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Abstract

In general, the capital requirement under Solvency II is determined as the 99.5% Value-at-Risk of

the Available Capital. In the standard model’s longevity risk module, this Value-at-Risk is approximated

by the change in Net Asset Value due to a pre-specified longevity shock which assumes a 25% reduction

of mortality rates for all ages.

We analyze the adequacy of this shock by comparing the resulting capital requirement to the Value-

at-Risk based on a stochastic mortality model. This comparison reveals structural shortcomings of the

25% shock and therefore, we propose a modified longevity shock for the Solvency II standard model.

We also discuss the properties of different Risk Margin approximations and find that they can yield

significantly different values. Moreover, we explain how the Risk Margin may relate to market prices

for longevity risk and, based on this relation, we comment onthe calibration of the cost of capital rate

and make inferences on prices for longevity derivatives.
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1 Introduction

As part of the Solvency II project, the capital requirementsfor European insurance companies will be revised

in the near future. The main goal of the new solvency regime isa more realistic modeling and assessment

of all types of risk insurance companies are exposed to. In principle, the Solvency Capital Requirement

(SCR) will then be determined as the 99.5% Value-at-Risk (VaR) of the Available Capital over a 1-year time

horizon, i.e., the capital required today to cover all losses which may occur over the next year with at least

99.5% probability. For a detailed overview and a discussionof the Solvency II proposals, we refer to Eling

et al. (2007), Steffen (2008), and Doff (2008). A comparisonwith other solvency regimes can be found in

Holzmüller (2009).

Insurance companies are encouraged to implement (stochastic) internal models to assess their risks as accu-

rately as possible. However, the implementation of such internal models is rather costly and sophisticated.

Therefore, the European Commission with support of the Committee of Insurance and Occupational Pen-

sion Supervisors (CEIOPS) has established a scenario basedstandard model which all insurance companies

will be allowed to use in order to approximate their capital requirements. In this model, the overall risk is

split into several modules, e.g. for market risk, operational risk, or life underwriting risk, and submodules

for which separate SCRs are computed. These SCRs are then aggregated under the assumption of a multi-

variate normal distribution with pre-specified correlation matrices to allow for diversification effects. The

setup and calibration of the standard model is currently being established by a series of Quantitative Impact

Studies (QIS) in which the effects of the new capital requirements are analyzed. Even though this stan-

dard model certainly has some shortcomings (for critical discussions see, e.g., Doff (2008) or Devineau and

Loisel (2009)), most small and medium-size insurance companies are expected to rely on this model. But

also larger companies are likely to adopt at least a few modules for their (partial) internal models. Hence, a

reasonable setup and calibration of the standard model is crucial in order to ensure the financial stability of

the European insurance markets.

One prominent risk annuity providers and pension funds are particularly exposed to is longevity risk, i.e.

the risk that insured on average survive longer than expected. The importance of this risk is very likely

to increase even further in the future: A general decrease inbenefits from public pay as you go pension

schemes in most industrialized countries, often in combination with tax incentives for private annuitization,

will almost certainly lead to a further increasing demand for annuity products. Moreover, longevity risk

constitutes a systematic risk as it cannot be diversified away in a large insurance portfolio. It is also non-

hedgeable since, currently, no liquid and deep market exists for the securitization of this risk.

In the Solvency II standard model, longevity risk is explicitly accounted for as part of the life underwriting

risk module. The SCR is, in principle, computed as the changein liabilities due to a longevity shock that

assumes a permanent reduction of mortality rates. Up to QIS4, this reduction was set to 25% and was mainly

based on what insurance companies in the United Kingdom (UK)in 2004 regarded as consistent with the

general 99.5% VaR concept of Solvency II (cf. CEIOPS (2007)). However, the shock’s magnitude has been

widely discussed over the last years. For instance, some participants of QIS4 regard a shock of 25% as very

high (cf. CEIOPS (2008c)) whereas CEIOPS (2010) is still convinced that a reduction of mortality rates by

25% is adequate. In CEIOPS favor, one could argue that the shock should be rather large as the standard
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model is meant to be conservative in order to give incentivesfor the implementation of internal models.

Nevertheless, only very recently, the European Commission(2010) has decided to reduce the longevity

stress to 20% for QIS5 without giving detailed reasoning forthis recalibration. The computations in this

paper are still based on the value of 25% but, as we mainly focus on the structure of the shock as opposed to

its magnitude, we are convinced that all major findings remain valid also for a longevity stress of only 20%.

Besides the magnitude, also the structure of the longevity stress has been the topic of ongoing discussions.

A reason given by QIS4 participants for not applying the standard model is that “the form of the longevity

stress within the SCR standard formula does not appropriately reflect the actual longevity risk, specifically it

does not appropriately allow for the risk of increases in future mortality improvements” (CEIOPS (2008c)).

CEIOPS (2009a, 2010) acknowledges the feedback that a gradual change in mortality rates may be more

appropriate than a one-off shock and also analyzes a possible longevity stress dependency on age and du-

ration but finally decides to stick to the equal one-off shockfor all ages and durations. A consequence of

this decision could be an unnecessarily high capitalization of insurance companies in case longevity risk

is overestimated by the current longevity shock. In the converse case, a company’s default risk could be

significantly higher than the accepted level of 0.5%.

Therefore, a thorough analysis is required whether or not the change in liabilities due to a 25% longevity

shock constitutes a reasonable approximation of the 99.5% VaR of the Available Capital. This analysis is

carried out in this paper. We examine the adequacy of the shock’s structure, i.e. an equal shock for all ages

and maturities, and its calibration. Moreover, we explain how it could possibly be improved. In the second

part of the paper, we discuss the Risk Margin under Solvency II for the case of longevity risk. Due to its

complexity, different approximations have been proposed whose properties and performances are yet rather

unclear. We examine these approximations, in particular the assumption of a constant ratio of SCRs and

liabilities over time which has turned out to be very popularin practice. Moreover, we contribute to the

ongoing debate on the calibration of the cost of capital rateby relating the Risk Margin to (hypothetical)

market prices for longevity risk. This approach offers a newperspective compared to the shareholder return

models which have been applied in the calibration so far (cf.CEIOPS (2009b)). Using the same relation

and assuming the cost of capital rate to be fixed, we can finallymake inferences on the pricing of longevity

derivates.

