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ANALYSIS OF PARTICIPATING LIFE INSURANCE CONTRACTS :
A UNIFICATION APPROACH

ABSTRACT

Fair pricing of embedded options in life insurance contracts is usually conducted by using
risk-neutral valuation. This pricing framework assumes a perfect hedging strategy, which
insurance companies can hardly pursue in practice. In this paper, we extend the risk-neutral
valuation concept with a risk measurement approach. We accomplish this by first calibrating
contract parameters that lead to the same market value using risk-neutral valuation. We then
measure the resulting risk assuming that insurers do not follow perfect hedging strategies.
As the relevant risk measure, we use lower partial moments, comparing shortfall probabil-
ity, expected shortfall, and downside variance. We show that even whencontracts have the
same market value, the insurance company’s risk can vary widely, a findingthat allows us to
identify key risk drivers for participating life insurance contracts.

Keywords: participating life insurance, fair valuation, lower partial moments

1 INTRODUCTION

In recent years, interest rate guarantees and other embedded options in life insurance contracts

have become a subject of increasing concern for the academicworld as well as for practitioners.

There are financial and actuarial approaches to handling embedded options. The financial ap-

proach is concerned with risk-neutral valuation and fair pricing, and is based on the assumption

of a perfect hedging strategy, which insurance companies normally do not or cannot follow. As-

suming that an insurer does not invest in a replicating portfolio to meet liabilities, the company

remains at risk. The actuarial approach, on the other hand, focuses on shortfall risk under an

objective real-world measure, which plays an important role in insurance risk management and

practice (e.g., rating agencies, Solvency II). The aim of this paper is to investigate problems that

arise under both approaches in order to identify key risk drivers for participating life insurance

business.

The field of fair valuation of embedded options in life insurance contracts has been researched by

authors such as Garven and Pottier (1995), Briys and de Varenne (1997), Grosen and Jørgensen

(2000, 2002), Hansen and Miltersen (2002), Bacinello (2003), and Haberman et al. (2003).

In Briys and de Varenne (1997), the authors use a model with a point-to-point guarantee, that

is, the company guarantees only a maturity payment and an optional participation in the termi-

nal surplus at expiration of the contract. The contract’s market value in this model is basically
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a function of the guaranteed interest rate and the terminal surplus participation while only the

guaranteed interest rate influences shortfall risk at maturity. Interest rates are thereby modeled

stochastically.

Grosen and Jørgensen (2002) expand the model used by Briys andde Varenne (1997) by in-

corporating a regulatory restriction for the insurer’s assets. If the market value of assets drops

below a certain threshold at any point in time, it is shared between the policyholders and paid

out. They find out that contract values are significantly reduced by the value of this default put

option. Though the authors incorporate the company’s risk by calculating the value of the de-

fault put option, their aim is not to determine the likelihood or extent of a shortfall within the

model. Calculating the insolvency put option using risk-neutral valuation is one way to address

the life insurer’s risk and adequate for evaluating it, but cannot provide or replace a quantification

of the likelihood of a future shortfall or the magnitude of such an event, which offers significant

additional information value, especially for risk management purposes, ratings, policyholders,

investors, and other stakeholders.

The life insurance contract suggested by Grosen and Jørgensen (2000) features some annual sur-

plus participation. In this type of contract, the greater ofthe guaranteed interest rate or a fraction

of the asset return is annually credited to the policy and in turn becomes part of the guarantee,

which is why this type is called a cliquet-style guarantee. The insurance contract’s market value,

as well as the insurance company’s risk, depends on the guaranteed interest rate as well as on the

amount of ongoing surplus. The authors compute contract values as well as shortfall probabilities

for different parameter combinations using Monte Carlo simulation techniques. However, they

use the risk-neutral pricing measureQ for the calculation of shortfall probabilities. By transfor-

mation of the real-world measureP to the pricing measureQ, the probabilities of events with

positive probability typically are changed (cf., e.g., Chapter 6.1 in Bingham and Kiesel, 2004).

This change of measure highly reduces the suitability ofQ-probabilities for interpretation, espe-

cially as for risk management or ratings purposes, shortfall probabilities underP are needed.

Hansen and Miltersen (2002) introduce a model of participating life insurance contracts with

practical relevance in Denmark. Besides the interest rate guarantee and a similar smoothing

surplus distribution mechanism as in the model suggested byGrosen and Jørgensen (2000), some

terminal bonus is provided. Also, the policyholder pays an annual fee to the insurance company.

Common UK cliquet-style contracts with a smoothing mechanism are studied in Haberman et al.

(2003). In these contracts, the liabilities annually earn the greater of some guaranteed interest rate

and a predetermined fraction of the arithmetic average of the last period returns of some reference

portfolio.

The primary focus of the literature mentioned so far is on theconcept of risk-neutral valuation-and

thus pricing the risk of life insurance contracts-but it rarely hardly addresses risk measurement.
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Since, e.g., an insurer’s asset allocation is subject to regulation in many countries, insurers usually

cannot apply optimal hedging strategies. Therefore, a real-world analysis of the resulting risks

is important and appropriate. Kling et al. (2006) fill this gap by using an actuarial approach to

analyze the interaction of contract parameters, regulatory parameters, and management decisions

comparing shortfall probabilities. They present a generalframework that can be used for the

analysis of cliquet-style guarantees and adapt it to the German market. Boyle and Hardy (1997)

compare an actuarial simulation-based approach with a financial option pricing approach for the

pricing and reserving of maturity guarantees.

