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ANALYSISOF PARTICIPATING LIFE INSURANCE CONTRACTS:
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ABSTRACT

Fair pricing of embedded options in life insurance contracts is usually cbedly using
risk-neutral valuation. This pricing framework assumes a perfectihgdggrategy, which
insurance companies can hardly pursue in practice. In this paper,ter@eke risk-neutral
valuation concept with a risk measurement approach. We accomplish thistgafibrating
contract parameters that lead to the same market value using risk-neliiaion. We then
measure the resulting risk assuming that insurers do not follow perfdgirtestrategies.
As the relevant risk measure, we use lower partial moments, comparinifatihmobabil-
ity, expected shortfall, and downside variance. We show that even wdreracts have the
same market value, the insurance company’s risk can vary widely, a fitidihgllows us to
identify key risk drivers for participating life insurance contracts.

Keywords: participating life insurance, fair valuation, lower partial moments

1 INTRODUCTION

In recent years, interest rate guarantees and other enegdtiens in life insurance contracts
have become a subject of increasing concern for the acadeonid as well as for practitioners.
There are financial and actuarial approaches to handlingeeédda options. The financial ap-
proach is concerned with risk-neutral valuation and faicipg, and is based on the assumption
of a perfect hedging strategy, which insurance companigsalty do not or cannot follow. As-
suming that an insurer does not invest in a replicating photto meet liabilities, the company
remains at risk. The actuarial approach, on the other hammisés on shortfall risk under an
objective real-world measure, which plays an importarg iolinsurance risk management and
practice (e.g., rating agencies, Solvency Il). The aim of plaper is to investigate problems that
arise under both approaches in order to identify key riskedsi for participating life insurance
business.

The field of fair valuation of embedded options in life inqura contracts has been researched by
authors such as Garven and Pottier (1995), Briys and de Var@®97), Grosen and Jgrgensen
(2000, 2002), Hansen and Miltersen (2002), Bacinello (20&3) Haberman et al. (2003).

In Briys and de Varenne (1997), the authors use a model withirg-pmpoint guarantee, that
is, the company guarantees only a maturity payment and aonapparticipation in the termi-
nal surplus at expiration of the contract. The contract'sketavalue in this model is basically



a function of the guaranteed interest rate and the termunpliss participation while only the
guaranteed interest rate influences shortfall risk at mgtuinterest rates are thereby modeled
stochastically.

Grosen and Jgrgensen (2002) expand the model used by BriydeaWdrenne (1997) by in-
corporating a regulatory restriction for the insurer’sedss If the market value of assets drops
below a certain threshold at any point in time, it is sharetivben the policyholders and paid
out. They find out that contract values are significantly oeduby the value of this default put
option. Though the authors incorporate the company’s nskdiculating the value of the de-
fault put option, their aim is not to determine the likelilibor extent of a shortfall within the
model. Calculating the insolvency put option using riskin&uwaluation is one way to address
the life insurer’s risk and adequate for evaluating it, kartrot provide or replace a quantification
of the likelihood of a future shortfall or the magnitude othwan event, which offers significant
additional information value, especially for risk managsinpurposes, ratings, policyholders,
investors, and other stakeholders.

The life insurance contract suggested by Grosen and Jang€a800) features some annual sur-
plus participation. In this type of contract, the greatethaf guaranteed interest rate or a fraction
of the asset return is annually credited to the policy andiin becomes part of the guarantee,
which is why this type is called a cliquet-style guarantelee Thsurance contract’s market value,
as well as the insurance company’s risk, depends on therjeadiinterest rate as well as on the
amount of ongoing surplus. The authors compute contracesas well as shortfall probabilities
for different parameter combinations using Monte Carlo $ation techniques. However, they
use the risk-neutral pricing measugefor the calculation of shortfall probabilities. By transfor
mation of the real-world measui®to the pricing measur@, the probabilities of events with
positive probability typically are changed (cf., e.g., Cleay®.1 in Bingham and Kiesel, 2004).
This change of measure highly reduces the suitabilitf)-gdrobabilities for interpretation, espe-
cially as for risk management or ratings purposes, shopfababilities unde are needed.

Hansen and Miltersen (2002) introduce a model of partioigalife insurance contracts with
practical relevance in Denmark. Besides the interest rateagiee and a similar smoothing
surplus distribution mechanism as in the model suggestéarbgen and Jgrgensen (2000), some
terminal bonus is provided. Also, the policyholder pays anual fee to the insurance company.

Common UK cliquet-style contracts with a smoothing mecharase studied in Haberman et al.
(2003). In these contracts, the liabilities annually elngreater of some guaranteed interest rate
and a predetermined fraction of the arithmetic averageeolia$t period returns of some reference
portfolio.

The primary focus of the literature mentioned so far is orctivecept of risk-neutral valuation-and
thus pricing the risk of life insurance contracts-but itefgrhardly addresses risk measurement.



Since, e.g., an insurer’s asset allocation is subject tdaggn in many countries, insurers usually
cannot apply optimal hedging strategies. Therefore, aweald analysis of the resulting risks
is important and appropriate. Kling et al. (2006) fill thispgay using an actuarial approach to
analyze the interaction of contract parameters, regylgtarameters, and management decisions
comparing shortfall probabilities. They present a genfehework that can be used for the
analysis of cliquet-style guarantees and adapt it to thendemarket. Boyle and Hardy (1997)
compare an actuarial simulation-based approach with adiaboption pricing approach for the
pricing and reserving of maturity guarantees.

