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ABSTRACT 

 
Newly introduced Government-subsidized pension products in Germany are required to contain a 
promise by the seller to provide a “money-back guarantee” at the end of the term. The client is also 
given the right to stop paying premiums at any time (paid-up option). In this case, the amount of all 
premiums paid must also be guaranteed by the seller at maturity, no matter when the client stopped 
paying the premiums. Previous analyses of guarantees in such government-subsidized pension prod-
ucts have ignored this additional option. Within a generalized Black/Scholes framework, we analyze 
the value of the paid-up option for different products, market scenarios, and client behavior. Our re-
sults indicate that the paid-up option significantly increases the value of the money-back guarantee. 
Furthermore, we find that reducing volatility by shifting the client’s assets from stocks to bonds as 
maturity approaches is a suitable means of reducing the risk resulting from the “pure” money-back 
guarantee but much less effective in reducing the risk resulting from the paid-up option. 
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1. Introduction 

 

Newly introduced government-subsidized pension products in Germany (so called Riester-

Products) are required to contain a promise by the seller1 to provide a “money-back guaran-

tee” at the end of the term. Hence, at minimum, the premiums paid by the client have to be 

available at the end of the accumulation phase (T). Furthermore, the client is given the right to 

stop premium payments at any time. In this case, the amount of all premiums paid also must 

be guaranteed by the seller in T, no matter when the client stopped paying the premiums. Un-

der the law, clients may become party to more than one subsidized contract, as long as the 

sum of the premiums paid into all contracts within each year does not exceed certain limits.2 

Thus it is possible for a client to stop paying premiums on one contract and immediately take 

out a new contract (by the same or another provider). However, the money-back guarantee 



   
2 

 

does not apply any longer if the client terminates the contract before the end of the accumula-

tion phase (T) and takes the money out of the contract. In this situation, the provider of the 

government-subsidized pension product has to pay out only the market value of the assets 

which can be lower than the sum of the premiums paid into the contract. 

In discussions about the money-back guarantee in German government-subsidized pension 

products, it had been often argued by product providers that––especially due to the long-term 

nature of this type of contract––the value of the investment at the end of the accumulation 

phase will almost certainly exceed the sum of all premiums paid and, hence, no specific risk 

management measures to ensure the money-back guarantee are necessary. However, for 

subsidized pension products offered by mutual funds, Gründl, Nietert, and Schmeiser [2004] 

have shown that even in the case where the client pays all premiums until maturity and there 

is a constant volatility, this argument is generally not true. Furthermore, the authors show that 

the money-back guarantee––which can be characterized as a put option on the underlying as-

sets––can be of substantial value and does not seem to be adequately protected by current 

regulations. 

In this paper, we consider the additional risk that can result if the client chooses to stop 

premium payment at some time during the life of the contract, which we refer to as the client 

making the contract paid-up. We look only at the case of subsidized pension products offered 

by mutual funds. If a contract is made paid-up at a point when the asset value of the contract 

is particularly low, it is possible for the client to speculate against the provider. In financial 

terms, this means that the client can choose at any time to change the original guarantee into a 

new kind of guarantee. The original guarantee is a put option on the assets in the contract and 

the assets to be bought by future premiums. The strike of the put option is the sum of all pre-

miums scheduled to be paid throughout the life of the contract. The new guarantee, however, 

is a put option on the assets currently in the pension plan. The strike of this new put option is 

the sum of all premiums paid so far. The term of both put options is the remaining time to 

maturity. The option to exchange the original guarantee for the new guarantee is given to the 

client for free, although its fair value may be positive. 

Looking at our numerical results under different scenarios, we doubt that mutual funds are 

truly aware of the value of the guarantee they have given to their clients for free.3 However, it 

is, of course, very important to know the value of the money-back guarantee so as to price the 

contract appropriately. In an arbitrage-free market without transaction costs, the value of the 

put option is the price of any risk management measure that ensures the money-back guaran-

tee. Hence, the seller of such subsidized pension products must receive the value of the put 

option from the clients so as to be able to finance adequate risk management measurers. 

Our paper is organized as follows: in Section 2, we describe the current situation in Ger-

many, explain why new subsidized pension products have been introduced, and describe the 

main features of such products. In Section 3, we describe the model with which we analyze 

the value of the options. We assume a generalized Black/Scholes framework, allowing for a 

deterministic but possibly time-dependent term structure of interest rates, and assuming that 

the underlying assets follow a geometric Brownian motion with a deterministic but time-de-

pendent volatility. The time-dependent volatility allows us to analyze if and by how much the 
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embedded risks can be reduced by shifting from stocks to bonds during the life of the con-

tract. 

In Section 4, we derive methods for pricing the embedded options. First, we assume that 

the client pays all premiums from the start of the contract until maturity (i.e., we replicate the 

approach by Gründl, Nietert, and Schmeiser [2004]). As mentioned above, the money-back 

guarantee can be characterized as a put option on the underlying asset. Hence we price this 

put option using standard risk-neutral valuation techniques. Since we consider only contracts 

with a regular premium payment, no closed-form solutions for the option price exist (cf., e.g., 

Lachance and Mitchell [2003]). Thus we derive our results using Monte Carlo methods. 