Barbarin and Devolder (2005) propose a model that combines the financial and actuarial ap-

proaches. They consider a contract, similar to Briys and de Varenne (1997), with a point-to-point

guarantee and terminal surplus participation. To integrate both approaches, they use a two-step

method of pricing life insurance contracts: First, they determine a guaranteed interest rate such

that certain solvency requirements are satisfied, using value at risk and expected shortfall risk

measures. Second, to obtain fair contracts, they use risk-neutral valuation and adjust the partic-

ipation rate accordingly. This can be done if and only if the surplus participation rate has no

impact on risk. Therefore, this procedure is limited to the analysis of contracts featuring parame-

ters without effect on shortfall risk and is not feasible for, e.g., cliquet-style contracts with annual

surplus participation only.

The purpose of this paper is to analyze the interaction between the financial and actuarial ap-

proaches without merging the two concepts. In particular, we examine the effect of the fair

valuation process on the insurer’s risk situation. Moreover, the procedure is not restricted to

point-to-point guarantees, but also allows an analysis of more complex cliquet-style contracts.

First, we apply the financial concept and calibrate contractparameters that lead to the same market

value under the risk-neutral measure. In a second step, we measure the risk associated with fair

contracts using lower partial moments, assuming that the insurance company invests in a reference

portfolio without following perfect hedging strategies. We compare shortfall probability, expected

shortfall, and downside variance, and identify the impact of individual model parameters in fair

contracts on the insurer’s shortfall risk. This allows the discovery of fair contracts that, at the

same time, meet solvency or risk requirements, and the procedure is independent of the individual

model structure. Moreover, using lower partial moments as arisk measure provides a reasonable

interpretation since they are consistent with maximization of expected utility. To investigate

whether the outcomes depend on the type of guarantee or on thesurplus distribution mechanisms,

we examine a point-to-point model and two cliquet-style models, namely, one general model and

one country-specific cliquet guarantee that is representative of contracts commonly offered in

Denmark. We also analyzed a UK cliquet-style model following Haberman et al. (2003). The

results we found were quite similar to the other models considered and are therefore omitted.

The rest of the paper is organized as follows. The basic modelstructure is outlined in Section 2.
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This model contains all the properties and characteristicscommon to all the models considered.

Then, for each of three models, we specify the individual dynamics and characteristics of the as-

sets and liabilities, find parameter combinations of fair contracts, define a shortfall, and study the

risk corresponding to fair contracts. The models thus examined are the point-to-point model, ana-

lyzed in Section 3, a cliquet-style model (Section 4), and the Danish cliquet-style model (Section

5). We conclude our analyses in Section 6.

2 MODEL FRAMEWORK

This section presents the framework for the general settingcommon to all models that will be

discussed in this paper. Differences among the various models arise from the development of lia-

bilities due to different types of guarantees and differentsurplus distribution mechanisms among

countries. Individual dynamics will be described in the sections that analyze the respective mod-

els.

Model Overview

Assets Liabilities
A(t) P(t)

C(t)
B(t)

Table 1: Insurance company’s balance sheet at timet.

Table 1 is a snapshot of the insurance company’s balance sheet. It also can be interpreted as the

insurance company’s financial situation at timet, including the market value of the company’s

asset baseA, the book value of the policy reservesP for one contract or a pool of similar contracts,

a company’s accountC, and the bonus reserve accountB that includes reserves for terminal bonus

participation, the company’s equity, and asset valuation reserves. In what follows, individual

account dynamics are described in detail.

Dynamics

The insurance company invests in a reference portfolioA. We assume that the total market value

of the portfolio follows a geometric Brownian motion.1 Under the objective (real-world) measure

1 Let (Wt), 0≤ t ≤ T , be a standard Brownian motion on a probability space(Ω,F ,P) and(Ft), 0≤ t ≤ T , be

the filtration generated by the Brownian motion.
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P, we have:

dA(t) = µ(t)A(t)dt +σ(t)A(t)dW P(t), (1)

with asset driftµ(t), volatility σ(t), and aP-Brownian motionW P. For all our analyses we

assume thatµ(t) = µ, σ(t) = σ are constant over time and we assume a complete, perfect, and

frictionless market. Thus, the solution of the stochastic differential equation2 (1) is given by:

A(t) = A(t −1)e(µ−σ2/2+σ[W P(t)−WP(t−1)]).

By changing the measure to the (risk-neutral) unique equivalent martingale measureQ, the drift

changes to the risk-free interest rater, and development of the assets is fully described by:

dA(t) = rA(t)dt +σA(t)dW Q(t),

whereW Q is aQ-Brownian motion. The solution of this stochastic differential equation underQ

is thus given by:

A(t) = A(t −1)e(r−σ2/2+σ[W Q(t)−W Q(t−1)]).

P denotes the policyholder’s account, the book value of the so-called policy reserve. To initiate

the contract, the policyholder pays an exogenously given up-front premiumP(0) = P0 at time

t = 0. In general, for anyt = 1,2, ..., the policy reservesP earn some rate of interestrP(t) every

year that depends on the type of guarantee (point-to-point vs. cliquet-style) and the type of surplus

distribution provided. It therefore may include a guaranteed interest rate and some surplus that

usually depends on the insurance company’s financial situation at that time, in particular on the

development of the company’s assets. Thus, the developmentof the policy can in general be

described by:3

P(t) = P(t −1)(1+ rP(t)) = P0

t

∏
i=1

(1+ rP(i)) , t = 1,2, ....

Some insurers maintain an accountC, C(0) = 0, in which fees are collected over time. SinceA(t)

is the market value of the reference portfolio, butP(t) andC(t) are book values, we introduce the

accountB on the liability side of the balance sheet to capture the difference as reserves; this is

determined byB(t) = A(t)−P(t)−C(t). This account includes reserves for terminal bonuses as

well as asset valuation reserves and equity. The bonus reserve serves as a buffer: In times of low

investment returns, money is transferred from the bonus account to the policy reserve in order to

2 For details see, e.g., Bjørk (2004).
3 In the following analysis, both discrete and continuously compounded rates are used so as to be consistent with

Briys and de Varenne (1997) and Hansen and Miltersen (2002).
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cover the guaranteed payment; in good times, the reserve is raised. At inception of the contract,

the company may have positive initial bonus reservesB0 that correspond to an initial contribution

of the equity holders.