Barbarin and Devolder (2005) propose a model that combinedirtancial and actuarial ap-
proaches. They consider a contract, similar to Briys and dervee (1997), with a point-to-point
guarantee and terminal surplus participation. To integbath approaches, they use a two-step
method of pricing life insurance contracts: First, theyedetine a guaranteed interest rate such
that certain solvency requirements are satisfied, usingevat risk and expected shortfall risk
measures. Second, to obtain fair contracts, they use eskal valuation and adjust the partic-
ipation rate accordingly. This can be done if and only if theptus participation rate has no
impact on risk. Therefore, this procedure is limited to thalgsis of contracts featuring parame-
ters without effect on shortfall risk and is not feasible fag., cliquet-style contracts with annual
surplus participation only.

The purpose of this paper is to analyze the interaction kemvike financial and actuarial ap-
proaches without merging the two concepts. In particulag,examine the effect of the fair
valuation process on the insurer’s risk situation. Moreptlee procedure is not restricted to
point-to-point guarantees, but also allows an analysisafncomplex cliquet-style contracts.

First, we apply the financial concept and calibrate confracameters that lead to the same market
value under the risk-neutral measure. In a second step, weurethe risk associated with fair
contracts using lower partial moments, assuming that theance company invests in a reference
portfolio without following perfect hedging strategiese\Wbmpare shortfall probability, expected
shortfall, and downside variance, and identify the impdcenhdividual model parameters in fair
contracts on the insurer’s shortfall risk. This allows thecdvery of fair contracts that, at the
same time, meet solvency or risk requirements, and the guoeds independent of the individual
model structure. Moreover, using lower partial moments askameasure provides a reasonable
interpretation since they are consistent with maximizatxd expected utility. To investigate
whether the outcomes depend on the type of guarantee or sarghieis distribution mechanisms,
we examine a point-to-point model and two cliquet-style sisdnamely, one general model and
one country-specific cliquet guarantee that is represeataf contracts commonly offered in
Denmark. We also analyzed a UK cliquet-style model follggvitaberman et al. (2003). The
results we found were quite similar to the other models awmreid and are therefore omitted.

The rest of the paper is organized as follows. The basic nmgid&tture is outlined in Section 2.



This model contains all the properties and characterisbosmon to all the models considered.
Then, for each of three models, we specify the individualeshigits and characteristics of the as-
sets and liabilities, find parameter combinations of faitcacts, define a shortfall, and study the
risk corresponding to fair contracts. The models thus erathare the point-to-point model, ana-
lyzed in Section 3, a cliquet-style model (Section 4), ared@anish cliquet-style model (Section
5). We conclude our analyses in Section 6.

2 MODEL FRAMEWORK

This section presents the framework for the general settimgmon to all models that will be
discussed in this paper. Differences among the various imadse from the development of lia-
bilities due to different types of guarantees and diffesemplus distribution mechanisms among
countries. Individual dynamics will be described in thetgets that analyze the respective mod-
els.

Model Overview

Assets| Liabilities
Alt) | P(t)
C(t)
B(t)

Table 1: Insurance company’s balance sheet attime

Table 1 is a snapshot of the insurance company’s balancé $hakso can be interpreted as the
insurance company’s financial situation at timpencluding the market value of the company’s
asset basA, the book value of the policy reserviegor one contract or a pool of similar contracts,
a company’s accouid, and the bonus reserve accoBrthat includes reserves for terminal bonus
participation, the company’s equity, and asset valuatesenves. In what follows, individual
account dynamics are described in detail.

Dynamics

The insurance company invests in a reference portfalid/e assume that the total market value
of the portfolio follows a geometric Brownian motidrinder the objective (real-world) measure

1 Let(W), 0<t <T, be astandard Brownian motion on a probability sp@e#,P) and(%#), 0<t < T, be
the filtration generated by the Brownian motion.



P, we have:
dA(t) = p(t)At)dt + a(t)A(t)dWP(t), (1)

with asset driftu(t), volatility o(t), and aP-Brownian motionW". For all our analyses we
assume thati(t) = y, o(t) = o are constant over time and we assume a complete, perfect, and
frictionless market. Thus, the solution of the stochasiffexéntial equatiof (1) is given by:

Alt) = At — 1)e(ﬂ—02/2+0[WP(t)_WP(t_1)])‘

By changing the measure to the (risk-neutral) unique eqeitahartingale measufg, the drift
changes to the risk-free interest rat@nd development of the assets is fully described by:

dA(t) = rA(t)dt + oA(t)dW(t),

whereW< is aQ-Brownian motion. The solution of this stochastic diffeiahéquation und
is thus given by: &)
A(t) = A(t _ 1)e(r*02/2+0[WQ(I)7WQ(t71)])'

P denotes the policyholder’s account, the book value of theatled policy reserve. To initiate
the contract, the policyholder pays an exogenously giveframt premiumP(0) = R at time

t =0. In general, forany= 1,2, ..., the policy reserveB earn some rate of interesi(t) every
year that depends on the type of guarantee (point-to-psirtliquet-style) and the type of surplus
distribution provided. It therefore may include a guaradtéterest rate and some surplus that
usually depends on the insurance company’s financial Btuat that time, in particular on the
development of the company’s assets. Thus, the developofig¢he policy can in general be
described by

P(t) = P(t — 1)(1+rp(t)) = Po_ﬁl<1+ rp(i)),t=1,2,....