The impact and the significance of longevity risk on annuity or pension portfolios have already been an-

alyzed by several authors. However, not all of their work directly relates to capital requirements under a

particular solvency regime. For instance, Plat (2009) focuses on the additional longevity risk pension funds

can be exposed to due to fund specific mortality compared to general population mortality. Stevens et al.

(2010) compare the risks inherent in pension funds with different product designs, and Dowd et al. (2006)

measure the remaining longevity risk in an annuity portfolio in case of imperfect hedges by various longevity

bonds. Others, like Hari et al. (2008a), Olivieri and Pitacco (2008a,b), and Olivieri (2009), do analyze cap-

ital requirements for certain portfolios but consider approaches which differ from the 1-year 99.5% VaR

concept of Solvency II, e.g. they assume longer time horizons and different default probabilities. Therefore,

no final conclusion regarding the standard model approach ispossible in their setting. Nevertheless, Olivieri

and Pitacco (2008a,b) come to the conclusion that the “shockscenario referred to by the standard formula
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can be far away from the actual experience of the insurer, andthus may lead to a biased allocation of capi-

tal”. They find that the standard formula contains some strong simplifications and argue that internal models

should be adopted instead. At least, the magnitude of mortality reductions should be recalibrated to capital

requirements derived from an exemplary internal model.

The remainder of this paper is organized as follows: In Section 2, the relevant quantities, i.e. the Available

Capital, the Risk Margin, and the Solvency Capital Requirement are defined. For the latter, different defini-

tions based on the 25% longevity shock (the shock approach) and based on the VaR of the Available Capital

(the VaR approach) are given. Moreover, the practical computation of these SCRs is described. Since the

computation in the VaR approach requires stochastic modeling of mortality, in Section 3, we discuss the suit-

ability of different mortality models and explain why we decided to use the forward model of Bauer et al.

(2008, 2010). Subsequently, we introduce the forward mortality modeling framework, in which this model

is specified. The full specification of the model and an improved calibration algorithm are presented in the

appendix. In Section 4, we establish the setting in which theSCRs from both longevity stress approaches

are to be compared. In particular, assumptions and simplifications are introduced which are necessary to

exclude risks other than longevity risk and to ensure that a direct comparison of SCRs based on a one-off

shock approach and a gradual change in mortality as in the model of Bauer et al. (2008, 2010) is possible.

The comparison is then performed in Section 5. In the process, various term structures, ages, levels of mor-

tality rates, and portfolios of contracts are considered. Based on these comparisons, a modified longevity

stress for the standard model is proposed in Section 6, whichis still scenario based but allows for the shock

magnitude to depend on age and maturity. In Section 7, the Risk Margins based on the 25% shock and

the modified longevity stress are compared and the properties of different Risk Margin approximations are

analyzed. Moreover, we discuss the adequacy of the current cost of capital rate and argue how the pricing of

longevity derivatives may relate to the Solvency II capitalrequirements and the Risk Margin in particular.

Finally, Section 8 concludes.

2 The Solvency Capital Requirement under Solvency II

2.1 General definitions

Intuitively, the Solvency Capital Requirement (SCR) underSolvency II is defined as the amount of capital

necessary at timet = 0 to cover all losses which may occur untilt = 1 with a probability of at least

99.5%. However, in order to give a precise definition of the SCR, we first need to introduce the notion of

the Available Capital.

By definition, the Available Capital at timet, ACt, is the difference between market value of assets and

market value of liabilities at timet. Thus, it is a measure of the amount of capital which is available to

cover future losses. In general, the market value of a company’s assets can be derived rather easily: Either

asset prices are directly obtainable from the financial market (mark-to-market) or the assets can be valued

by well established standard methods (mark-to-model). Themarket value of liabilities, however, is difficult

to determine. There is no liquid market for such liabilitiesand due to options and guarantees embedded

in insurance contracts, the structure of the liabilities istypically rather complex such that standard models
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for asset valuation cannot be applied directly. Therefore,under Solvency II a market value of liabilities is

approximated by the so-called Technical Provisions which consist of the Best Estimate Liabilities (BEL)

and a Risk Margin (RM).

The Risk Margin can be interpreted as a loading for non-hedgeable risk and has to “ensure that the value

of technical provisions is equivalent to the amount that (re)insurance undertakings would be expected to

require to take over and meet the (re)insurance obligations” (CEIOPS (2008a)). Thus, in case of a company’s

insolvency, the Risk Margin should be large enough for another company to guarantee the proper run-off of

the portfolio of contracts. It is computed via a cost of capital approach (cf. CEIOPS (2008a)) and reflects

the required return in excess of the risk-free return on assets backing future SCRs. Hence, the Risk Margin

RM can be defined as (cf. CEIOPS (2009b))

RM :=
∑

t≥0

CoC · SCRt

(1 + it+1)
t+1 , (1)

whereSCRt is the SCR at timet, it is the annual risk-free interest rate at time zero for maturity t, andCoC

is the cost of capital rate, i.e. the required return in excess of the risk-free return.