Customer payoff LT

Common to all models, at maturity, the customer receives the accumulated book valueP(T ) of the

contract, and, for some models, a terminal bonusS(T ), e.g.,S(T ) = δB(T )+ = δ max(B(T ),0).

Hence, the payoffLT to the customer is:

LT = P(T )+S(T ) = P0

T

∏
t=1

(1+ rP(t))+S(T ),

and the equity holders receive the remainder,ET = A(T )−LT . We discuss the exact form of the

terminal bonusS(T ) and the policy interest raterP(t) in respective sections below.

Fair contracts

To define an equilibrium condition to determine fair contracts we use the risk-neutral valuation

formula:

V0(LT ) = e−rT EQ(LT ),

whereEQ(·) denotes the expectation under the equivalent martingale measure4 Q. Thus, we say

that a contract is fair if the present value (time zero marketvalue)V0(·) of the final payoffLT

under the risk-neutral measureQ is equal to the up-front premiumP0 paid by the policyholder:

P0 = V0(LT ) = e−rT EQ(LT ). (2)

We use Equation (2) to find parameter combinations of fair contracts. Models that do not allow

for explicit analytical expressions are analyzed using Monte Carlo simulation.5 As numerical

search routines we implemented a modified Newton algorithm and the bisection method.

Shortfall and risk measurement

As is done in all analyzed models, in pricing insurance contracts we assume that the company is

always able to make the guaranteed payments. Hence, there isno default risk for the policyholder.

We therefore implicitly assume that there exists some external party that will provide the addi-

tional payments needed in case the insurance company’s assets are not sufficient to cover the final

4 For details concerning risk-neutral valuation, see, e.g.,Bjørk (2004).
5 We implemented antithetic variables as a variance reduction technique, cf. Glasserman (2004).
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guaranteed payment (e.g., many countries run a protection fund; other insurance companies may

offer support). However, shortfall risk should still be of interest to the company and its equity

holders, particularly in light of the fact that policyholders tend to be especially risk averse. Risk-

neutral valuation of liabilities including a default put option will deliver appropriate prices of risk.

However, these values are obtained under a risk-neutral distribution and thus do not reflect infor-

mation about the real-world shortfall risk, such as the objective probability or extent of a future

shortfall. From a risk management point of view, as well as for investors, policyholders, ratings,

and other stakeholders, however, this analysis should provide substantial additional information.

We consider it a shortfall if the value of the assets at maturity does not cover the guaranteed

book value of the policy, i.e.,A(T ) < P(T ). Thus, we only consider European-style contracts and

interpret risk solely as a possible shortfall at maturity, and allow for negative reserves during the

term of the contract.6

Using this definition, we measure risk under the objective measureP with lower partial moments7

(LPM):

LPMn = EP ((P(T )−A(T ))n1{A(T ) < P(T )})
= EP (−(C(T )+B(T ))n1{C(T )+B(T ) < 0}) .

For decision making, the degree of risk aversion can be controlled by varying the powern. LPM

with n = 0,1,2 provides very reasonable interpretations and is consistent with maximization of

expected utility for investment decisions and stochastic dominance relationships. Forn = 0, only

the number of shortfall occurrences is counted, forn = 1, all deviations are weighted equally, and

for n = 2, large deviations are weighted more heavily than small deviations:

• shortfall probability

LPM0 = P(C(T )+B(T ) < 0) ,

• expected shortfall

LPM1 = EP ((−(C(T )+B(T )))1{C(T )+B(T ) < 0}) ,

6 We focus only on financial risk and ignore mortality risk as isdone in the underlying models. Hence, there are no

surrenders or deaths until maturity and the pool of contracts remains unchanged. Hansen and Miltersen (2002),

e.g., show in their appendix that the inclusion of mortalityrisk does not alter their results in pricing the contracts.
7 Lower partial moments belong to the class of downside-risk measures that describe the lower part of a density

function; hence only negative deviations are taken into account. See, e.g., Fishburn (1977), Sortino and van der

Meer (1991).
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• and downside variance

LPM2 = EP
(

(C(T )+B(T ))21{C(T )+B(T ) < 0}
)

.

We see that shortfall does not depend on an (optional) participation in the terminal surplusS(T ).

Shortfall occurs only if the value of the reference portfolio at maturityA(T ) is less than the

accumulated book value of the guaranteed policy reserveP(T ).

In the following sections, we first characterize and specifyindividual development of the liabili-

ties in each model and then calibrate the model parameters sothat the contracts are fair. There-

after, the risk of fair contracts is evaluated under the objective measureP with lower partial

moments of degreen = 0,1,2.

3 A POINT-TO-POINT-MODEL

The first model analyzed is a point-to-point model (PTP) based on a version of a model suggested

by Briys and de Varenne (1997).8 Throughout this section, we keep the parametersT = 10,

r = 4%, andA0 = 100 constant.

Dynamics of the liabilities and customer payoff

At inception of the contract, the policyholder makes an up-front paymentP0 = κA0. Remember

that in our basic model, the initial investment made by the equity holdersB0 = (1−κ)A0 is cred-

ited to the bonus reserve. Grosen and Jørgensen (2002) callκ the ‘wealth distribution coefficient’.

The PTP model does not incorporate a company’s accountC, i.e.,C(t) = 0.

During the term of the contract, the premiumP0 is compounded with the guaranteed interest rate

g, such that at expiration of the contract the policy reserve accrues to the guaranteed payment:

P(T ) = P0egT .