Some insurers maintain an acco@C(0) = 0, in which fees are collected over time. Sirkg)

is the market value of the reference portfolio, Bgt) andC(t) are book values, we introduce the
accountB on the liability side of the balance sheet to capture theedbfice as reserves; this is
determined byB(t) = A(t) — P(t) — C(t). This account includes reserves for terminal bonuses as
well as asset valuation reserves and equity. The bonus/eeserves as a buffer: In times of low
investment returns, money is transferred from the bonusuwaitdo the policy reserve in order to

2 For details see, e.g., Bjark (2004).
3 In the following analysis, both discrete and continuouslgnpounded rates are used so as to be consistent with
Briys and de Varenne (1997) and Hansen and Miltersen (2002).



cover the guaranteed payment; in good times, the reseragsiex At inception of the contract,
the company may have positive initial bonus reseBegethat correspond to an initial contribution
of the equity holders.

Customer payoff Lt

Common to all models, at maturity, the customer receivesdberaulated book value(T) of the
contract, and, for some models, a terminal bo8{i&), e.g.,S(T) = dB(T)" = dmaxB(T),0).
Hence, the payoffr to the customer is:

T
Lt =P(T)+ST) =R q<l+ re(t)) +S(T),
t=
and the equity holders receive the remainéigr= A(T) — Lt. We discuss the exact form of the
terminal bonusS(T) and the policy interest ratg(t) in respective sections below.

Fair contracts

To define an equilibrium condition to determine fair contsawe use the risk-neutral valuation
formula:
Vo(Lt) = e "TEQ(Ly),

whereE?(.) denotes the expectation under the equivalent martingagesuné Q. Thus, we say
that a contract is fair if the present value (time zero mavikdae)\Vy(-) of the final payoffLyt
under the risk-neutral measugeis equal to the up-front premiuf® paid by the policyholder:

Po=Vo(Lt) = e "TEQ(Ly). 2

We use Equation (2) to find parameter combinations of faitremts. Models that do not allow
for explicit analytical expressions are analyzed using tddBarlo simulatio®. As numerical
search routines we implemented a modified Newton algorithdtlae bisection method.

Shortfall and risk measurement

As is done in all analyzed models, in pricing insurance @misrwe assume that the company is
always able to make the guaranteed payments. Hence, thmereéfault risk for the policyholder.
We therefore implicitly assume that there exists some patgrarty that will provide the addi-
tional payments needed in case the insurance companyts assaot sufficient to cover the final

4 For details concerning risk-neutral valuation, see, &gtk (2004).
5 We implemented antithetic variables as a variance redutgichnique, cf. Glasserman (2004).



guaranteed payment (e.g., many countries run a protectiady bther insurance companies may
offer support). However, shortfall risk should still be oterest to the company and its equity
holders, particularly in light of the fact that policyholddend to be especially risk averse. Risk-
neutral valuation of liabilities including a default puttagn will deliver appropriate prices of risk.
However, these values are obtained under a risk-neutttabdiSon and thus do not reflect infor-
mation about the real-world shortfall risk, such as the cliye probability or extent of a future
shortfall. From a risk management point of view, as well asrigestors, policyholders, ratings,
and other stakeholders, however, this analysis shouldge®ubstantial additional information.

We consider it a shortfall if the value of the assets at mtutoes not cover the guaranteed
book value of the policy, i.eA(T) < P(T). Thus, we only consider European-style contracts and
interpret risk solely as a possible shortfall at maturityd allow for negative reserves during the
term of the contrack.

Using this definition, we measure risk under the objectivasnesP with lower partial moments
(LPM):

LPM, = EF (P(T) = A(T))"{A(T) < P(T)})
= EF (—(C(T) +B(T))"1{C(T) + B(T) < 0}).
For decision making, the degree of risk aversion can be aledirby varying the powen. LPM
with n=0,1,2 provides very reasonable interpretations and is comsigtegh maximization of
expected utility for investment decisions and stochagiimidance relationships. Far= 0, only

the number of shortfall occurrences is countednfer 1, all deviations are weighted equally, and
for n= 2, large deviations are weighted more heavily than smalkdiews:

e shortfall probability
LPMo=P(C(T)+B(T) <0),

e expected shortfall

LPM; = E* ((—(C(T) +B(T))) L{C(T) +B(T) < 0}),

6 We focus only on financial risk and ignore mortality risk adése in the underlying models. Hence, there are no
surrenders or deaths until maturity and the pool of cordremnains unchanged. Hansen and Miltersen (2002),

e.g., show in their appendix that the inclusion of mortalisk does not alter their results in pricing the contracts.
Lower partial moments belong to the class of downside-riglasures that describe the lower part of a density

function; hence only negative deviations are taken int@ant See, e.g., Fishburn (1977), Sortino and van der
Meer (1991).



e and downside variance

LPM = E” ((C(T) +B(T))° L{C(T) +B(T) < 0}) .

We see that shortfall does not depend on an (optional) pzation in the terminal surpluS(T).
Shortfall occurs only if the value of the reference portiodit maturityA(T) is less than the
accumulated book value of the guaranteed policy redefve.

In the following sections, we first characterize and speicifiividual development of the liabili-
ties in each model and then calibrate the model parametdtasthe contracts are fair. There-
after, the risk of fair contracts is evaluated under the dbje measure® with lower partial
moments of degree= 0,1, 2.

3 A POINT-TO-POINT-MODEL

The first model analyzed is a point-to-point model (PTP) Hasea version of a model suggested
by Briys and de Varenne (199%).Throughout this section, we keep the paramelfers 10,
r = 4%, andAg = 100 constant.

Dynamics of the liabilities and customer payoff

At inception of the contract, the policyholder makes an ignf paymen®, = kAg. Remember
that in our basic model, the initial investment made by thdtgdoldersBy = (1— k)Ay is cred-
ited to the bonus reserve. Grosen and Jgrgensen (200R)tbalfwealth distribution coefficient’.
The PTP model does not incorporate a company’s accourg.,C(t) = 0.