Second, we analyze how much the value of the embedded option is increased if we also al-

low the client to make the contract paid-up. In this context we analyze three different cases of 

client behavior and compare them to the situation outlined above, where we assumed that the 

investor would keep up the contract until the end of the savings term. As a point of reference, 

we start with the case where the investor takes out a contract and immediately stops premium 

payment after having paid the first premium. He then takes out a new contract, pays exactly 

one premium on the new contract and then stops making payments, and so forth. Hence, we 

have a series of forward-start put options on the underlying asset. Following a result in Russ 

[1999], we derive a closed-form solution for the value of these options and calculate the 

option values under different scenarios. Since the value of the money-back guarantee reaches 

its maximum in this situation, this case reveals the best strategy from the client’s point of 

view. 

We then consider the case where the investor stops premium payment at most once. First, 

we assume that the investor—by mere chance—discovers the optimal date to stop premium 

payment. In reality, this is not a possible strategy because it would require knowing the future, 

which in mathematical terms means that the strategy would not be adapted to the correspond-

ing filtration. Nevertheless, this analysis quantifies the worst-case risk for the provider and 

should be taken into account in calculating the appropriate price. For valuation, we return to 

the standard principles of risk-neutral evaluation and assume that the investor makes the opti-

mal decision based only on the available information. Finding this optimal strategy for exer-

cising Bermuda-style options in a Monte Carlo framework is quite tricky. We solve this opti-

mal stopping problem by using a result given in Douady [2002], describe our resulting Monte 

Carlo algorithm, and calculate the option values under different scenarios. 

In the third and final case, we again allow the premium payment to be stopped at most 

once. However, we make the additional assumption that the investor, after having exercised 

the option, takes out a new contract into which the premiums are then paid until maturity. The 

methods used for this case are the same as above. 

In Section 5, we display and analyze the results calculated by applying the methods ex-

plained in Section 4. All calculations are performed for several different underlyings and mar-

ket scenarios. This sensitivity analysis helps identify which kind of product and which client 

behavior is most risky under which market scenario. 
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2. Government-subsidized pension schemes in Germany 

 

Massive problems in the state pension system caused by social and demographic changes 

have made private retirement provisions increasingly important in Germany. To make invest-

ing in private pension schemes more attractive, various financial incentives (tax relief and di-

rect subsidies to the premiums) have been granted by the German government since the 

beginning of 2002. In principle, individuals are free to choose any pension contract offered by 

private financial institutions. However, the mentioned financial incentives are available only 

if certain criteria are met.4 One of the most important of these criteria is the money-back 

guarantee, as described above. As a consumer protection measure, sellers of private pension 

schemes are required to disclose all fees included in the premiums. Another requirement is 

that, generally, the investor must be at least 60 years of age at the end of the accumulation 

phase, at which point the investment typically is transferred into a lifelong annuity. 

Two important points need explanation before continuing with our analysis. First, there is 

no legally required minimum contract duration for this new class of subsidized pension 

schemes; however, in practice, no contracts are offered with an accumulation phase that is 

less than five years. Second, according to the law,5 it is strictly forbidden for the manager of a 

mutual fund to use the investment of one group of clients to finance the money-back guaran-

tee of another group of investors. 
 

 

3. The model framework 

 

3.1 Analysis at the contract level 

 

We assume that all premiums paid by the client are invested in the underlying assets of the 

contract. For the sake of simplicity, we ignore administration or acquisition charges. Further-

more, we assume that the term to maturity is T years, NT ∈ , and that all premium payments 

are made annually.6 The value of the underlying asset at time t is denoted by St. If a client 

takes out such a contract at 0=t  and pays an amount P each year, the value of the assets after 

t years (i.e., immediately before paying the ( )stt 1+  premium) is given by 

 

 ∑
−

=ν ν
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1

0

t
t
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S

S
PV .                          (1) 

 

At the end of the term (i.e., at Tt = ), the client has paid T premiums (at 10 −= T,,t … ) and 

the value of the assets in the contract is 
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Since the provider has given an asset value guarantee, the payoff to the investor (i.e., the 

value of the contract in T) is 
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+−+== ][};max{ TTTT VTPVTPVL .                      (3) 

 

Thus, the money the client receives is the value of the underlying assets plus the payoff of a 

put option on this value with strike TP. 

If the client chooses to make the contract paid-up at time τ=t  (i.e., before paying the 

( )1τ +
st

premium), the value of the assets at maturity is given by 
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However, the value of the contract at maturity is given by 

 

 +−+== ][};max{ **** ττττ ττ TTTT VPVPVL .                   (5) 

 

Again, this is the sum of the value of the underlying assets plus a put option on this value with 

strike Pτ . 

