆S/S. Note, that we have
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In order to specify the model, we need two more equations. One further condition is given by the correlation
between the interest rate process and the relative change in the stock price.6 If ρ̂  denotes a given estimate of this
correlation (e.g. from market data), we use
                                                
6 Since the stock price process has a drift and the interest rate process follows a mean reversion, it makes no
sense to model the correlation between r and S. A frequent assumption in existing literature is, however, that the
return of the stock (∆S/S) and the short rate have a constant correlation (usually assumed to be negative).
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Thus, depending on the three cases of Figure 5, we have7
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In order to find unique solutions for the six probabilities, we need one more equation. Therefore, we introduce
the condition that the second moment of the interest rate in each node ),,( kji  is the same, independent of the
behavior of the stock price. That is, the expected value of 2R  should be the same for both an up and a down
movement of the stock price over the next t∆  time period, i.e.
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Again, we get a different equation for each of the three cases of Figure 5:
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0)(~)()~()()2~( 222 =−+−∆++−∆+ dddumdmuuduu pprpprrpprr (11c)

Therefore, in any of the three cases from Figure 5, we need to solve the equations (5), (6), (7), and (8), together
with (10a), (10b), (10c), and (11a), (11b), (11c), respectively. The results in the case of Figure 5(a) are:
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In the case of Figure 5(b):
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7 The computations can be found in Appendix 8.1.
8 This condition, of course, is rather arbitrary, as is e.g. the condition 1−= du  in the Cox-Ross-Rubinstein model.
The idea is, that we assume the volatility of the interest rate process to be uninfluenced by movements of the
stock price. In the model, however, we prefer the second moment over the variance, since in this case, the
equations (11a), (11b), and (11c) are linear in the probabilities ddmduddumuuu pppppp  and , , , , , .
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Finally, in the case of Figure 5(c):
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For all cases, ( )2
)( R⋅µ  and ( )R2

)(⋅σ  denote the expected value of 2R  and the variance of R , respectively, in the

case of branching according to Figure 5(·). Furthermore, ( )S
S∆σ2  denotes the variance of S

S∆ .9

With these formulas, it is rather simple to implement a general tree model for the pricing of derivatives that
depend on both interest rates and some asset price.

5. APPLICATIONS

The model allows a variety of applications in the area of implicit options in life insurance contracts. First of all,
for contracts where the assets of the insured person develop in a deterministic way (as e.g. can be assumed for
non-linked contracts in Germany), we let the stock price volatility Sσ  be zero and the model coincides with the
model used in [Di/Ru 99] and [Di/Ru 00].

More interesting applications can be found in the area of single-premium unit-linked contracts. Consider for
instance the lump sum option in deferred single premium unit-linked annuities. In this kind of contract, the
insured invests a single premium into a fund. After the deferment period he has the right to either receive a
lifelong, non-linked annuity (often calculated with a rate of interest already guaranteed at the beginning of the
deferment period) or a lump sum. Of course, this lump sum option can be considered a put option on a coupon
bond10 exercisable at the end of the deferment period. Both, the amount of the annuity that is ‘sold’ when
exercising the put and the lump sum, i.e. the exercise price that is received when exercising the put, depend
heavily on the performance of the fund during the deferment period. Furthermore, the value of the bond depends

                                                
9 Their exact formulas are given in Appendix 8.2.
10 The coupon bond represents the lifelong annuity.



on the term structure at the end of the deferment period. Hence, this option can only be valued within a
combined model for the interest rate and the asset process.

Whilst the option described above could also be evaluated by a Monte-Carlo approach in a continuous model (cf.
(4)), this is not possible, if the insured has the right to either choose the lump sum or the lifelong annuity at any
time during a certain interval (e.g. between age 55 and 65). In this case, the option becomes a Bermuda-style
option. However, it can still easily be analyzed within our model.

Furthermore, the model can be applied when pricing the value of guarantees in guaranteed unit-linked contracts.
There exists a variety of literature on this topic.11 However, if the contract specifies a guarantee at different
dates, our model seems to be more feasible than the models considered so far. It could e.g. be used for the
pricing of single premium guaranteed unit-linked contracts with flexible expiration. Here, the insured has the
right to choose between the net asset value of some underlying fund investment and a deterministic lump sum,
e.g. the payback of his single premium (perhaps including some guaranteed rate of interest), at several times (e.g.
annually between age 55 and 65).

6. SUMMARY AND OUTLOOK

In the present paper we have introduced a multivariate tree model for the pricing of derivatives depending on
some underlying asset and the term structure of interest rates. The model is rather easy to implement and allows
for a variety of applications in the area of implicit options in life insurance contracts, in particular American or
Bermuda-style options in single-premium unit-linked contracts.

A drawback of the model is the fact, that it can not handle regular premium contracts since in that case the
binomial tree will not be recombining any more.12

The model includes all the properties of both, the Black/Scholes (or Cox/Ross/Rubinstein) and the Hull/White-
model. Next steps in research will be the implementation and calibration of the model and the pricing of several
options. It will be interesting to analyze the value and the sensitivity with respect to input parameters like
volatilities and interest rate levels of such options that are often included for free in life insurance contracts.

A challenge in the implementation of the model will be the fact, that the model obviously requires the same step
length for both trees. Thus, optimal step lengths for the individual processes (as given for the interest rate tree in
[Hu/Wh 94]) will in general differ. Hence, finding a suitable step length for the combined tree might require
some new ideas.
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8. APPENDIX

8.1 Correlation between interest rate and relative change in stock price

The correlation between the interest rate R and the relative change in the stock price 
S
S∆  can be computed by
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For the expected value and the variance of the interest rate R over the next time interval t∆  we have to
distinguish the three different cases of Figure 5. In case of Figure 5(a), we have
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Summarizing all this, we have in the case of Figure 5(a)
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Similarly, in the case of Figure 5(b), we get
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Thus, in the case of Figure 5(b), we get
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Also, for the case of Figure 5(c),
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Finally, in the case of Figure 5(c), we have
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8.2 Formulas for expected values and variances

The formulas of the transition probabilities in the tribinomial tree use some abbreviations for the expected values
and variances for the different types of branching. We state their full formulas here:
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