Additionally, the customer receives some terminal surplusif κA(T )−P(T ) > 0. This is given by

a fractionδ of the difference above, so that the final payoffLT can be summarized:

LT = P(T )+S(T ) = P0egT +δ [κA(T )−P(T )]+ .

Thus, it can be decomposed into two parts: the first term is a bond with a fixed payoff, whereas

8 Briys and de Varenne (1997) also include a model of stochastic interest rates. For the purpose of this paper, the

risk-free rate is assumed to be constant so that the model canbe compared to the other models that are analyzed.
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the second term can be written as:

δ [κA(T )−P(T )]+ = δκ
[

A(T )− P(T )

κ

]+

,

which is the payoff of a European call option onA(T ) with StrikeP(T )/κ.

Fair contracts

The closed-form solution for the market valueV0(LT ) of the payoff using European option pricing

theory9 is:

V0(LT ) = e−rT EQ(LT )

= e−rT P(T )+ e−rT EQ

(

δκ
[

A(T )− P(T )

κ

]+
)

= P0e(g−r)T +δκ
(

A0Φ(d1)−
P(T )

κ
e−rT Φ(d2)

)

with

d1 =
ln((κA0)/P(T ))+(r +σ2/2)T

σ
√

T
and

d2 = d1−σ
√

T .

For all our numerical analysis,κ = 80%. Table 2 contains parameter combinations(g,δ ) satis-

fying the equilibrium condition (2), i.e.,P0 = V0(LT ). To keep the contract fair,δ decreases in

g. This inverse relation between guaranteed interest rate and terminal participation rate is consis-

tent with the results shown in, e.g., Garven and Pottier (1995) and Grosen and Jørgensen (2002).

For σ = 10%, for instance,g = 0.5% inducesδ = 94.3%, whereasg = 3.5% is combined with

δ = 32.8%. Both parameter combinations lead to contracts with the same market value.

g
0 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4%

σ = 10% 96.3% 94.3% 91.3% 86.7% 80.0% 69.9% 55.0% 32.8% 0%

σ = 15% 88.6% 84.9% 80.1% 73.9% 65.7% 55.2% 41.4% 23.4% 0%

Table 2: PTP Model. Values ofδ for fair contracts withA0 = 100,κ = 80%.

Table 2 also shows the effect of asset volatility on parameter combinations of fair contracts:

9 See, e.g., Bjørk (2004).
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With increasingσ , the terminal participation rateδ decreases. Forg = 2% fixed, σ = 10%

impliesδ = 80% andσ = 15% leads toδ = 65.7%. This pattern can be explained by the impact

of volatility on development of the asset base. An increase in σ raises the chances of higher

investment returns and, therefore, of a higher terminal bonus. In fair contracts, the participation

coefficient thus needs to be decreased.

Having thus calibrated parameters to fair contracts, we nowcompute the corresponding risk under

the objective measureP, assuming that the insurer does not use hedging strategies.

Shortfall

A shortfall occurs ifA(T ) < P(T ) or, equivalently, ifB(T ) < 0, since the model does not contain

an accountC to cover the deficit. Closed-form solutions for risk measuresunder the objective

measureP are for:

• the shortfall probability

LPM0 = P(A(T ) < P(T )) = P
(

A(T ) < P0egT)= Φ(d) (3)

• the expected shortfall

LPM1 = EP
((

P0egT −A(T )
)

1{A(T ) < P0egT}
)

= P0egT Φ(d)− eµT A0Φ(d −σ
√

T )

• the downside variance

LPM2 = EP
(

(

P0egT −A(T )
)2

1{A(T ) < P0egT}
)

=
(

P0egT)2Φ(d)−2P0egT A0eµT Φ
(

d −σ
√

T
)

+A2
0e2µT+σ2T Φ

(

d −2σ
√

T
)

where

d =
ln
(

P0egT /A0
)

− (µ −σ2/2)T

σ
√

T
.

Φ denotes the cumulative distribution function of a standardnormal distributed random variable.

Isoquants

We can now calculate parameter combinations ofδ andg that lead to fair contracts, i.e., contracts

with the same market valueV0(LT (g,δ )) = P0 underQ, as well as parameter combinations ofδ
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andg that lead to the same given shortfall probability underP (a so-called iso-shortfall probability

curve), e.g.,P(B(T ) < 0) = 3%. The trade off betweeng andδ for fair contracts is shown in

Table 2. Since the shortfall probability does not depend onδ , g needs to be adjusted. ForLPM0

in Equation (3), we can solveP(A(T ) < P(T )) = α for g and get:

g =
(

Φ−1(α)σ
√

T − ln(P0/A0)+(µ −σ2/2)T
)

/T.

For α = 3% we obtaing = 1.78%; forα = 5% we obtaing = 2.53%.

Figure 1 illustrates the discrepancy between parameter combinations(g,δ ) for contracts with

the same market value and those with the same shortfall probability. The graphs show that fair

contracts withg > 1.78% have a shortfall probability greater than 3%, whereas contracts with a

lower guaranteed interest rate imply a lower shortfall probability.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Isoquants

g

δ

3% Iso−shortfall probability
curve under P               

5% Iso−shortfall probability
curve under P               

Fair contracts under Q

Figure 1: PTP Model. Isoquants forσ = 10%.

Since the lower partial moments are independent ofδ , the risk of fair contracts can be reduced

by promising a higher terminal participation rateδ combined with a lower guaranteed interest

rateg without changing the market value of the contract. In the next section, we confirm this

presumption.

Risk of fair contracts

We now calculate the risk that corresponds to the parameter combinations(g,δ ) from Table 2.