However, if the client cancels at τ=t  and takes the money out of the contract, the 

money-back guarantee is no longer applicable. In this case, the payoff to the client at τ  is the 

value of the assets −Vτ . 

 

3.2 The model for the economy 

 

We assume a finite time horizon T and a complete, frictionless, and continuous market. We 

assume the value St to follow a geometric Brownian motion (cf., e.g., Hull [2003]): 

 

 ( ) ( ) .t
t

t

dS
t t dW

S
= µ +σ                            (6) 

 

Here, Wt denotes a Wiener process on some probability space (Ω,Σ,P) with a filtration F, to 

which W is adapted. Both µ and σ are deterministic but can be time dependent. For given S0, 

the solution of Equation (6) is given by 
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and, hence, we have 
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s
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2
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which is easily used in Monte Carlo algorithms. 

The short rate process )(tr  is assumed to be deterministic and to fit the current, risk free 

term structure of interest rate, i.e., 
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 ( )2

1 2
1

2 1 ,( ) ,
t

t t
t
r t dt t t f= −∫                       (9) 

 

where 
21 t,t

f  denotes the continuous, annualized forward rate observed at time 0=t  for the pe-

riod of time 210 tt <≤ . In our numerical examples, however, we let consttr =)( . 

In this setting, according to the Radon-Nikodym theorem, there exists a probability meas-

ure Q such that the discounted price process 
t

ds)s(r

Se
t

∫− 0  is a Q-martingale (cf., e.g., Harrison 

and Kreps [1979]). The price at time t of any option considered here with payoff OT is then 

given by 

 

 Tt,FOeEO tT
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= ∫− 0 ,                 (10) 

 

where EQ[.|Ft] denotes the conditional expected value with respect to Q under the information 

available at time t.7 As a consequence of this transformation of measure, )(tµ  is substituted 

by r(t) in Equations (6), (7), and (8) and, hence, we have the risk-neutral process 
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or 
 

 

2

1 1

( )
( ) ( )

* * 2
1 ,

t t

s
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s
r s ds s dW

t tS S e − −

σ
− + σ

−
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respectively, which will be referred to by St in what follows. 

 

 

4. Evaluation of the embedded options 

 

In this section we describe our methodology for pricing the embedded options under different 

scenarios. We derive formulas where possible, and explain the Monte Carlo algorithm where 

no closed-form solutions exist. 

 

4.1 Results without the paid-up option 

 

We start with the assumption that the client does not have the right to make the contract paid-

up. In this case, the only embedded option is the asset value guarantee. This has been priced 

in Lachance and Mitchell [2003], as well as in Gründl, Nietert, and Schmeiser [2004]. For a 

constant volatility, constant interest rate, and monthly premium payments, our model and the 

model used in Gründl, Nietert, and Schmeiser [2004] coincide. The price at time t of the em-

bedded option is given by 
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 [ ]
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We calculate the price 0: Π=Π  by standard Monte Carlo methods using Equation (12) for 

generating paths of the underlying. 

 

4.2 Exercising the paid-up option annually 

 

We now assume that the investor makes the contract paid-up after each premium payment and 

takes out a new contract one year later. Thus, only one premium P is paid into each contract 

and the guaranteed maturity value of each contract is P. In this case, the sum of the payoffs of 

the contracts at maturity is given by 
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Hence, the payoff is the value VT of the assets in the contracts plus the payoff of T so-called 

forward-start put options with a payoff 
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The price at time 0 of such a forward-start performance option is denoted by )T(

νΠ  and given 

by 

 

 ( )ν−⋅⋅=Π ν

−

ν
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ν

T,,pPe
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where pt(α,β,γ) denotes the time t value of a European put option on the underlying with spot 

price α, strike β, and time to maturity γ. Thus, we have 
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with 
 



   
8 

 

 

2

2

2

2

2

1

2

2

2 2

ln ( )
,

ln ( )
,

( ) ,

1
( ) .

2

u

t
v

t

t
v

t

t

t

x

r s ds
d

v

r s ds
d

v

v s ds

x e du

+γ
α
β

+γ
α
β

+γ

−

−∞

+ +
=

+ −
=

= σ

Φ =
π

∫

∫

∫

∫

 

 

A proof in the standard Black/Scholes framework follows from 
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The generalization for time-dependent volatility and short rate follows from a result in Russ 

[1999, Section 3.2.2] and the put-call parity. 

With these results, the value of the embedded option is given by 
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The German market offers products without up-front charges, i.e., all charges are included as 

a flat rate percentage of each premium. Thus a client following the strategy explained in this 

section would not pay higher charges than a client paying all premiums into one contract. 

Hence, this is the best strategy from the investor’s point of view. 
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4.3 Exercising the paid-up option once without entering a new contract 

 

In this section we consider the case where the investor exercises the paid-up option just once. 