The SCR is defined as the 99.5% VaR of the Available Capital over 1 year, i.e. the smallest amountx for

which (cf. Bauer et al. (2010))

P (AC1 > 0|AC0 = x) ≥ 99.5%. (2)

However, since this implicit definition is rather unpractical in (numerical) computations, one often uses the

following approximately equal definition (cf. Bauer et al. (2010))

SCRV aR := argminx

{

P

(

AC0 −
AC1

1 + i1
> x

)

≤ 0.005

}

. (3)

From Equations (1) and (3), a mutual dependence between Available Capital and SCR becomes obvious:

The SCR is computed as the VaR of the Available Capital, and the Available Capital depends on the SCR

via the Risk Margin. In order to solve this circular relation, CEIOPS (2009a) states that – whenever a life

underwriting risk stress is based on the change in value of assets minus liabilities – the liabilities should not

include a Risk Margin when computing the SCR. Thus, it is assumed that the Risk Margin does not change

in stress scenarios and that the change in Available Capitalcan be approximated by the change in Net Asset

Value

NAVt := At −BELt.

Here,At denotes the market value of assets andBELt the Best Estimate Liabilities at timet. For simplicity,

we will refer to the latter as the liabilities only in what follows.

2.2 The Solvency Capital Requirement for longevity risk

As mentioned in the introduction, the Solvency II standard model follows a modular approach where the

modules’ and submodules’ SCRs are computed separately and then aggregated according to pre-specified

correlation matrices. Thus, for the submodule of longevityrisk the SCR should, in principle, be computed
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as (cf. Equation (3))

SCRV aR
long := argminx

{

P

(

NAV0 −
NAV1

1 + i1
> x

)

≤ 0.005

}

, (4)

whereBELt andAt in the definition ofNAVt correspond to the liabilities of all contracts which are exposed

to longevity risk and the associated assets, respectively.

In the current specification of the Solvency II standard model, however, the SCR for longevity risk – as an

approximation ofSCRV aR
long – is determined as the change in Net Asset Value due to a longevity shock at

time t = 0 (cf. CEIOPS (2008a)), i.e.

SCRshock
long := NAV0 − (NAV0|longevity shock). (5)

The longevity shock is a permanent reduction of the mortality rates for each age by 25%. This shock is only

meant to account for systematic changes in mortality and does not account for small sample risk. Therefore,

we also disregard any small sample risk in the VaR approach asan inclusion would blur the results of our

comparison in Section 5. In what follows, we only consider the SCR for longevity risk and thus omit the

index ·long for simplicity.

3 The mortality model

3.1 Model requirements

The computation of the SCR for longevity risk via the VaR approach obviously requires stochastic modeling

of mortality. In the literature, a considerable number of stochastic mortality models has been proposed and

for an overview we refer to Cairns et al. (2008). However, only very few of these models are suitable for the

computation of a VaR over a 1-year time horizon.

From an annuity provider’s perspective, longevity risk in the 1-year setting of Solvency II consists of two

components: First, there is the risk that next year’s realized mortality will be (significantly) below its ex-

pectation, e.g., due to a mild winter with less people than usual dying from flu. The second component is

the risk of a decrease in expected mortality beyond next year, for which a cure for cancer is the classical

example. A newly discovered medication against cancer would have to be tested thoroughly first and it

would take some time until it would be available to a group of people large enough such that mortality on

a population scale would be affected. Thus, a noticeable effect on next year’s realized mortality is rather

unlikely. However, (long-term) mortality assumptions would certainly have to be revised. Both components

of the longevity risk lead to higher than expected liabilities att = 1: in the first case, because more insured

would still be alive than assumed and in the second case, because for those who are still alive liabilities at

t = 1 on a best estimate basis would be larger than anticipated att = 0. Hence, in order to properly assess

longevity risk over a 1-year time horizon, a stochastic mortality model must account for both components

of the risk.

The most common mortality models belong to the class of spot models where only realized (period) mortal-
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ity is modeled. To account for anticipated changes in mortality over time (typically by assuming a decrease

in mortality), spot models contain a mortality trend assumption. However, in most spot models this trend

is fixed as part of the calibration process and scenarios of realized mortality are derived as random devia-

tions from this trend. This means that the liabilities att = 1 are always computed based on the same trend

assumption as att = 0 and thus, these models do not account for the second component of the longevity

risk.

Some authors have overcome the issue of a fixed mortality trend though and explicitly allow for changes

in this trend. For instance, Cox et al. (2009) propose a very comprehensive model which includes compo-

nents for mortality jumps and for mortality trend reductions. However, besides the issue that the calibration

of their model significantly relies on expert judgment, theyonly allow for temporary trend changes. The

long-term mortality trend assumption is fixed and thus, onlyparts of the second component of the longevity

risk are covered by their model. Very similar arguments holdfor the models of Biffis (2005) and Hari et

al. (2008b) where the process which models the mortality trend is mean reverting with the mean fixed at

t = 0. Milidonis et al. (2010) take a different approach and use a Markov regime switching model with dif-

ferent trend and volatility assumptions in the two mortality regimes under consideration. However, in their

model, the anticipated long-term mortality trend is ratherfixed by the stationary distribution of the Markov

chain and hence, the model does also not sufficiently accountfor possible changes in the anticipated long-

term mortality trend. A way to overcome this issue is presented by Sweeting (2009) who incorporates a

trend change component into the model of Cairns et al. (2006a). The trend parameters in the two stochastic

factors can change each year and, in contrast to the previousmodels, the current trend parameters always

determine the best estimate mortality trend until infinity.However, due to only three possible scenarios for

each trend parameter in a 1-year simulation (upward/downward movement by a fixed amount or remain-

ing unchanged), the range of possible overall trend changesover one year is very limited. This makes a

reasonable computation of a 99.5% quantile impossible as, for such a computation to be sound, the distri-

bution of the magnitude of trend changes would have to be (at least approximately) continuous. Therefore,

we conclude that also very recently developed spot models which allow for trend changes are not directly

applicable in the Solvency II framework.