Figure 2 depicts the risk of these fair contracts measured with lower partial moments of degree
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n = 0,1,2 and plotted in terms ofg.
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Figure 2: PTP Model. Risk of fair contracts in Table 2 as a function of g.

From left to right, the graphs in Figure 2 illustrate the shortfall probability (LPM0), the expected

shortfall (LPM1), and the downside variance(LPM2). It is important to understand that every

point on the curves depicts the risk of a fair contract as defined in Equation (2). As a result, for

different levels ofg, a different terminal bonusδ is provided. For example, whereσ = 10%,

Table 2 shows thatg = 2% impliesδ = 80%. The corresponding shortfall probability depicted in

Figure 2 is 3.80%.

The Figure 2 graphs show how the risk of fair contracts variesacross the contracts as all three risk

measures increase in the guaranteed interest rateg. This occurs because risk does not depend on

δ . Nevertheless, every point on the curves in Figure 2 represents a contract with the same market

value under the risk-neutral measureQ. By increasingδ , we can lowerg and thus significantly

decrease the risk of the fair contract. Thus, terminal bonusparticipation is a key feature for

the reduction of risk in an insurance contract. Without regulatory or legal constraints, insurance

companies could reduce the risk of new and existing businesswhile still offering fair contracts to

insureds by offering lower guarantees combined with higherparticipation at maturity.

The effect of volatility on risk also can be seen from comparing the curves in Figure 2. As

expected, an increase inσ leads to an increase in risk. More precisely, in our example,for

σ = 10% the shortfall probability increases from 1% to 12%, whereas forσ = 15%, the increase

is from 7% to 26%.

The observed tendencies are independent of the choice of risk measure (LPM with n = 0,1,2).

In our analysis, we focused only ong and δ , keeping all other parameters fixed. We did not
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show results for different wealth distribution parametersκ. The higherκ, the less initial equity

B0 = (1−κ)A0 is available and hence the higher is the risk of shortfall. However, changes inκ
do not influence the shape of the results shown. We study the effect of the initial bonus reserve

B0 in more detail in Section 4.

To summarize, for contracts with a point-to-point guarantee, surplus distribution does not influ-

ence shortfall risk. The key risk driver for such contracts is the guaranteed interest rate. This

is an intuitive and unsurprising result. However, if ongoing surplus distribution is included and

guarantees are given on a cliquet-style basis, surplus distribution does influence shortfall risk. In-

terdependencies between surplus distribution and guarantees make the results more complicated

for these types of contracts. The following two sections compare different cliquet-style models

and identify key risk drivers for the different surplus distribution mechanisms.

4 A CLIQUET-STYLE MODEL

We first analyze a model with cliquet-style guarantee (CS), assuggested by Grosen and Jørgensen

(2000).

Dynamics of the liabilities and customer payoff

The life insurance contract guarantees an annual minimum interest rateg and features a smoothing

surplus distribution mechanism: annual surplus can be credited to the accountP only if the buffer

ratio B(t)/P(t) = (A(t)−P(t))/P(t) exceeds a limit, the so-called target buffer ratioγ. This is a

management decision in that the company’s target is to buildup reserves if the reserve quota is

below target level and, alternatively, reserves are partlydissolved and distributed to policyholders

if the reserve quota is above the target level. Money is transferred to the bonus accountB in

years of large investment returns or, in less prosperous times, withdrawn from it to cover the

guaranteed interest rateg. Instead of maintaining an accountC, the company keeps the bonus

reserve at maturity as a type of fee paid by the policyholder.

Development of the policy reserve in any year depends on the buffer ratio at the beginning of the

year and can be described recursively as follows:10

P(t) = P(t −1)(1+ rP(t)) = P(t −1)

(

1+max

{

g̃,α
(

B(t −1)

P(t −1)
− γ
)})

,

whereα ≥ 0 is the annual participation coefficient andγ ≥ 0 is the target buffer ratio. The annual

participation in the bonus represents an option element in the contract. Note that the case where

10 We follow Grosen and Jørgensen (2000) by using discrete compounding and therefore denote the guaranteed

interest rate by ˜g.
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no ongoing surplus is distributed, i.e.,α = 0 and thereforerp(t) = g̃ ∀t ∈ {1, ...,T}, results in a

point-to-point guarantee, where the policyholder receives exactly the guaranteed floor:

P(T ) = P0(1+ g̃)T for α = 0.

Since the policyholder does not participate in the terminalbonus, the payoffLT simply consists

of the accumulated book value of the policy at expiration of the contract:

LT = P(T )+0·S(T ) = P0

T

∏
t=1

(

1+max

{

g̃,α
(

B(t −1)

P(t −1)
− γ
)})

.

Due to path dependency, an evaluation of expectations involving P(T ) leads to complex inte-

gral representations that cannot be transformed into analytical expressions. Thus, Monte Carlo

simulation is used for all analyses in this section.

Fair contracts

In our analysis we focus on the interaction between the guaranteed interest rate ˜g and the annual

participation coefficientα. We assumeT = 10,r = 4%,P0 = 100, andγ = 10%. We study cases

without initial reserves(B0 = 0) and cases with initial reserves ofB0 = 10 for different choices of

the asset volatilityσ . Parameter combinations(g̃,α) of fair contracts satisfying the equilibrium

condition (2) are found in Table 3.

g̃
0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4%

B0 = 0 σ = 10% 203% 183% 160% 134% 107% 80% 56% 35% 13%

σ = 15% 90% 78% 66% 55% 45% 35% 27% 18% 7%

B0 = 10 σ = 10% 72% 65% 58% 51% 43% 36% 29% 21% 10%

σ = 15% 43% 39% 35% 31% 27% 22% 18% 13% 6%

Table 3: CS Model. Values ofα for fair contracts withγ = 10%,T = 10.