Since the option is a Bermuda-style option, finding the optimal exercise date is not trivial. To 

analyze the worst case from the product provider’s point of view,8 we first assume that the in-

vestor makes the contract paid-up at some point of time and by mere chance chooses the opti-

mal date τ in the following sense: 

 

 { }* *

1
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+ +
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   − = −   

t

T T
t T

P V tP Vττ .                  (19) 

 

In this case we denote the price of the option by )(

K

1Π  (the index (1) indicates that only one 

contract is involved and K indicates that we assume the client to know the future; where we 

assume the client to follow a more realistic strategy (see above), the index K is substituted by 

S). The option price )(

K

1Π  is given by: 
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This can be calculated by a simple Monte Carlo algorithm, where 
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is used as a Monte Carlo estimate for the option price. Here, sim denotes the number of 

simulations and for each sim,,i …1= , a path of the underlying is generated and thus the val-

ues t*)i(

Tv  are realizations of τ*
TV . 

Finding the optimal exercise date for Bermuda-style options is an optimal stopping prob-

lem (cf., e.g., Anderson [1999]). The value )(

K

1Π  calculated above is not the price of the option 

but, rather, an upper bound, as finding the exercise date would require knowledge of future 

events. Thus, the random variable τ  that describes when to exercise the option is no stopping 

time and hence not an admissible strategy. Admissible strategies only use information known 

at the present time, i.e., τ  has to be adapted to the filtration F. In Douady [2002], it is shown 

that whenever the underlying model for the economy has only one source of uncertainty, an 

optimal admissible strategy for exercising Bermuda-style options can be found by looking 

only at the exercise value of the option. In our case, this is apparently equivalent to 

considering only the current value of the underlying assets −
tV . 

We call a subset 1
11

−
− ⊆××= T

T RKKK …  an exercise strategy. Following this strategy, 

the option is exercised at time t if and only if the option has not been exercised before and 

tt KV ∈− , i.e., 

 

 ( ) 11 =−
tK
V

t
 and ( ) 01 =−

sK
V

s
 { }11 −∈∀ t,,s … .               (22) 



   
10 

 

The value of the option under the assumption that the investor applies some given strategy K 

is given by 

 

 ( ) [ ] 







−τ=Π

+τ−∫
0

1 0 FVPeEK *

T

ds)s(r

Q

)(

T

,                 (23) 

 
where 
 

 { }{ }inf 1, , 1 : −= ∈ − ∈… t tt T V Kτ                   (24) 

 

or T=τ , if tt KV ∉−  { }11 −∈∀ T,,t … . This value can be calculated by Monte Carlo methods 

using the algorithm given in Appendix A. 

Douady [2002] and Anderson [1999] describe the so-called exercise value threshold me-

thod (EVTM) to approximate an optimal strategy, i.e., a strategy that maximizes )()1( KΠ  by 

Monte Carlo methods. They show that there exists an optimal strategy of the form exercise if 

and only if for the first time tt cA ≥ , where 
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and Rct ∈  t∀ . In our setting this translates to a strategy ( ] ( ]11 00 −××= Tk;k;K …  for some 

1,,1, −=∈ TiRki … . We use a backward induction algorithm given by Douady [2002] to de-

termine the optimal values 11 −Tk,,k … . We adapted this algorithm into our setting and used it 

to determine an optimal strategy. We denote the value of the option using an optimal adapted 

strategy by )(

S

1Π . The resulting algorithm is given in Appendix B. 

 

4.4. Exercising the paid-up option once and entering a new contract 

 

We now look at the case where, after having exercised the paid-up option, the investor takes 

out a new contract into which the premiums are then paid until maturity. The value t*

TV  of the 

assets and hence the value t*

TL  of the first contract at maturity, if the client chooses to make 

the contract paid-up at time τ=t , is given in Section 3.1. If the client then starts paying 

premiums for a second contract and continues the payments until maturity, the value t*

TW  of 

the assets of this second contract is given by 
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The value of the investor’s portfolio at maturity is given by 
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This is the value of the underlying assets plus two put options. 

Again, we first assume that the investor by chance chooses the optimal point in time for 

exercising the paid-up option in the following sense: 
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In this case, the price of the option is given by 
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and can be calculated by a simple Monte Carlo algorithm, where 

 

 ( )0
( )(2) ( )* ( )*

1
1

1
max ( )

+ +−

≤ ≤
=

 ∫    = − + − −    
 

∑
Tsim
r s ds

i t i t

K T T
t T

i

e tP v T t P w
sim

π           (30) 

 

is used as a Monte Carlo estimate for the option price. As before, sim denotes the number of 

simulations and for each sim,,i …1=  a path of the underlying is generated and thus the val-

ues t*)i(

Tv  and t*)i(

Tw  are realizations of τ*
TV and τ*

TW . 
Once again, τ  is no stopping time. We thus define an exercise strategy as a subset 