During the term of the contract, the premidgnis compounded with the guaranteed interest rate
g, such that at expiration of the contract the policy resepgzwges to the guaranteed payment:

P(T) = Red".

Additionally, the customer receives some terminal surlas\(T) — P(T) > 0. This is given by
a fractiond of the difference above, so that the final payloffcan be summarized:

Lt =P(T)+S(T) = RedT + 5 [kA(T)—P(T)]".

Thus, it can be decomposed into two parts: the first term isnal moth a fixed payoff, whereas

8 Briys and de Varenne (1997) also include a model of stoahagtrest rates. For the purpose of this paper, the
risk-free rate is assumed to be constant so that the mod&eceompared to the other models that are analyzed.



the second term can be written as:
+ P(T)]"
O[KA(T)—P(T)]" =0k |A(T) — |

which is the payoff of a European call option AT ) with StrikeP(T)/k.

Fair contracts

The closed-form solution for the market vaMgLt) of the payoff using European option pricing
theory is:

Vo(LT) = e‘rTEQ(LT)

with

g — In((KAO)/P(L)\)/—Tf— (r+0%/2)T and

dy=d;—oVT.

For all our numerical analysig = 80%. Table 2 contains parameter combinatitm®) satis-
fying the equilibrium condition (2), i.ePy = Vp(Lt). To keep the contract faif) decreases in
g. This inverse relation between guaranteed interest ratéeiminal participation rate is consis-
tent with the results shown in, e.g., Garven and Pottier§1a8d Grosen and Jgrgensen (2002).
For o = 10%, for instanceg = 0.5% inducesd = 94.3%, whereag = 3.5% is combined with

0 = 32.8%. Both parameter combinations lead to contracts with theesaarket value.

g
0 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4%

0=10%| 96.3% 94.3% 91.3% 86.7% 80.0% 69.9% 55.0% 32.8% 0%

0=15% | 88.6% 84.9% 80.1% 73.9% 65.7% 55.2% 41.4% 23.4% 0%
Table 2: PTP Model. Values @ for fair contracts withAg = 100,k = 80%.

Table 2 also shows the effect of asset volatility on paramedenbinations of fair contracts:

9 See, e.g., Bjgrk (2004).
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With increasingo, the terminal participation raté decreases. Fay = 2% fixed, o = 10%
impliesd = 80% ando = 15% leads t@ = 65.7%. This pattern can be explained by the impact
of volatility on development of the asset base. An increase raises the chances of higher
investment returns and, therefore, of a higher terminallboin fair contracts, the participation
coefficient thus needs to be decreased.

Having thus calibrated parameters to fair contracts, wecwmwpute the corresponding risk under
the objective measuf®, assuming that the insurer does not use hedging strategies.

Shortfall

A shortfall occurs ifA(T) < P(T) or, equivalently, ifB(T) < 0, since the model does not contain
an accountC to cover the deficit. Closed-form solutions for risk measuneder the objective
measure? are for:

¢ the shortfall probability

LPMo =P (A(T) < P(T)) =P (A(T) < Ree¥") = (d) (3)

¢ the expected shortfall

LPM; =E" ((Roe?" — A(T)) H{A(T) < Re})
= Roe?T o (d) — e#TAgd(d — V')

e the downside variance

LPM, = EP <(PoegT — AP HAT) < PoegT})
= (Roe™) @(d) — 2Ry Age T (d - oV T)
+ AT D (d - 20T )
where

4 In (Ryed™ /Ag) — (u—0?/2)T
— s ,

® denotes the cumulative distribution function of a standananal distributed random variable.

Isoquants

We can now calculate parameter combinationd ahdg that lead to fair contracts, i.e., contracts
with the same market valué(Lt(g,0)) = Py underQ, as well as parameter combinationsdof
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andg that lead to the same given shortfall probability unél¢a so-called iso-shortfall probability
curve), e.g.P(B(T) < 0) = 3%. The trade off betweeg and & for fair contracts is shown in
Table 2. Since the shortfall probability does not depend ogneeds to be adjusted. FoPMg
in Equation (3), we can solVB(A(T) < P(T)) = a for g and get:

9= (@ H(a)o VT —In(Ro/Ao) + (n—0%/2)T ) /T.

Fora = 3% we obtairg = 1.78%; fora = 5% we obtairg = 2.53%

Figurel 1 illustrates the discrepancy between parametebit@tions(g, d) for contracts with
the same market value and those with the same shortfall pilaipaThe graphs show that fair
contracts withg > 1.78% have a shortfall probability greater than 3%, whereasraots with a
lower guaranteed interest rate imply a lower shortfall pimlity.

Isoquants

K
o \\\\ I |
0.8} ‘ \‘\j |
0.7 g -

-« |Fair contracts under Q‘

0.6 m

w 0.5 ] e
3% Iso—shortfall probability
curve under P
0.4 . joc} B
0.3 | -
0.2 m \ 4
5% Iso—shortfall probability
0.1+ - {curve under P B
0 I I I I =21 I I
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Figure 1: PTP Model. Isoquants for= 10%.

Since the lower partial moments are independerd,ahe risk of fair contracts can be reduced
by promising a higher terminal participation ralecombined with a lower guaranteed interest
rate g without changing the market value of the contract. In thet sextion, we confirm this
presumption.

Risk of fair contracts

We now calculate the risk that corresponds to the parametabinations(g, d) from Table 2.
Figure 2 depicts the risk of these fair contracts measurdid iawver partial moments of degree
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n=0,1,2 and plotted in terms daj.