A general pattern observable in Table 3 is the tradeoff between α and g̃, which has also been

observed by Grosen and Jørgensen (2000). Since, ceteris paribus, the contract value increases

with increasing ˜g as well as with increasingα, for contracts with the same risk-neutral value,α
clearly decreases with increasing ˜g.

Note that forB0 = 0, asset volatility ofσ = 10%, and rather low guaranteed interest rates ˜g ≤
2%, the annual surplus participation coefficientα exceeds 100%, which implies that reserves
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fall below the target buffer ratio and may even fall below 0 inextreme cases. Although such a

distribution rule may not be very realistic, it is necessaryfor companies without initial reserves

and asset volatility of 10% to offer low guaranteed interestrates at a fair premium.

We also find that for a fixed ˜g, an increase in the volatilityσ leads to a sharp decrease inα, due

to a greater possibility of a larger annual excess bonus. Thus, the annual bonus option element

becomes more valuable and, consequently, the participation coefficientα needs to be lowered to

keep the contract fair. Certainly, the initial reserve situation significantly influences the size of

α. For zero initial reserves, the company must build up reserves before providing annual surplus

participation and therefore fair contracts require a higher participation rateα.

Since the guaranteed rate ˜g is compounded discrete, even for ˜g = 4% some surplus distribution is

necessary to fulfil the equilibrium condition (2).

Shortfall

As in the PTP model, a shortfall occurs if:

A(T ) < P(T ) = P0

T

∏
t=1

(

1+max

{

g̃,α
(

B(t −1)

P(t −1)
− γ
)})

.

Since the customer payoffP(T ) depends on the guaranteed interest rate ˜g, the target buffer ratio

γ, and the annual participation coefficientα, the considered lower partial moments are functions

of these parameters.

Isoquants

Figure 3 contains parameter combinations(g̃,α) of contracts leading to the same market value un-

derQ (see Table 3), as well as for contracts resulting in an identical shortfall probability(LPM0)

of 3% and 15% underP.

The two parameters, ˜g andα, have a similar effect on risk since the shortfall probability is an

increasing function of ˜g and α. Thus, in order to obtain a constant shortfall probability,the

surplus participation coefficientα decreases with increasing ˜g. If the guaranteed interest rate ˜g

is greater than 0.54%, noα > 0 can be found that leads to a shortfall probability of 3%. Only

very conservative combinations of ˜g andα lead to such a shortfall probability, e.g., ˜g = 0.5%

andα = 4.1%. It can be seen that the 15% iso-shortfall probability curve is close to the curve

representing fair contracts. For low guaranteed interest rates, the iso-shortfall probability curve

is above, for low values of ˜g it is below, the curve of fair contracts. Any point above the 15%

shortfall probability curve represents a parameter combination(g̃,α) with a higher shortfall risk;

any point below represents a parameter combination with lower shortfall risk. This implies that
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Figure 3: CS Model. Isoquants forσ = 10%,A0 = 100,B0 = 10,γ = 10%,T = 10.

in the above example any parameter combination of fair contracts with ˜g > 2% leads to a shortfall

probability greater than 15%, whereas any parameter combination of fair contracts with ˜g < 2%

leads to a shortfall probability lower than 15%. The guaranteed interest rate ˜g appears to be the

key risk driver for the shortfall probability in this example.

Figure 3 shows that a same market price underQ does not imply the same shortfall probability

underP. Thus, we need to analyze the risk of fair contracts in more detail, which we do in the

next section.

Risk of fair contracts

Next, we study the risk associated with the fair contracts inTable 3, starting with contracts where

B0 = 10. The lower partial moments in terms of ˜g are displayed in Figure 4 forσ = 10% and

σ = 15%.

Recall that every point on the curves represents a fair contract with the same value under the

risk-neutral measureQ. Every g̃ ∈ {0, . . . ,0.04} is associated with a unique value ofα that can

be found in Table 3. As in the PTP model, the figures confirm thatthe same market value does

not imply equal risk. In Figure 4, all three risk measures increase in ˜g despite the decrease inα.

Hence, for fair contracts withB0 = 10, g̃ has a dominating effect on risk compared toα. This

implies that companies with adequate initial reserves could significantly reduce the risk of new

and existing contracts, if doing so is legally permitted, byreducing the guaranteed interest rate
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Figure 4: CS Model. Risk of fair contracts in Table 3 as a function of g̃ for B0 = 10 withγ = 10%.

and at the same time increasing ongoing surplus distribution such that the market value of the

contract is unchanged.

Figure 4 also illustrates that variance of the reference portfolio has a great influence on the risk.

An increment of 5% inσ doubles the probability of shortfall for fair contracts. The effect on

expected shortfall and downside variance is even stronger.

In contrast to the uniform observations forB0 = 10,LPM curves forB0 = 0 in Figure 5 are more

complex. The effect of the interaction between ˜g andα on the risk of fair contracts depends on

the asset volatility and on the risk measure, i.e., on the weight n assigned to the extent of the

shortfall. Moreover, as expected, the risk level is generally higher than forB0 = 10.

For an asset volatilityσ = 10%, the lower partial moments in Figure 5 decrease for low values of

the guaranteed interest rate ˜g and increase for values of ˜g close to the risk-free rater = 4%. This

means that for each lower partial moment of degree 0, 1, and 2,there is an inflection point with

least risk. With increasing degreen, the inflection point gets smaller, implying that, depending

on the risk measure, there exists a guaranteed interest rateg̃ with least risk for fair contracts. In

our example, ˜g = 3% seems to be close to a risk-minimizing choice for the shortfall probability,

andg̃ = 2% results in risk-minimization for expected shortfall anddownside variance.