A class of mortality models which overcomes the outlined drawbacks of spot models are so-called forward

mortality models. Such models can be seen as an extension of spot models in the time/maturity dimension as

they require the expected future mortality as input and model changes in this quantity over time. Thus, they

simultaneously allow for random evolutions of realized mortality and for changes in the long-term mortality

expectation. Even changes in expected mortality for only certain future time periods can be modeled in

contrast to trend-varying spot models where changes in the trend parameters influence expected mortality

at all future points in time. This makes forward models usually more complex than spot models but for a

reasonable computation of a 1-year VaR this additional complexity seems inevitable. Moreover, even if an

adequate spot model existed, a forward model would still offer the advantage that no nested simulations

would be required for the computation of the liabilities att = 1. In a forward modeling framework, these

liabilities can be computed directly based on the current mortality surface, whereas, when using a spot

model, for each 1-year simulation path another set of paths is needed to compute the liabilities by Monte
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Carlo simulation.

For our analyses in the following sections, we use a slightlymodified version of the forward mortality model

introduced by Bauer et al. (2008, 2010) which we refer to as the BBRZ model. Forward mortality models

have been proposed by other authors as well, e.g. Dahl (2004), Miltersen and Persson (2005), or Cairns et

al. (2006b). However, to our knowledge, they do not provide concrete specifications of their models. Thus,

the BBRZ model is the only forward model which is readily available for practical applications. In the

following subsection, we introduce the forward mortality framework in which the BBRZ model is specified.

The full specification of the model is given in the appendix where also an improved calibration algorithm is

presented.

3.2 The forward mortality framework

Following Bauer et al. (2008, 2010), for the remainder of this paper we fix a time horizonT ∗ and a filtered

probability space(Ω,F ,F, P ), whereF = (F)0≤t≤T ∗ satisfies the usual conditions. We assume a large but

fixed underlying population of individuals, which is reasonable as we disregard any small sample risk in our

setting. Each age cohort in this population is denoted by itsagex0 at timet0 = 0. We also assume that the

best estimate forward force of mortality with maturityT as from timet,

µt(T, x0) := −
∂

∂T
log
{

EP

[

T p
(T )
x0

∣

∣

∣
Ft

]}

T>t
= −

∂

∂T
log
{

EP

[

T−tp
(T )
x0+t

∣

∣

∣
Ft

]}

, (6)

is well defined. Here,T−tp
(T )
x0+t denotes the proportion of(x0 + t)-year olds at timet ≤ T who are still

alive at timeT , i.e. it is the survival rate or the “realized survival probability”. Moreover, we assume that

(µt(T, x0)) satisfies the stochastic differential equations

dµt(T, x0) = α(t, T, x0) dt+ σ(t, T, x0) dWt, µ0(T, x0) > 0, x0, T ≥ 0, (7)

where (Wt)t≥0 is a d-dimensional standard Brownian motion independent of the financial market, and

α(t, T, x0) as well asσ(t, T, x0) are continuous int. Furthermore, the drift termα(t, T, x0) has to sat-

isfy the drift condition (cf. Bauer et al. (2008))

α(t, T, x0) = σ(t, T, x0)×

∫ T

t
σ(t, s, x0)

′ ds. (8)

This implies that a forward mortality model is fully specified by the volatilityσ(t, T, x0) and the initial

curveµ0(T, x0).

From definition (6), we can deduce the best estimate survivalprobability for anx0-year old to survive from

time zero to timeT as seen at timet:

EP

[

T p
(T )
x0

∣

∣

∣Ft

]

= EP

[

e−
∫ T

0
µu(u,x0) du

∣

∣

∣Ft

]

= e−
∫ T

0
µt(u,x0) du. (9)

For t = 1, these are the survival probabilities we need in order to compute the liabilities and the Net

Asset Value after one year. Note thatµt(u, x0) = µu(u, x0) for u ≤ t since the volatilityσ(t, u, x0) must
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obviously be equal to zero foru ≤ t. Inserting the dynamics (7) into (9) yields

EP

[

T p
(T )
x0

∣

∣

∣
Ft

]

= EP

[

T p
(T )
x0

]

× e−
∫ T

0 (
∫ t

0 α(s,u,x0) ds+
∫ t

0 σ(s,u,x0) dWs)du, (10)

which means that we actually do not have to specify the forward force of mortality. For our purposes, it is

sufficient to provide – besides the volatilityσ(s, u, x0) – best estimateT -year survival probabilities as at

time t = 0 which can, from a technical point of view, be obtained from any generational mortality table.

Given these quantities, we are able to compute the SCR for longevity risk via the VaR approach empirically

by means of Monte Carlo simulation.

Since we use a deterministic volatility (cf. appendix) the forward force of mortality is Gaussian. Hence, it

could become negative for extreme scenarios with survival probabilities becoming larger than 1. However,

for the 50,000 paths we have randomly chosen for the empirical computation of the VaR in the subsequent

analysis such a scenario does not occur and therefore, we regard this as a negligible shortcoming for practical

considerations, even in tail scenarios. Moreover, survival probabilities larger than 1 can also be regarded as

unproblematic with respect to longevity risk as they merelymake a Gaussian forward mortality model more

conservative.