Shortfall Probability Expected Shortfall Downside Variance
0.35 T 8 T 300
—*— 0=10% —*— 0=10% —*— 0=10%
—6— 0=15% v —6— 0=15% —6— 0=15%

0.3}

250

0.25¢
200
0.21
150
0.15f

100
0.1p

0.05 s0r

0 0.02 0.04 0 0.02 0.04

Figure 2: PTP Model. Risk of fair contracts in Table 2 as a fiomcof g.

From left to right, the graphs in Figure 2 illustrate the sfadirprobability (LPMp), the expected
shortfall (LPM;), and the downside variand&PM,). It is important to understand that every
point on the curves depicts the risk of a fair contract as ddfin Equation| (2). As a result, for
different levels ofg, a different terminal bonu8d is provided. For example, wheke = 10%,
Table 2 shows thag = 2% impliesd = 80%. The corresponding shortfall probability depicted in
Figure 2 is 380%.

The Figure 2 graphs show how the risk of fair contracts va@ess the contracts as all three risk
measures increase in the guaranteed interesgrathis occurs because risk does not depend on
0. Nevertheless, every point on the curves in Figure 2 reptssecontract with the same market
value under the risk-neutral measupe By increasingd, we can lowerg and thus significantly
decrease the risk of the fair contract. Thus, terminal bgrarsicipation is a key feature for
the reduction of risk in an insurance contract. Without tatpry or legal constraints, insurance
companies could reduce the risk of new and existing busiwkas still offering fair contracts to
insureds by offering lower guarantees combined with higlaeticipation at maturity.

The effect of volatility on risk also can be seen from comparihe curves in Figure 2. As
expected, an increase m leads to an increase in risk. More precisely, in our examiale,

o0 = 10% the shortfall probability increases from 1% to 12%, wlasrforo = 15%, the increase
is from 7% to 26%.

The observed tendencies are independent of the choicekahesasure [(PM with n = 0,1, 2).
In our analysis, we focused only @pand o, keeping all other parameters fixed. We did not
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show results for different wealth distribution parametersThe higherk, the less initial equity
Bo = (1—k)Ao is available and hence the higher is the risk of shortfallweler, changes ir
do not influence the shape of the results shown. We study teet eff the initial bonus reserve
Bo in more detail in Section!4.

To summarize, for contracts with a point-to-point guarantairplus distribution does not influ-
ence shortfall risk. The key risk driver for such contrastshe guaranteed interest rate. This
is an intuitive and unsurprising result. However, if ongpsurplus distribution is included and
guarantees are given on a cliquet-style basis, surplusdison does influence shortfall risk. In-
terdependencies between surplus distribution and gueeamhake the results more complicated
for these types of contracts. The following two sections pare different cliquet-style models
and identify key risk drivers for the different surplus distition mechanisms.

4 A CLIQUET-STYLE MODEL

We first analyze a model with cliquet-style guarantee (CSuggested by Grosen and Jgrgensen
(2000).

Dynamics of the liabilities and customer payoff

The life insurance contract guarantees an annual minimtereist ratg and features a smoothing
surplus distribution mechanism: annual surplus can bateetb the accour only if the buffer
ratioB(t) /P(t) = (A(t) — P(t))/P(t) exceeds a limit, the so-called target buffer raticrhis is a
management decision in that the company’s target is to lugldeserves if the reserve quota is
below target level and, alternatively, reserves are pdrtlgolved and distributed to policyholders
if the reserve quota is above the target level. Money is fearesd to the bonus accouBtin
years of large investment returns or, in less prosperousstirwithdrawn from it to cover the
guaranteed interest rate Instead of maintaining an accoudt the company keeps the bonus
reserve at maturity as a type of fee paid by the policyholder.

Development of the policy reserve in any year depends onufiertratio at the beginning of the
year and can be described recursively as folléfvs:

P(t) = P(t — 1) (14 rp(t)) = P(t — 1) <1+ max{g,a (Eg - B _ y> }> ,

wherea > 0 is the annual participation coefficient ap@ O is the target buffer ratio. The annual
participation in the bonus represents an option elememtarcontract. Note that the case where

10 we follow Grosen and Jgrgensen (2000) by using discrete comging and therefore denote the guaranteed
interest rate by.”
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no ongoing surplus is distributed, i.et,= 0 and thereforep(t) = § vt € {1,..., T}, results in a
point-to-point guarantee, where the policyholder rece&meactly the guaranteed floor:

P(T)=Po(1+§)" fora =0.

Since the policyholder does not participate in the termibwadus, the payoft.t simply consists
of the accumulated book value of the policy at expiratiorhef¢ontract:

Lt =P(T)+0-(T) = P0t|j <1+ max{g,a (22:3 - y) }) .

Due to path dependency, an evaluation of expectationsvimgP(T) leads to complex inte-
gral representations that cannot be transformed into acal\expressions. Thus, Monte Carlo
simulation is used for all analyses in this section.

Fair contracts

In our analysis we focus on the interaction between the giueea interest ratg and the annual
participation coefficientr. We assumé& = 10,r = 4%, Py = 100, andy = 10%. We study cases
without initial reserve$By = 0) and cases with initial reservesB§ = 10 for different choices of
the asset volatilityo. Parameter combinatior{§, a) of fair contracts satisfying the equilibrium
condition (2) are found in Table 3.