1
11

~~~ −
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T RKKK …  and exercise the paid-up option if and only if 
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V ∉−  { }11 −∈∀ T,,t … . This value can be calculated by Monte Carlo methods 

using the algorithm given in Appendix C. 

Again we use EVTM to maximize )
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exercise the paid-up option if and only if for the first time tt c~A
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and Rc~t ∈  t∀ . As shown above, this translates to a strategy ( ] ( ]11 00 −××= Tk
~
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… . Once 

more, we use a backward induction algorithm to determine the optimal values 11 −Tk
~
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which is given in Appendix D. We denote the value of the option using an optimal adapted 

strategy by )2(
SΠ . 

 

 

5. Numerical results 

 

In this section we display and analyze some numerical results based on the methods devel-

oped in Section 4. We consider the following contracts, where regular annual premiums are 

paid over the whole term of the contract: 

 

• Contract 1: Annual premium payments of 8,400 €; term = 5 years. 

• Contract 2: Annual premium payments of 4,200 €; term = 10 years. 

• Contract 3: Annual premium payments of 2,100 €; term = 20 years. 

• Contract 4: Annual premium payments of 1,200 €; term = 35 years. 

 

For each of these contracts, the sum of the premiums paid at maturity is 42,000 € if the client 

has not previously made the contract paid-up. 

As mentioned before, we assume that the client’s premiums are invested in mutual funds. 

The funds are assumed to invest in stocks and bonds. There are products available where all 

clients invest in the same fund, independent of the remaining term to maturity. Such products 

are modelled with a constant volatility. The law allows such funds to have a stock portion of 

up to 100%. 

There are many products offered in Germany where the clients’ assets are redeployed to 

funds with a higher bond portion (and thus a lower volatility) as time to maturity decreases. 

Our model takes such products into consideration by assuming that the volatility of the un-

derlying asset is decreasing. Table 1 gives an overview of the used underlyings’ volatilities in 

our numerical examples. 

 
Table 1. Volatility structure (in percent) of the underlyings used in the calculations 

Time to maturity in years 35–21 20–16 15–11 10–6 5 4 3 2 1 

Underlying 1 20 20 20 20 20 20 20 20 20 

Underlying 2 15 15 15 15 15 15 15 15 15 

Underlying 3 10 10 10 10 10 10 10 10 10 

Underlying 4 20 20 20 20 20 20 15 15 10 

Underlying 5 20 20 15 10 5 5 5 5 5 

Underlying 6 20 15 15 15 13 11 9 7 5 
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Tables 2–5 show the option prices for the four contract forms and the six different underly-

ings, given a (constant) short rate of 5%. Again, Π  stands for the price of the put option with-

out the paid-up option, )T(

SΠ  denotes the case where the paid-up option is exercised annually, 

and )(1Π  (or )( 2Π ) represents the price if the paid-up option is exercised once without (or 

with) entering a new contract. In the latter case, we distinguish the option price )(

K

⋅Π  (the 

investor discovers the optimal date to stop premium payments by mere chance) from )(

S

⋅Π  

(value under the optimal admissible stopping date; calculated with the exercise value 

threshold method (EVTM)). 
 

Table 2. Option prices (in €) in the case of Contract 1 (annual premium payments of              
   8,400 €; term = 5 years) 

 Π  
)T(

SΠ  )(

K

1Π  
)(

S

1Π  )(

K

2Π  
)(

S

2Π  

Underlying 1 2,080.33  2,548.72 2,251.86 2,093.57 2,490.54 2,339.03 

Underlying 2 1,172.46 1,527.22 1,275.18 1,184.35 1,467.55 1,343.68 

Underlying 3 425.04 629.27 465.46 433.16 596.97 526.86 

Underlying 4 956.79 1,360.55 1,135.92 1,008.44 1,293.76 1,166.11 

Underlying 5 20.73 65.31 22.88 21.70 60.83 44.96 

Underlying 6 134.36 269.25 199.76 173.68 244.81 201.25 

 

Table 3. Option prices (in €) in the case of Contract 2 (annual premium payments of                                                                                 
   4,200 €; term = 10 years) 

 Π  
)T(

SΠ  )(

K

1Π  
)(

S

1Π  )(

K

2Π  
)(

S

2Π  

Underlying 1 1,674.17 2,201.47 1,837.69 1,692.67 2,098.98 1,909.47 

Underlying 2 833.79 1,196.81 919.52 848.33 1,128.57 991.89 

Underlying 3 207.21 401.87 229.40 212.89 360.01 286.56 

Underlying 4 958.07 1,459.37 1,155.72 1,031.37 1,321.49 1,172.16 

Underlying 5 10.15 54.66 23.07 20.11 44.20 29.40 

Underlying 6 188.96 387.98 289.73 254.47 335.14 281.53 

 
Table 4. Option prices (in €) in the case of Contract 3 (annual premium payments of                   
   2,100 €; term = 20 years) 

 Π  
)T(

SΠ  )(

K

1Π  
)(

S

1Π  )(

K

2Π  
)(

S

2Π  

Underlying 1 956.98 1,397.60 1,073.15 978.12 1,298.77 1,145.18 

Underlying 2 380.82 652.95 427.12 392.76 599.33 497.36 

Underlying 3 54.44 164.79 61.06 57.01 148.05 99.36 