An appealing feature of the Gaussian setting is that – given adeterministic “market price of risk” process

(λ(t))t≥0 – the volatilities under the real world measureP and under the equivalent martingale measureQ

generated by(λ(t))t≥0 via its Radon-Nikodym density (see, e.g., Harrison and Kreps (1979) or Duffie and

Skiadas (1994))
∂Q

∂P

∣

∣

∣

∣

Ft

= exp

{
∫ t

0
λ(s)′ dWs −

1

2

∫ t

0
‖λ(s)‖2 ds

}

,

coincide (cf. Bauer et al. (2008)). Hence, risk-adjusted survival probabilities, i.e. survival probabilities under

the measureQ, can easily be derived from their best estimate counterparts via

EQ

[

T p
(T )
x0

∣

∣

∣Ft

]

= EQ

[

e−
∫ T

0 µu(u,x0) du
∣

∣

∣Ft

]

= EQ

[

e−
∫ T

0 (µt(u,x0)+
∫ u

t
α(s,u,x0) ds+

∫ u

t
σ(s,u,x0) dWs)du

∣

∣

∣Ft

]

= e−
∫ T

0

∫ u

t
σ(s,u,x0)λ(s) ds du × EQ

[

e−
∫ T

0 (µt(u,x0)+
∫ u

t
α(s,u,x0) ds+

∫ u

t
σ(s,u,x0) (dWs−λ(s) ds))du

∣

∣

∣Ft

]

= e−
∫ T

0

∫ u

t
σ(s,u,x0)λ(s) ds du × EP

[

T p
(T )
x0

∣

∣

∣
Ft

]

, (11)

since
(

W̃t

)

t≥0
with W̃t = Wt −

∫ t
0 λ(u) du is aQ-Brownian motion by Girsanov’s Theorem (see e.g.

Theorem 3.5.1 in Karatzas and Shreve (1991)). We will make use of this relation when we analyze the Risk

Margin in Section 7.

4 The model setup

In this section, we describe the setting for our analysis of the longevity stress in the Solvency II standard

model which includes assumptions on the interest rate evolution, the reference company’s asset strategy, the

contracts under consideration, as well as the best estimatemortality.
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Our reference company is situated in the UK and is closed to new business. We sett = 0 in 2007 and

as risk-free interest rates we deploy the risk-free term structure for year-end 2007 provided by CEIOPS

(2008b) as part of QIS4. For the approximative definition of the SCR (cf. Equation (3)) to coincide with the

exact definition (cf. Equation (2)), we assume that the company’s assets and Technical Provisions coincide

at t = 0. Since we want our company to be solely exposed to longevity risk, we also assume that it only

invests in risk-free assets and that it is completely hedgedagainst changes in interest rates. As a consequence

of the latter, a deterministic approach for the interest rate evolution is sufficient and the company specific

risk-free term structure at timet can be deduced from the 2007 term structure. We denote byi(t, T ) the

annual interest rate for maturityT at timet, t ≤ T . The company’s risk-free assets are traded only when

premium payments are received or survival benefits are paid and in each case the asset cash flow coincides

with the liability cash flow. Hence, differing values of assets and Technical Provisions att > 0 are always

and only due to changes in (expected) mortality. Finally, wedisregard any operational risk.

As standard contracts we consider immediate and deferred life annuities which pay a fixed annuity amount

yearly in arrears if the insured is still alive. We assume that these contracts do not contain any options or

guarantees for death benefits. Moreover, there is no surplusparticipation and any charges are disregarded.

Thus, in case anx0-year old att0 = 0 is still alive at timet, the liabilities for an exemplary immediate

annuity contract paying£1 are

BELt =
∑

T>t

1

(1 + i(t, T ))T−t
·EP

[

T p
(T )
x0

∣

∣

∣
Ft

]

. (12)

The best estimate survival probabilities att = 0 are as for UK Life Office Pensioners in 2007. More

specifically, we use the basis table PNMA00 which contains amounts based mortality rates for normal

entries in 2000, and a projection according to the average ofprojections used by 5 large UK insurance

companies in 2006. For details on this average projection, we refer to Bauer et al. (2010) and Grimshaw

(2007).

As a consequence of the assumptions on payment dates and the asset evolution, we have

A1 = A0 (1 + i(0, 1)) + CF1, (13)

whereCF1 denotes the company’s (stochastic) cash flow att = 1. In case of immediate annuities, this

cash flow is always negative, for deferred annuities it is positive as long as premiums are paid. For a mixed

portfolio of running and deferred annuities, it may be positive or negative. Equation (13) implies that

NAV0 −
NAV1

1 + i(0, 1)
=

BEL1 − CF1

1 + i(0, 1)
−BEL0,

and hence, the SCR formula in the VaR approach, Equation (4),simplifies to

SCRV aR = argminx

{

P

(

BEL1 − CF1

1 + i(0, 1)
−BEL0 > x

)

≤ 0.005

}

. (14)

Thus, we can disregard the evolution of the assets in our computations. In our subsequent analysis, this
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SCR is computed empirically based on the forward mortality model introduced in the previous section.

For t = 1, Equation (10) describes how best estimate survival probabilities at the end of the year can be

simulated. For each path, the Best Estimate Liabilities andthe cash flow att = 1 are then computed based

on these probabilities and the SCR finally corresponds to theempirical 99.5% quantile of the loss variable

BEL1 − CF1

1 + i(0, 1)
−BEL0.

Analogously to the SCR formula in the VaR approach, also the SCR formula in the shock approach, Equation

(5), can be reformulated in terms of the liabilities:

SCRshock = (BEL0|longevity shock)−BEL0. (15)

Before we can start the comparison of the different SCR formulas, however, we need to ensure that the com-

parison does not get blurred simply because of the differingstructures of the SCR formulas in combination

with peculiarities of our modeling setup. To this end, an important observation can be made from the sim-

plified SCR formulas: The SCR in the VaR approach only dependson the expected mortality at the end of

the year, i.e. att = 1, because cash flows occur only yearly in our setting. Hence, it does not matter whether

changes in mortality emerge gradually over the year or in a one-off shock att = 0. Moreover, every gradual

mortality evolution can be expressed in a one-off shock att = 0, namely in a shock which transforms the

expected survival probabilities att = 0 into the ones obtained att = 1 via the gradual evolution. Therefore,

if we express a longevity scenario which yields the SCR in theVaR approach by a one-off shock denoted by

shockV aR, we obtain

SCRV aR = argminx

{

P

(

BEL1 − CF1

1 + i(0, 1)
−BEL0 > x

)

≤ 0.005

}

=

(

BEL1 − CF1

1 + i(0, 1)

∣

∣

∣

∣

shockV aR

)

−BEL0

=
(

BEL0| shock
V aR

)

−BEL0

= SCRshock.