~

g
0% 05% 1% 15% 2% 2.5% 3% 3.5% 4%

Bo=0 0=10% | 203% 183% 160% 134% 107% 80% 56% 35% 13%

0=15%| 90% 78% 66% 55% 45% 35% 27% 18% 7%

Bo=10 0=10%| 72% 65% 58% 51% 43% 36% 29% 21% 10%

0=15%| 43% 39% 35% 31% 27% 22% 18% 13% 6%
Table 3: CS Model. Values af for fair contracts withy = 10%, T = 10.

A general pattern observable in Table 3 is the tradeoff betvee and g; which has also been
observed by Grosen and Jgrgensen (2000). Since, cetelfisgahe contract value increases
with increasinggas well as with increasing, for contracts with the same risk-neutral valae,
clearly decreases with increasigg ~

Note that forBy = 0, asset volatility ofo = 10% and rather low guaranteed interest rages ~
2%, the annual surplus participation coefficiamtexceeds 100%, which implies that reserves
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fall below the target buffer ratio and may even fall below Geiktreme cases. Although such a
distribution rule may not be very realistic, it is necessiarycompanies without initial reserves
and asset volatility of 10% to offer low guaranteed interats at a fair premium.

We also find that for a fixed, an increase in the volatilitg' leads to a sharp decreasedndue

to a greater possibility of a larger annual excess bonuss,Tihe annual bonus option element
becomes more valuable and, consequently, the participatiefficienta needs to be lowered to
keep the contract fair. Certainly, the initial reserve ditrasignificantly influences the size of
a. For zero initial reserves, the company must build up resebefore providing annual surplus
participation and therefore fair contracts require a higizeticipation ratex.

Since the guaranteed ragés'compounded discrete, even tp="4% some surplus distribution is
necessary to fulfil the equilibrium condition (2).

Shortfall

As in the PTP model, a shortfall occurs if:

A(T) <P(T) = Pot|j (1+ max{g,a (Eg — B - y) }) .

Since the customer payd#(T) depends on the guaranteed interest gatb€ target buffer ratio
y, and the annual participation coefficiemithe considered lower partial moments are functions
of these parameters.

Isoquants

Figure 3 contains parameter combinatié@.ax ) of contracts leading to the same market value un-
derQ (see Table 3), as well as for contracts resulting in an idahshortfall probability LPM)
of 3% and 15% undé€P.

The two parameterg and a, have a similar effect on risk since the shortfall prob#piis an
increasing function ofyand a. Thus, in order to obtain a constant shortfall probabilibe
surplus participation coefficiert decreases with increasimg [f the guaranteed interest rage ~
is greater than 4%, noa > 0 can be found that leads to a shortfall probability of 3%. yOnl
very conservative combinations gfahd a lead to such a shortfall probability, e.@=0.5%
anda = 4.1%. It can be seen that the 15% iso-shortfall probabilityeus close to the curve
representing fair contracts. For low guaranteed intewstsy the iso-shortfall probability curve
is above, for low values df it is below, the curve of fair contracts. Any point above tHf&d
shortfall probability curve represents a parameter coathwon (§, a) with a higher shortfall risk;
any point below represents a parameter combination witled@hortfall risk. This implies that



16

Isoquants
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Figure 3: CS Model. Isoquants for= 10%, Ao = 100,By = 10,y = 10%, T = 10.

in the above example any parameter combination of fair eatgwithg™ 2% leads to a shortfall
probability greater than 15%, whereas any parameter catibmof fair contracts witlg < 2%
leads to a shortfall probability lower than 15%. The guasadtinterest ratg dppears to be the
key risk driver for the shortfall probability in this exanepl

Figure 3 shows that a same market price urfdetoes not imply the same shortfall probability
underP. Thus, we need to analyze the risk of fair contracts in motaiklevhich we do in the
next section.

Risk of fair contracts

Next, we study the risk associated with the fair contractRainle 3, starting with contracts where
Bo = 10. The lower partial moments in terms @ffe displayed in Figure 4 far = 10% and
o = 15%.

Recall that every point on the curves represents a fair ctnivdh the same value under the
risk-neutral measur®. Everyge {0,...,0.04} is associated with a unique value @fthat can
be found in Table 3. As in the PTP model, the figures confirm timatsame market value does
not imply equal risk. In Figure 4, all three risk measuresease ingdespite the decrease én
Hence, for fair contracts witBy = 10, g has a dominating effect on risk comparedato This
implies that companies with adequate initial reservesasignificantly reduce the risk of new
and existing contracts, if doing so is legally permitted,rbglucing the guaranteed interest rate
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Figure 4: CS Model. Risk of fair contracts in Table 3 as a fumctbg for By = 10 with y = 10%.

and at the same time increasing ongoing surplus distribuigiech that the market value of the
contract is unchanged.

Figure 4 also illustrates that variance of the referencé@ar has a great influence on the risk.
An increment of 5% ino doubles the probability of shortfall for fair contracts. el'bffect on
expected shortfall and downside variance is even stronger.

In contrast to the uniform observations B¢ = 10, LPM curves forBy = 0 in Figure 5 are more
complex. The effect of the interaction betweganda on the risk of fair contracts depends on
the asset volatility and on the risk measure, i.e., on thegtei assigned to the extent of the
shortfall. Moreover, as expected, the risk level is gemgragher than foBy = 10.

For an asset volatility = 10%, the lower partial moments in Figlire 5 decrease for |dwesof
the guaranteed interest rgg@nd increase for values gfclose to the risk-free rate= 4%. This
means that for each lower partial moment of degree 0, 1, atite® is an inflection point with
least risk. With increasing degree the inflection point gets smaller, implying that, depegdin
on the risk measure, there exists a guaranteed interegj véth least risk for fair contracts. In
our exampleg= 3% seems to be close to a risk-minimizing choice for the salbgrobability,
andg'= 2% results in risk-minimization for expected shortfall admvnside variance.