Underlying 4 663.05 1,063.25 789.73 707.68 941.72 810.92 

Underlying 5 18.70 106.65 68.90 57.25 77.53 61.85 

Underlying 6 123.65 302.88 178.49 158.59 223.94 179.38 
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Table 5. Option prices (in €) in the case of Contract 4 (annual premium payments of                     
   1,200 €; term = 35 years) 

 Π  
)T(

SΠ  )(

K

1Π  
)(

S

1Π  )(

K

2Π  
)(

S

2Π  

Underlying 1 381.35 639.46 432.03 392.19 571.86 482.64 

Underlying 2 106.43 250.81 119.74 110.17 215.79 161.20 

Underlying 3 4.41 49.06 5.15 4.83 37.98 19.97 

Underlying 4 305.88 521.04 365.24 327.30 462.26 388.79 

Underlying 5 31.20 120.62 87.66 75.70 93.42 77.98 

Underlying 6 68.81 175.99 108.44 91.26 139.60 110.52 

 

It is obvious from examining Tables 2–5 that the options are of substantial value. In absolute 

terms, the highest value (2,548.72 €) occurs with Contract 1 and Underlying 1, where the in-

vestor exercises the paid-up option annually. Here, the value of the option is more than 6% of 

the sum of the premiums paid. 

The value is the highest when the client chooses to exercise the paid-up option annually. 

For example, Contract 4, Underlying 3 shows that the difference in relative terms can be very 

large between the situation where the investor chooses to exercise the paid-up option annually 

and the situation where all premiums are paid until maturity ( )T(

SΠ  = 49,06 €; Π  = 4,41 €). 

Tables 2–5 also illustrate that there is always a substantial additional risk for the seller of 

subsidized pension products if the client chooses to stop premium payment (at least once) at 

some time during the life of the contract. Of course, the value of the pure money-back guar-

antee (Π ) is always increased by the paid-up option.  

Obviously, given a constant volatility of the underlying, the option prices will ceteris pari-

bus decline as the term of the contract increases. On the other hand, less volatility for a given 

contract duration will c.p. lessen the value of the options. However, if there is a volatility 

structure that declines as the contract nears its term (Underlyings 4–6), the value of the option 

is still substantial—especially if the client may make the contract paid-up. It is particularly 

interesting that the value of the pure money-back guarantee (Π ) decreases quickly when we 

have a decreasing volatility structure, whereas the additional value resulting from the paid-up 

option ( ,)b(

a Π−Π  { } { }T,,b,K,Sa 21∈∈ ) decreases more slowly or can even increase. For 

example, for Contract 1, the value Π  decreases by 54% when Underlying 1 is replaced by 

Underlying 4. However, Π−Π )T(

S  decreases by merely 14% and Π−Π )1(
K  increases by more 

than 4%. Thus, shifting the client’s assets from stocks to bonds (i.e., reducing volatility) as 

maturity approaches is appropriate for reducing the risk resulting from the pure money-back 

guarantee, but much less effective in reducing the risk resulting from the paid-up option. 

As illustrated in Section 4.3, the maximum price of the option per contract is obtained if 

the client exercises the paid-up option once and by mere chance chooses the optimal exercise 

date τ  (the option price denoted by )(

K

1Π  in Tables 2–5).9 Of course, realistically, not very 

many, if any, clients will find the optimal exercise date by mere chance. Also, most likely, 

only a very few clients will use the exercise value threshold method (EVTM), as described in 

Section 4.3, to approximate an optimal stopping strategy (the option price denoted by )(

K

2Π  in 

Tables 2–5). Real human beings may have many reasons for stopping payment of premiums, 
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reasons that have very little to do with any sort of optimal stopping decisions. The client may 

be in financial straits or simply might want to spend the money on something else. As these 

government-subsidized pension products have been available for only three years, there is as 

yet no empirical information regarding whether observed and optimal stopping decisions co-

incide. However, even if empirical stopping decisions information were available, we are not 

convinced that it would actually be a good estimator for the future. As time goes by, and con-

sumers become more familiar with these products, it can be assumed that clients will have 

more and better information to help them make optimal stopping decisions. One can even 

imagine specialist consulting agencies that will advise clients on the optimal point at which to 

stop paying premiums into the contract. Although not all clients, even in the future, will be so 

well-informed or well-advised, we still strongly believe that sellers of subsidized pension 

products should pay close attention to our findings because it is entirely possible that after a 

market drop, disappointed clients will typically make a contract paid-up at a point when the 

asset value of the contract is particularly low, which is not so different from an optimal stop-

ping decision. 