The question for the subsequent analysis is now whethershockV aR can be the 25% shock. If the SCRs

computed according to Equations (14) and (15) coincide a 25%reduction in mortality rates corresponds

to a 200-year scenario for the mortality evolution over one year. Or in other words, if the SCRs differ

significantly, the 25% shock approach is not a reasonable approximation of the VaR concept.

5 Comparison of the SCR formulas

We start our analysis with a life annuity of£1000 for a 65-year old. The liabilities and the SCRs for the

shock approach and the VaR approach are given in Table 1 and weobserve that the shock approach requires

about 26% more capital than the VaR approach. Even though thestandard model longevity stress is meant

to be conservative, this deviation seems rather large. Alsoin relation to the liabilities att = 0, the deviation
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BEL0 BEL1 − CF1 SCR SCR/BEL0

Shock approach 12,619.28 14,238.81 869.87 6.9%
VaR approach 12,619.28 14,050.62 691.59 5.5%

Table 1: SCRs for a 65-year old
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T
)
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QIS4 term structure – 100bps
QIS4 term structure + 100bps

Flat term structure (4.5%)
UK swap curve 01/06/2009

Figure 1: Different term structures for SCR computation

of about 1.4% is significant.

A natural question now is what happens if we vary certain parameters in our computations, e.g. the age,

the best estimate survival probabilities, or the payment dates of the survival benefits. However, in order to

ensure that the deviation in SCRs is not primarily due to the term structure under consideration, let us first

recompute the SCRs in Table 1 for different interest rates. In addition to the QIS4 risk-free term structure,

we consider term structures shifted upwards and downwards by 100bps, a flat term structure at 4.5%, and the

UK swap curve as at 01/06/2009 (obtained from Bloomberg on 12/06/2009). For the latter, we interpolate

the quotes for the first 30 years with cubic splines and assumea flat yield curve thereafter. The differences

between these term structures are illustrated in Figure 1 and Table 2 provides the resulting liabilities and

SCRs.

As expected, the liabilities and also the SCRs increase withdecreasing interest rates. Moreover, from the

values ofSCRshock/BEL0 andSCRV aR/BEL0, we can observe that the SCR in the shock approach is

slightly more volatile than its counterpart in the VaR approach and thus more sensitive to changing interest

rates. Nevertheless, the relative deviation between the SCRs

∆SCR

SCRV aR
=

SCRshock − SCRV aR

SCRV aR
(16)

remains rather constant as can be seen in the last column. Hence, the interest rates obviously do not have a

significant impact on our analysis.

In order to analyze the SCRs for different ages, we consider ages between 55 and 105 as given in the first

column of Table 3. In the third and fourth column we see that the SCR in the shock approach first increases

with age and then decreases again and that the SCR relative tothe liabilitiesBEL0 becomes rather large for
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Term structure BEL0 SCRshock SCRshock

BEL0
SCRV aR SCRV aR

BEL0

∆SCR
SCRV aR

QIS4 12,619.28 869.87 6.9% 691.59 5.5% 25.8%
QIS4 - 100bps 14,002.91 1,090.17 7.8% 848.91 6.1% 28.4%
QIS4 + 100bps 11,448.34 701.71 6.1% 569.47 5.0% 23.2%
Flat (4.5%) 13,040.42 887.65 6.8% 710.19 5.5% 25.0%
Swap 01/06/2009 13,646.54 950.05 7.0% 753.73 5.5% 26.0%

Table 2: SCRs for different term structures

Age BEL0 SCRshock SCRshock

BEL0
SCRV aR SCRV aR

BEL0

∆SCR
SCRV aR

∆SCR
BEL0

55 15,671.10 657.23 4.2% 729.88 4.7% -10.0% -0.5%
65 12,619.28 869.87 6.9% 691.59 5.5% 25.8% 1.4%
75 8,941.83 1,009.81 11.3% 513.27 5.7% 96.7% 5.6%
85 4,940.13 1,003.43 20.3% 304.89 6.2% 229.1% 14.1%
95 2,549.75 818.58 32.1% 214.38 8.4% 281.8% 23.7%
105 1,413.19 646.23 45.7% 180.79 12.8% 257.4% 32.9%

Table 3: SCRs for different ages

very old ages. These observations are due to the structure ofthe longevity shock since the effect of the 25%

reduction increases as the mortality rates increase. In theVaR approach, the SCR decreases with age and

decreasing liabilities, and only the ratio of SCR and liabilities increases which seems more intuitive. In the

last two columns, we can observe that for ages above 85, the SCR in the shock approach more than triples

the SCR in the VaR approach and also in relation to the liabilities the deviation is huge. These observations

clearly question the adequacy of the longevity stress in thestandard model.

On the other hand, for age 55 the SCR for the current shock calibration is already smaller than its counterpart

in the VaR approach. Therefore, a simple adjustment of the shock’s magnitude such that the SCRs for old

ages approximately coincide may lead to a significant underestimation of the longevity risk for younger

ages. Hence, the shortcoming of the standard model longevity stress seems to be more a structural one and,

in principle, an age-dependent stress with smaller relative reductions for old ages might be more appropriate.

This coincides with epidemiological findings: The number ofrelevant causes of death is larger for old ages

than for young ages (cf. Tabeau et al. (2001)) which means that even if some cause of death is contained,

older people are more likely to die from another cause of death. Therefore, significant reductions in mortality

rates seem to be more difficult to achieve for old ages compared to young ages.