If one considers the expected shortfall as the relevantmissure, the parameter combinations
§=0.5%,a =1827% andg= 3.3%, 0 = 42.8% lead to the same expected shortfall uriéland

to the same market value und@r However, by choosing a guaranteed interest rate in between
these values, e.gg,= 2% anda = 107.1%, expected shortfall can be reduced without changing
the market value of the contract. One could even go one stégefu by choosing any guaranteed
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interest rategy between (% and 33%, the company can find a surplus distribution coefficeent
that leads to a higher market value un@eand a lower expected shortfall undemat the same
time. For example, makg= 2% anda = 120%.

Shortfall Probability Expected Shortfall Downside Variance
T T T T T
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Figure 5: CS Model. Risk of fair contracts in Table 3 as a functbg for Bo = 0 with y = 10%.

For a volatility of o = 15%, only the shortfall probability shows the same effe¢hmconsidered
interval while expected shortfall and downside varianeeiacreasing irg.”

In our analysis of risk created by cliquet guarantees, weded on the relation between the
guaranteed interest rageaind the participation parameter For a contract with positive initial
reservedy = 10 we foundg'to be the dominating parameter responsible for risk. In¢hse,
the insurer could keep the market value the same and redikckyrincreasing the annual bonus
participation and lowering the guaranteed interest ratioihg so would not violate any legal
requirements.

In contrast, an insurance contract with zero initial reesiBy = O leads to a more complex
picture as thé.PM curve characteristics show different dynamics. The impaat andgon risk
varies depending on asset volatility abEM degreen. As a result, the influence of the annual
participation ratea should not be underestimated since it can have a signifiogoadt on the
risk of fair contracts and even dominate the effect of thegni@ed interest ratg This concern
makes it worthwhile to analyze models of practical relewaimcdifferent countries and identify
key risk drivers for other cliquet-style models.
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5 A DANISH CLIQUET-STYLE MODEL

We now turn to a model of participating life insurance coctisahat has practical relevance in
Denmark. In this section we study a model suggested by Haars@Miltersen (2002) that is a
hybrid of the CS model discussed above, and the model of idteand Persson (2003).

Dynamics of the liabilities and customer payoff

Hansen and Miltersen’s (2002) model has a smoothing sugpsisbution mechanism similar
to that of the CS model. In addition, a positive terminal boraserve is transferred to the pol-
icyholder and adds to the maturity payment, whereas a megatinus reserve must be covered
by the insurance company. The insurance company issuega eépptions on annual returns,
which are covered by the bonus reserve. The policyholdes aaynnual percentage #€gwhich

is collected in the company’s accouiit

The percentage fe€ is directly subtracted from the policy interest rate anddfarred taC. To
be consistent with Hansen and Miltersen (2002), the poksgrrve is compounded continuously:

B(t—1)

P(t) = P(t— 1)e{max[g,ln(1+a<m—y>)]—f}'

Note that the feé represents a fundamental control mechanism for the mapaitment because
it directly reduces the policy interest rate.

To calculate the buffer ratiB(t) /(P(t) +C(t)), P+ C is modeled as follows:

(Pt) + (1) = (Pt~ 1)+ C(t - el (e (e ticin )]}

The difference betweel andP + C is the annual payment fee transferred to company’s account
C, ie.
C(t) = (P(t) +C(t)) —P(t),

and the bonus accouBtis residually determined as:
B(t)=B(t—1)+A(t) —Alt—1)— (P(t)+C(t)) +(Pt—1)+C(t—1)).
Summarizing, the customer payoff adds up to:

Lt =P(T)+S(T)=P(T)+B(T)"

=h e{max[g"”@*“(ﬁf
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Fair contracts

As in the related CS model, there are no analytical expres$mrexpectations and thus Monte
Carlo simulation is used for evaluations. Following Hansed ®liltersen, we assume that the
contract is not backed by initial reserves, i& = 0. Instead, we focus on the guaranteed interest
rate and the newly introduced payment &dn our analysist = 4%, T = 10, y=10% Py = 100,
andBgy = 0.

Parameter combinatior{g, &) of fair contracts satisfying Equation (2) are shown in Tabler
o = 10% ando = 15% and several values af. Our results are consistent with the parameter
combinationgg, a, &) found by Hansen and Miltersé.

g

a | 0% 1% 2% 3% 4%
20% | 0.18% 0.32% 0.54% 0.87% 1.32%
0 =10% | 50% | 0.23% 0.37% 0.59% 0.90% 1.33%
90% | 0.31% 0.46% 0.68% 0.99% 1.41%

20% | 0.64% 0.86% 1.16% 1.54% 2.00%
0=15% | 50% | 0.77% 1.00% 1.28% 1.64% 2.08%
90% | 0.96% 1.19% 1.48% 1.84% 2.27%

Table 4: Danish Model. Values &ffor fair contracts.

With increasing guaranteed interest rgtand fixeda, there is a greater possibility of a higher
maturity payment and, therefore, the f€anust be raised to keep the contract fair. As in the
other models, an increase of the asset volatditio 15% makes the bonus option element more
valuable and therefore requires an increasé& for fixed a to counterbalance this effect.