If one considers the expected shortfall as the relevant riskmeasure, the parameter combinations

g̃ = 0.5%,α = 182.7% and ˜g = 3.3%,α = 42.8% lead to the same expected shortfall underP and

to the same market value underQ. However, by choosing a guaranteed interest rate in between

these values, e.g., ˜g = 2% andα = 107.1%, expected shortfall can be reduced without changing

the market value of the contract. One could even go one step further: by choosing any guaranteed
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interest rate ˜g between 0.5% and 3.3%, the company can find a surplus distribution coefficientα
that leads to a higher market value underQ and a lower expected shortfall underP at the same

time. For example, make ˜g = 2% andα = 120%.
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Figure 5: CS Model. Risk of fair contracts in Table 3 as a function of g̃ for B0 = 0 with γ = 10%.

For a volatility ofσ = 15%, only the shortfall probability shows the same effect inthe considered

interval while expected shortfall and downside variance are increasing in ˜g.

In our analysis of risk created by cliquet guarantees, we focused on the relation between the

guaranteed interest rate ˜g and the participation parameterα. For a contract with positive initial

reservesB0 = 10 we found ˜g to be the dominating parameter responsible for risk. In thiscase,

the insurer could keep the market value the same and reduce risk by increasing the annual bonus

participation and lowering the guaranteed interest rate ifdoing so would not violate any legal

requirements.

In contrast, an insurance contract with zero initial reserves B0 = 0 leads to a more complex

picture as theLPM curve characteristics show different dynamics. The impactof α andg̃ on risk

varies depending on asset volatility andLPM degreen. As a result, the influence of the annual

participation rateα should not be underestimated since it can have a significant impact on the

risk of fair contracts and even dominate the effect of the guaranteed interest rate ˜g. This concern

makes it worthwhile to analyze models of practical relevance in different countries and identify

key risk drivers for other cliquet-style models.



19

5 A DANISH CLIQUET-STYLE MODEL

We now turn to a model of participating life insurance contracts that has practical relevance in

Denmark. In this section we study a model suggested by Hansenand Miltersen (2002) that is a

hybrid of the CS model discussed above, and the model of Miltersen and Persson (2003).

Dynamics of the liabilities and customer payoff

Hansen and Miltersen’s (2002) model has a smoothing surplusdistribution mechanism similar

to that of the CS model. In addition, a positive terminal bonusreserve is transferred to the pol-

icyholder and adds to the maturity payment, whereas a negative bonus reserve must be covered

by the insurance company. The insurance company issues a series of options on annual returns,

which are covered by the bonus reserve. The policyholder pays an annual percentage feeξ , which

is collected in the company’s accountC.

The percentage feeξ is directly subtracted from the policy interest rate and transferred toC. To

be consistent with Hansen and Miltersen (2002), the policy reserve is compounded continuously:

P(t) = P(t −1)e

{

max
[

g,ln
(

1+α
(

B(t−1)
(P(t−1)+C(t−1))

−γ
))]

−ξ
}

.

Note that the feeξ represents a fundamental control mechanism for the maturity payment because

it directly reduces the policy interest rate.

To calculate the buffer ratioB(t)/(P(t)+C(t)), P+C is modeled as follows:

(P(t)+C(t)) = (P(t −1)+C(t −1))e

{

max
[

g,ln
(

1+α
(

B(t−1)
(P(t−1)+C(t−1))

−γ
))]}

.

The difference betweenP andP+C is the annual payment fee transferred to company’s account

C, i.e.:

C(t) = (P(t)+C(t))−P(t),

and the bonus accountB is residually determined as:

B(t) = B(t −1)+A(t)−A(t −1)− (P(t)+C(t))+(P(t −1)+C(t −1)).

Summarizing, the customer payoff adds up to:

LT = P(T )+S(T ) = P(T )+B(T )+

= P0

T

∏
i=1

e

{

max
[

g,ln
(

1+α
(

B(i−1)
(P(i−1)+C(i−1))

−γ
))]}

e−T ξ +B(T )+. (4)
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Fair contracts

As in the related CS model, there are no analytical expressions for expectations and thus Monte

Carlo simulation is used for evaluations. Following Hansen and Miltersen, we assume that the

contract is not backed by initial reserves, i.e.,B0 = 0. Instead, we focus on the guaranteed interest

rate and the newly introduced payment feeξ . In our analysis,r = 4%, T = 10, γ = 10%, P0 = 100,

andB0 = 0.

Parameter combinations(g,ξ ) of fair contracts satisfying Equation (2) are shown in Table4 for

σ = 10% andσ = 15% and several values ofα. Our results are consistent with the parameter

combinations(g,α,ξ ) found by Hansen and Miltersen.11

g
α 0% 1% 2% 3% 4%

20% 0.18% 0.32% 0.54% 0.87% 1.32%
σ = 10% 50% 0.23% 0.37% 0.59% 0.90% 1.33%

90% 0.31% 0.46% 0.68% 0.99% 1.41%

20% 0.64% 0.86% 1.16% 1.54% 2.00%
σ = 15% 50% 0.77% 1.00% 1.28% 1.64% 2.08%

90% 0.96% 1.19% 1.48% 1.84% 2.27%

Table 4: Danish Model. Values ofξ for fair contracts.

With increasing guaranteed interest rateg and fixedα, there is a greater possibility of a higher

maturity payment and, therefore, the feeξ must be raised to keep the contract fair. As in the

other models, an increase of the asset volatilityσ to 15% makes the bonus option element more

valuable and therefore requires an increase inξ for fixed α to counterbalance this effect.

Shortfall

As described in our basic model, a shortfall occurs if:

A(T ) < P(T ) = P0

T

∏
i=1

e

{

max
[

g,ln
(

1+α
(

B(i−1)
(P(i−1)+C(i−1))

−γ
))]}

e−T ξ .