Table 4 shows SCRs for various mortality levels for a 65-yearold. The different levels have been established

by shifting the mortality rates in the basis table as stated in the first column of the table. Here, two opposing

trends can be observed. With increasing mortality, the SCR in the shock approach increases whereas the

SCR in the VaR approach decreases – in absolute value as well as relative to the liabilities. This leads to

an almost identical SCR for a 20% mortality downward shift and a further increasing deviation in SCRs for

mortality upward shifts. The reason for the increase inSCRshock is again the structure of the shock: the

higher the mortality rates, the larger the shocks in absolute terms. For small mortality rates, an increased
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Mortality shift BEL0 SCRshock SCRshock

BEL0
SCRV aR SCRV aR

BEL0

∆SCR
SCRV aR

∆SCR
BEL0

-20% 13,296.28 849.03 6.4% 844.65 6.4% 0.5% 0.03%
-10% 12,940.87 860.24 6.7% 758.61 5.9% 13.4% 0.79%

original 12,619.28 869.87 6.9% 691.59 5.5% 25.8% 1.41%
+10% 12,325.42 878.43 7.1% 637.37 5.2% 37.8% 1.96%
+20% 12,054.68 886.19 7.4% 593.84 4.9% 49.2% 2.43%

Table 4: SCRs for different mortality levels
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Figure 2: SCRs for 1-year endowment contracts with maturityT

long-term risk due to longer survival does not compensate for the smaller shocks. In contrast to this kind of

“relative volatility” assumption in the shock approach, the volatility in the BBRZ model does not depend on

the mortality level. This results in the decreasing SCR withincreasing mortality as earlier deaths reduce the

long-term risk. The automatic adjustment to the mortality level under consideration is a convenient property

of the standard model approach and the results emphasize that the BBRZ model should be calibrated to data

at the mortality level in view for the application. In case such data is not sufficiently available, the deficit

may be reduced by calibrating the model to a more extensive set of data and then adjusting the volatility to

the mortality level of the population under consideration,e.g. by some kind of scaling.

Finally, we want to analyze the impact of varying payment dates on the deviation in SCRs. To this end,

we do not consider an annuity contract but simple endowment contracts for a 65-year old with only one

payment of£1000 conditional on survival up to timeT . Thus, a combination of these contracts for maturities

T = 1, .., 55 equals the payoff structure of the life annuity. In the left panel of Figure 2, the SCRs are plotted

for maturities up toT = 55. We observe that untilT = 20, the SCRs in both approaches are rather close in

absolute value. Thereafter, the shock approach demands significantly more SCR which explains the larger

SCR for the life annuity. Finally, the SCRs in both approaches converge to zero due to an extremely low

probability of survival. Note though that in the VaR approach, the sum of SCRs in Figure 2 is about 5%

larger than the SCR for the corresponding life annuity because diversification between different maturities

is disregarded when computing the SCR for each endowment separately. In the shock approach, the sum of

the SCRs for the endowments coincides with the SCR for the life annuity since the stress in the standard

model does not allow for any diversification. In the right panel of Figure 2, the relative deviation in SCRs

(cf. Equation (16)) is displayed. It varies considerably over time ranging from about -10% to more than
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Figure 3: Age composition of the portfolio of immediate annuity contracts

BEL0 BEL1 − CF1 SCR SCR/BEL0

Shock approach 36,394.73 42,939.27 4,283.83 11.8%
VaR approach 36,394.73 40,587.52 2,055.90 5.7%

Table 5: SCRs for a portfolio of immediate life annuities

80%. Hence, we can conclude that a longevity stress independent of the maturity under consideration is not

adequate.

So far, we have only compared SCRs for single contracts. Now,we want to investigate if the depicted

shortcomings of the standard model longevity stress also lead to deviating SCRs for a realistic portfolio of

immediate life annuities. In order to ensure a reasonable age composition, we choose a portfolio according

to Continuous Mortality Investigation (CMI) data on the amounts based exposures of UK Life Office Pen-

sioners in 2006. We only consider males and normal entries and rescale the data by dividing by 100,000 to

obtain results in a handy range. The age composition of the portfolio is illustrated in Figure 3.

From Table 5, we observe that, for this portfolio of contracts, the SCR in the shock approach more than

doubles the SCR in the VaR approach. Given the age composition of the portfolio, this is consistent with

the observed SCRs for different ages (see Table 3). Thus, theaforecited structural shortcomings of the

standard model longevity stress also affect the SCR for a realistic portfolio of contracts. According to

Table 5, an insurance company which applies the standard model would have to raise additional solvency

capital of about 6% of its liabilities compared to a company which implements the BBRZ model for VaR

computation in an internal model. This is a huge amount giventhat, according to a stylized balance sheet for

all undertakings in QIS4, Net Asset Value accounts for only about 18% of the total liabilities (cf. CEIOPS

(2008c)).

When analyzing the SCRs for different ages, we found that therelation between the SCRs seems to turn

around for young ages. To further investigate this, we consider deferred life annuities for different ages

which again pay£1000 in arrears starting at age 65. Table 6 contains the corresponding SCRs.

The SCRs increase in absolute value with age and for age 60, the SCRs in both approaches almost coincide.

However, for younger ages the SCR in the VaR approach is (significantly) larger than its counterpart in the

shock approach with the relative deviation growing, the younger the age under consideration. Here, the
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Age BEL0 SCRshock SCRshock

BEL0
SCRV aR SCRV aR

BEL0

∆SCR
SCRV aR

∆SCR
BEL0

30 3,205.97 217.90 6.8% 382.66 11.9% -43.1% -5.1%
35 3,851.54 268.30 7.0% 428.53 11.1% -37.4% -4.2%
40 4,623.92 329.89 7.1% 489.79 10.6% -32.7% -3.5%
45 5,549.28 404.85 7.3% 561.71 10.1% -27.9% -2.8%
50 6,676.64 495.51 7.4% 631.44 9.5% -21.5% -2.0%
55 8,100.16 604.29 7.5% 688.98 8.5% -12.3% -1.1%
60 9,978.02 733.27 7.4% 724.06 7.3% 1.3% 0.1%

Table 6: SCRs for deferred annuities at different ages
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Figure 4: Age composition of the portfolio of deferred annuity contracts

longevity stress in the standard model seems to (significantly) underestimate the longevity risk. Thus, we

again find that a longevity shock independent of age does not seem appropriate.