Therefore, sellers of government-subsidized pension products must make assumptions 

about client behavior concerning the exercise of the option in order to adequately price the 

per-contract money-back-guarantee. Assuming clients to follow some kind of optimal strategy 

could be one approach. Including the concept of exercise probabilities into the standard risk-

neutral evaluation methodology, as proposed by Dillmann and Russ [2003], could be an alter-

native approach that allows considering non-financial aspects of the exercise behavior.  

However, from the seller’s viewpoint, it is not sufficient to price the contract and merely 

receive the value of the put option from the customer. Instead, the received option premium 

has to be used to finance adequate risk management measurers. In an arbitrage-free market 

without transaction costs, the value of the put option is exactly the price of any risk 

management measure that ensures the given guarantee, including, for example, a hedging 

strategy, an insurance contract, contingent capital, or an increment of the company’s equity 

capital. 

 

 

6. Summary 

 

In Germany, newly introduced government-subsidized pension products are required by law 

to contain a promise by the seller of a “money-back guarantee” at the end of the term. Hence, 

at minimum, the premiums paid into the contract have to be available at the end of the accu-

mulation phase. The client is also given the right to stop paying premiums at any time (paid-

up option), in which case, the amount of all premiums that have been paid must also be guar-

anteed by the seller at maturity, regardless of when the client stopped paying the premiums. 

Previous analysis focused on the pure money-back guarantee, i.e., the asset value guaran-

tee if all premiums are paid as scheduled (cf. Gründl, Nietert, and Schmeiser [2004]), and it 

was found that this option can have a significant value. Our analysis confirms this finding. 

Furthermore, we focused on the paid-up option, i.e., the asset value guarantee if the client 
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stops paying premiums at some time during the term of the contract, and found that this addi-

tional option, which is required by law, has a significant additional value. 

Many product providers try to reduce their risk by reducing volatility as time to maturity 

decreases. Our analysis shows that this is a suitable strategy for reducing the risk resulting 

from the pure money-back guarantee, but much less effective in reducing the risk resulting 

from the paid-up option. 

In mutual funds, the embedded options are often given away for free; hence, the contracts 

generally are not priced appropriately, because the seller of such subsidized pension products 

needs to receive the value of the put option from the clients in order to finance adequate risk 

management measures. 

We expect knowing and acting on (in the pricing context) the fair value of embedded op-

tions will become increasingly important. The recent case of Equitable Life, a British life in-

surer that got in financial trouble because of improperly hedged embedded options, demon-

strates that it is necessary to quantify and manage the risk associated with such options. 

 

 



   
17 

 

Appendix A: Calculation of the value ( )K)(1Π  of the option under the assumption that 

the investor applies some given strategy 
1

11
−

− ⊆××= T

T RKKK …  

 

1. Generate random paths i

T

i S,,S …1  of the underlying for sim,,i …1=  using Equation 

(12).10 

2. Let += RKT .11 

3. Calculate )(iτ  ( sim,,i …1= ) as follows: 

a. Let .i 1=  

b. Let .t 1=  

c. Calculate the value of the assets in the contract 
1

0

−
−

=

=∑
it
t

t i

S
V P

Sν ν

 using the i-th 

random path of the underlying generated in Step 1. 

d. If tt KV ∉− , increase t by 1 and go to Step 3.c. 

e. Let .)( ti =τ  

f. If simi < , increase i by 1 and go to Step 3.b. 

4. For each i, calculate 
( )

( )
1

*

0

−

=

= ∑
i

i
i

Tt
T i

S
V P

S

τ
τ

ν ν

 using )(iτ  calculated in Step 3. 

5. Calculate 
( )

0, ( ) *

1

1 +
−

=

 − ∑
i

T

sim
Tf i

T

i

e P V
sim

ττ  as an estimate of ( )K)(1Π . 

 

 

Appendix B: Calculation of the value 
)(

S

1Π  of the option by approximating an optimal 

strategy ( ] ( ]11 00 −××= Tk;k;K …  

 

1. Generate random paths i

T

i S,,S …1  of the underlying for sim,,i …1= . 

2. Approximate the optimal strategy 11 −Tk,,k …  as follows: 

a. Let .Tt 1−=  

b. For [ ]20,k∈  in steps of 0.01 calculate12 ( )11
1 00 −+Π Tt

)( k,,k,k,,, ……  using the 

algorithm described in Appendix A. 

c. Choose tk  such that 

( )11
1 00 −+Π Ttt

)( k,,k,k,,, …… ( )(1)
1 1max 0, ,0, , , ,+ −= Π … …t T

k
k k k . 

d. If 1>t , decrease t by 1 and go to Step 2.b. 

3. Calculate ( )11
1

−Π T

)( k,,k …  using the algorithm described in Appendix A as an esti-

mate of )(

S

1Π . 
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Appendix C: Calculation of the value ( )K~)( 2Π  of the option by applying some given 

strategy 
1

11
−

− ⊆××= T
T