Shortfall

As described in our basic model, a shortfall occurs if:
T (i-1)
AT)<P(T)=R r!e{max[g"”<l+“<<P<iBl>+é<i1)>‘Vm }e—Tf,
i=

Since the customer payoH(T) and the company’s accou@T) depend on the guaranteed
interest ratey, the target buffer ratig, the annual participation coefficieat and the payment fee
¢, the considered lower partial moments are again functibtieese parameters. Once more, path
dependency makes it impossible to derive closed-form isolsiffor these lower partial moments
and so Monte Carlo simulation is employed to get numericailtes

11 Hansen and Miltersen used the Newton algorithngdor & given.
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Isoquants

Figurel6 displays parameter combinatiofgs ) of contracts with the same market price under
Q (cf. Table 4) as well as combinations with a shortfall prabigbof 3% and 10% undei®.
Obviously,g and¢ have opposite effects on risk as the shortfall probabiitycreasing irg and
decreasing irf. This leads to the result that for increasipgf also must increase so as to keep
the shortfall probability constant.

Isoquants
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Figure 6: Danish Model. Isoquants for= 10%,a = 20%, y = 10%.

Combinations oy and¢ that are below an iso-shortfall probability curve therefaepresent con-
tracts with higher shortfall probability; parameter condtions above the curve represent con-
tracts with a lower shortfall probability. From this it caa bbserved that parameter combinations
of fair contracts lead to a shortfall probability greatearit8%.

The 10% shortfall probability curve is below the curve regarting fair contracts for low values
of g (g < 1.5%) and above it for high values gf(g > 2%), implying that lower values of the
guaranteed interest rate result in a lower shortfall prdityleven though the contracts are fairly
priced. If the guaranteed interest rate is reduced to 1% lonbeven for no payment fe&, the
shortfall probability falls below 10%. Overall, in the expla shown, the feé has less influence
on the shortfall probability than does the guaranteed eésterateg. The risk of fair contracts is
analyzed in more detail in the following section.
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Risk of fair contracts

The risk of fair contracts in terms gfis displayed in Figure 7, based on the parameter combina-
tions in Table 4. All three risk measures are increasingdespite the simultaneously increasing
payment fe€ . Fora = 20% ando = 10%, the shortfall probability dramatically increasesiro
close to 0% whemy = 0% to more than 18% fog = 4%. With increasingr and increasingp,

this effect is weakened, but risk continues to increase initheasingg; thus the effect ofj on

the risk of fair contracts dominates the effectof

Shortfall Probability Expected Shortfall Downside Variance
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Figure 7: Danish Model. Risk of fair contracts in Table 4 asrecfion ofg with Bg = 0.

We also observe that the annual participation cataitweighs the impact of on risk. By fixing

g, we observe that a larger (combined with higheg) induces a higher shortfall risk. Further
calculations revealed that the impactafon risk of fair contracts outweighs the effect@fs
well. This finding further emphasizes that ongoing surpisgithution may be the key risk driver
for contracts with cliquet-style guarantees.

Comparing the risk of fair contracts for different asset tibtees o, we observe that a higher
volatility o combined with a higher feé leads to a higher shortfall probability. The shortfall
curves foro = 15% shown in Figure 7 are clearly above the shortfall cureesf= 10%.

In our study, we assumesh = 0 so as to be consistent with Hansen and Miltersen (2002). The
absolute level of risk decreases if initial reserves ararassl, but initial reserves appear to have
no influence on the basic effects shown in this section. Euntbre, transfer of the terminal
bonus to the policyholder changes the market value of théracnwithout changing the risk.
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Thus, terminal bonuses can be used to lower the risk, a findingsimilar to the PTP model (see
Section 3).

6 SUMMARY

Risk-neutral valuation for insurance contracts is an imguarscholarly as well as practical issue.
Even though this is an appropriate method to handle the tiafuaf insurance liabilities, the
underlying assumption of a perfect hedging strategy cabe@asily implemented by insurance
companies. We extend the literature and relate the finaaothbctuarial approaches by measur-
ing the effects of various contract parameters on actuéwedd risk to the insurer for policies
with the same value under the risk-neutral measure. We ddthemploying several common
models containing point-to-point as well as cliquet-styarantees.

We showed that for all models considered, the risk of fairtamts differs with variations in
parameters. This result is significant for future consitlena of fair valuation techniques. We
further examined one additional model commonly used byrigerance companies in the United
Kingdom and suggested by Haberman et al. (2003). For thieimthet major risk characteristics
of fair contracts are consistent with what we observed irother models.

In our analysis, we identified key risk drivers. Terminal bsrparticipation plays a major role
in minimizing risk, given that it has no impact on shortfaRaising the share in the terminal
bonus reduces the guaranteed interest rate and the annplakssparticipation for fair contracts,
thereby lowering risk. This resultis common to all modelalgped. For all cliquet-style models,
the shortfall probability can be greatly reduced by raighmgterminal surplus participation while
concurrently lowering the annual participation. The resale even more dramatic for the model
with a point-to-point guarantee.

For cliquet-style models, we found that the company’sahitionus reserve has a major influence
on the risk imposed by fair contracts when imperfect hedgiocurs. Overall, the risk of fair
contracts is much lower for positive initial reserves thanzero reserves.

Common to all models considered was that contracts withigesititial reserves demonstrate in-
creasing shortfall probability, expected shortfall, andvdside variance as the guaranteed interest
rate rises. Hence, in the case of positive reserves, themsised by a fair life insurance contract
is mainly driven by the interest rate guarantee, and notéwtimual participation coefficient. The
contract can remain fair with reduced shortfall risk thrb@greduction in the guaranteed interest
rate.

For contracts with very low positive initial reserves, thedings are much more complex. In this
case, the results strongly depend on the underlying monelyary with risk measures and asset
volatility. In particular, the annual surplus particigatican dominate the effect of the guaranteed
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interest rate. Therefore, an insurer may find it preferableffer higher guarantees with lower
annual surplus participation.
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