Since the customer payoffP(T ) and the company’s accountC(T ) depend on the guaranteed

interest rateg, the target buffer ratioγ, the annual participation coefficientα, and the payment fee

ξ , the considered lower partial moments are again functions of these parameters. Once more, path

dependency makes it impossible to derive closed-form solutions for these lower partial moments

and so Monte Carlo simulation is employed to get numerical results.

11 Hansen and Miltersen used the Newton algorithm ong for ξ given.
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Isoquants

Figure6 displays parameter combinations(g,ξ ) of contracts with the same market price under

Q (cf. Table 4) as well as combinations with a shortfall probability of 3% and 10% underP.

Obviously,g andξ have opposite effects on risk as the shortfall probability is increasing ing and

decreasing inξ . This leads to the result that for increasingg, ξ also must increase so as to keep

the shortfall probability constant.
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Figure 6: Danish Model. Isoquants forσ = 10%,α = 20%,γ = 10%.

Combinations ofg andξ that are below an iso-shortfall probability curve therefore represent con-

tracts with higher shortfall probability; parameter combinations above the curve represent con-

tracts with a lower shortfall probability. From this it can be observed that parameter combinations

of fair contracts lead to a shortfall probability greater than 3%.

The 10% shortfall probability curve is below the curve representing fair contracts for low values

of g (g ≤ 1.5%) and above it for high values ofg (g ≥ 2%), implying that lower values of the

guaranteed interest rate result in a lower shortfall probability, even though the contracts are fairly

priced. If the guaranteed interest rate is reduced to 1% or below, even for no payment feeξ , the

shortfall probability falls below 10%. Overall, in the example shown, the feeξ has less influence

on the shortfall probability than does the guaranteed interest rateg. The risk of fair contracts is

analyzed in more detail in the following section.



22

Risk of fair contracts

The risk of fair contracts in terms ofg is displayed in Figure 7, based on the parameter combina-

tions in Table 4. All three risk measures are increasing ing despite the simultaneously increasing

payment feeξ . Forα = 20% andσ = 10%, the shortfall probability dramatically increases from

close to 0% wheng = 0% to more than 18% forg = 4%. With increasingα and increasingσ ,

this effect is weakened, but risk continues to increase withincreasingg; thus the effect ofg on

the risk of fair contracts dominates the effect ofξ .
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Figure 7: Danish Model. Risk of fair contracts in Table 4 as a function ofg with B0 = 0.

We also observe that the annual participation rateα outweighs the impact ofξ on risk. By fixing

g, we observe that a largerα (combined with higherξ ) induces a higher shortfall risk. Further

calculations revealed that the impact ofα on risk of fair contracts outweighs the effect ofg as

well. This finding further emphasizes that ongoing surplus distribution may be the key risk driver

for contracts with cliquet-style guarantees.

Comparing the risk of fair contracts for different asset volatilities σ , we observe that a higher

volatility σ combined with a higher feeξ leads to a higher shortfall probability. The shortfall

curves forσ = 15% shown in Figure 7 are clearly above the shortfall curves for σ = 10%.

In our study, we assumedB0 = 0 so as to be consistent with Hansen and Miltersen (2002). The

absolute level of risk decreases if initial reserves are assumed, but initial reserves appear to have

no influence on the basic effects shown in this section. Furthermore, transfer of the terminal

bonus to the policyholder changes the market value of the contract without changing the risk.
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Thus, terminal bonuses can be used to lower the risk, a findingvery similar to the PTP model (see

Section 3).

6 SUMMARY

Risk-neutral valuation for insurance contracts is an important scholarly as well as practical issue.

Even though this is an appropriate method to handle the valuation of insurance liabilities, the

underlying assumption of a perfect hedging strategy cannotbe easily implemented by insurance

companies. We extend the literature and relate the financialand actuarial approaches by measur-

ing the effects of various contract parameters on actual real-world risk to the insurer for policies

with the same value under the risk-neutral measure. We do this by employing several common

models containing point-to-point as well as cliquet-styleguarantees.

We showed that for all models considered, the risk of fair contracts differs with variations in

parameters. This result is significant for future considerations of fair valuation techniques. We

further examined one additional model commonly used by lifeinsurance companies in the United

Kingdom and suggested by Haberman et al. (2003). For this model, the major risk characteristics

of fair contracts are consistent with what we observed in theother models.

In our analysis, we identified key risk drivers. Terminal bonus participation plays a major role

in minimizing risk, given that it has no impact on shortfall.Raising the share in the terminal

bonus reduces the guaranteed interest rate and the annual surplus participation for fair contracts,

thereby lowering risk. This result is common to all models analyzed. For all cliquet-style models,

the shortfall probability can be greatly reduced by raisingthe terminal surplus participation while

concurrently lowering the annual participation. The results are even more dramatic for the model

with a point-to-point guarantee.

For cliquet-style models, we found that the company’s initial bonus reserve has a major influence

on the risk imposed by fair contracts when imperfect hedgingoccurs. Overall, the risk of fair

contracts is much lower for positive initial reserves than for zero reserves.

Common to all models considered was that contracts with positive initial reserves demonstrate in-

creasing shortfall probability, expected shortfall, and downside variance as the guaranteed interest

rate rises. Hence, in the case of positive reserves, the riskimposed by a fair life insurance contract

is mainly driven by the interest rate guarantee, and not by the annual participation coefficient. The

contract can remain fair with reduced shortfall risk through a reduction in the guaranteed interest

rate.

For contracts with very low positive initial reserves, the findings are much more complex. In this

case, the results strongly depend on the underlying model, and vary with risk measures and asset

volatility. In particular, the annual surplus participation can dominate the effect of the guaranteed
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interest rate. Therefore, an insurer may find it preferable to offer higher guarantees with lower

annual surplus participation.
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