~~~

RKKK …  under the assumption that the investor enters a sec-

ond contract when making the first contract paid-up 

 

1. Generate random paths i

T

i S,,S …1  of the underlying for 1, ,= …i sim  using Equation 

(12).13 

2. Let += RK
~
T .14 

3. Calculate )(iτ  ( sim,,i …1= ) as follows: 

a. Let .i 1=  

b. Let .t 1=  

c. Calculate the value of the assets in the contract 
1

0

−
−

=

=∑
it
t

t i

S
V P

Sν ν

 using the i-th 

random path of the underlying generated in Step 1. 

d. If tt K
~

V ∉− , increase t by 1 and go to Step 3.c. 

e. Let .)( ti =τ  

f. If simi < , increase i by 1 and go to Step 3.b. 

4. For each i, calculate 
( )

( )
1

*

0

−

=

= ∑
i

i
i

Tt
T i

S
V P

S

τ
τ

ν ν

 and 
( )

( )

1
*

−

=

= ∑
i

i

iT
Tt

T i

S
W P

S

τ

ν τ ν

 using )(iτ  calculated in 

Step 3. 

5. Calculate [ ] [ ]∑
=

++−





 −−+−

sim

i

T

i

T

iTf ii
T WPTVPe

sim 1

*)(*)( )()(
,0 )(

1 ττ ττ  as an estimate of 

( )K~)( 2Π . 

 

 

Appendix D: Calculation of the value 
)(

S

2Π  of the option by approximating an optimal 

strategy ( ] ( ]11 00 −××= Tk
~
;k

~
;K

~
…  

 

Note: In the case where a second contract is entered into after making the first contract paid-

up, it is never optimal to not exercise the paid-up option at all. Thus, if the option has not been 

exercised until time T-1, it is optimal to exercise at time T-1. A proof is rather simple. Assume 

the option has not been exercised until time T-1. If the client decides not to exercise at time T-

1, the payoff will be +−+= ]VTP[VL TTT . If the client exercises at time T-1, the payoff is 

given by * 1 * 1max{ ;( 1) }− −= −ɶ T T

T TL V T P * 1max{ ; }−+ T

TW P  (using the terminology from Section 

4.4). Some easy calculation shows that T
1T*

T LL
~

>− . Thus, we let ∞=−1Tk
~

 in Step 2 of the 

following algorithm. 

 

1. Generate random paths i

T

i S,,S …1  of the underlying for .sim,,i …1=  

2. Let ∞=−1Tk
~

. 

3. Approximate the optimal strategy 21 −Tk
~
,,k

~
…  as follows: 

a. Let 2−= Tt . 
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b. For [ ]80,k∈  in steps of 0.01 calculate15 ( )11
2 00 −+Π Tt

)( k
~
,,k

~
,k,,, ……  using the 

algorithm described in Appendix C. 

c. Choose tk
~

 such that 

( ) ( )(2) (2)
1 1 1 10, ,0, , , , max 0, ,0, , , ,+ − + −Π = Πɶ ɶ ɶ ɶ ɶ… … … …t t T t T

k
k k k k k k . 

d. If 1>t , decrease t by 1 and go to Step 2.b. 

4. Calculate ( )11
2

−Π T

)( k
~
,,k

~
…  using the algorithm described in Appendix C as an esti-

mate of )(

S

2Π . 
 
 
 
Notes 

 
1 In Germany, subsidized pension products can be sold by universal banks, insurance 

companies, and mutual funds. 
2 Details of the legal requirements in Germany are specified in the following laws: 

Altersvermögensgesetz (AvmG) and the Gesetz über die Zertifizierung von Altersvorsor-
geverträgen (AltZertG). 

3  Even though we believe that, generally, subsidized pension products offered by mutual 
funds are not priced appropriately (the embedded options are typically given away for 
free), we do not think that this will create a solvency problem for the mutual funds be-
cause subsidized pension products are—at least at present—only a small part of the busi-
ness written by German mutual funds. Hence we believe that there is no “option to de-
fault” (which would reduce the value of the money-back guarantee) for the sellers. 

4  For details of the legal requirements in Germany, see the Gesetz über die Zertifizierung 
von Altersvorsorgeverträgen (AltZertG). 

5 For details, see § 9 (3) KAGG (Gesetz über Kapitalanlagegesellschaften). 
6  This last restriction is imposed because Monte Carlo algorithms for monthly premium 

payments are too time-consuming. We calculated some scenarios for monthly premium 
payment and found that the results are very similar. 

7  Cf., e.g., Harrison and Pliska [1981] for details. 
8  In general, this will be the worst case for the provider since most sellers of government-

subsidized pension products allow their clients to use the paid-up option only once per 
contract. Hence it is not possible to pay more premiums into a contract that has previously 
been made paid-up. 

9  This holds true in most cases because most providers do not allow their clients to use the 
paid-up option more than once per contract. 

10 If this algorithm is used within the algorithm given in Appendix B, omit Step 1. 
11 This ensures that payments are stopped at the latest at T. 
12 Interval and step length were chosen by experience. 
13 If this algorithm is used within the algorithm given in Appendix D, omit Step 1. 
14 This ensures that payments are stopped at the latest at T. 
15 Interval and step length were chosen by experience. 
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