As for the immediate annuities, we also want to analyze the consequences of the highlighted shortcomings

of the shock approach for a realistic portfolio of deferred annuity contracts. This time, we derive the age

composition of our portfolio from CMI data on lives based exposures of male UK Personal Pensioners in

2006. We confine the data to pension annuities in deferment and omit data on ages below 20 as the BBRZ

model does not cover those ages. The latter restriction is unproblematic for our purposes as exposures for

those ages are very small in the CMI data. Moreover, we assumeyearly benefits in arrears of£0.01 for all

contracts to keep all values in a handy range. The resulting overall amount insured for each age is displayed

in Figure 4. The benefit payments are assumed to commence at age 65 or, in case age 65 has already been

reached, after one more year of deferment.

The results in Table 7 confirm the observation for single agesthat the shock approach demands significantly

less SCR for young ages. The significance of this difference is underlined by the fact that the shock SCR of

6629.31 corresponds to a 1.5% default probability in the VaRapproach. Thus, under the assumption that the

BBRZ model assesses longevity risk correctly, the true default probability of our reference company would

be three times as large as accepted if the company used the Solvency II standard model. This also holds for

the case when premiums are paid during the deferment period.In a further analysis, we found that, in such

a setting, the liabilities were obviously much lower but that the SCRs changed only slightly.

For a combined portfolio of immediate and deferred annuities the deviations in SCRs from the two ap-
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BEL0 BEL1 − CF1 SCR SCR/BEL0

Shock approach 88,165.37 100,062.89 6,629.31 7.5%
VaR approach 88,165.37 101,485.14 7,976.68 9.1%

Table 7: SCRs for a portfolio of deferred life annuities

proaches would obviously cancel each other out to some extent. Thus, despite its depicted structural short-

comings the standard model longevity stress may yield a reasonable overall value for the longevity SCR in

some cases. However, there are insurance companies in the market whose portfolios have a strong focus

on certain age groups. Therefore, an equal reduction of mortality rates for all ages and maturities does not

seem appropriate for the Solvency II standard model. To further illustrate this, we can cite the magnitudes

of shocks which would yield SCRs for the two considered portfolios equal to those in the VaR approach.

For the immediate annuities, a shock of about 13.0% would have been sufficient, whereas for the deferred

annuities, a shock of about 29.4% would have been required.

Therefore, in the following section we propose a modification of the longevity stress in the standard model

which overcomes the shortcomings of the current approach but does still not require stochastic simulation

of mortality.

6 A modification of the standard model longevity stress

In this section, we explain how the longevity stress in the Solvency II standard model could be modified in

order to overcome the shortcomings highlighted in the previous section which result from an equal shock

for all ages and maturities.

We keep the structure of a one-off shock which means the integration of the longevity stress into the standard

model does not change. From our point of view, such a one-off shock is an acceptable approximation of

gradual changes in expected mortality over only one year as the distinction between a one-off and a gradual

mortality evolution only affects cash flows (premium payments and/or survival benefits) during the first

year. Cash flows thereafter only depend on the expected mortality at t = 1 and not on how this expectation

emerged (cf. Section 4). Regarding the cash flows in the first year, we see in the left panel of Figure 2

that the corresponding SCR is typically very small comparedto those for later years. Furthermore, the

implementation of gradual mortality changes would make thestandard model more complex as, currently,

all risks other than longevity risk are implicitly excludedby computing the shocked liabilities att = 0.

We modify the longevity shock according to the volatility inthe BBRZ model which introduces a depen-

dency structure of the shock magnitude on age and maturity. Instead of the 1-year mortality rates, we now

shock the (expected)T -year survival probabilities. These are the quantities which are typically required for

computing the liabilities of longevity prone contracts like annuities (cf. Equation (12)). Thus, it seems plau-

sible to specify a longevity shock in terms of extreme changes in these quantities over one year. Moreover,

the increasing uncertainty with time in the expected futuremortality evolution is accounted for explicitly

and thus, in a more plausible way. When shocking the annual mortality rates, this increasing uncertainty is
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only considered implicitly by the accumulation of an increasing number of shocked annual probabilities. If

one wanted to stick to a shock of the annual mortality rates the shocks for different maturitiesT should thus

be specified such that the accumulated shock is reasonable.

For the modified shock, we set eachT -year survival probability to its individual 99.5% quantile in a 1-year

simulation of the BBRZ model. From Equation (10), factors can easily be derived for each age and maturity

which, when multiplied with the best estimateT -year survival probabilities, yield the desired percentiles.

Thus, once the BBRZ model is calibrated, supervisory authorities would only have to provide insurance

companies with a matrix of these factors and the computational efforts for calculating the SCR based on this

modified shock would basically remain as in the 25% shock approach.

In principle, the modified shock yields an SCR which is largerthan the one in the VaR approach since

any diversification effects between different ages and maturities are disregarded when computing the 99.5%

quantiles of each survival probability individually. In case of the portfolios considered in the previous

section, this gives a markup of about 5.2% of the SCR for the immediate annuities and of about 9.4% for

the deferred annuities. However, we regard this inaccuracyas acceptable given the considerable structural

improvement of the modified shock compared to the original 25% shock. Moreover, such a markup might

actually be desirable since the longevity stress in the standard model is supposed to be conservative in order

to give incentives for the implementation of internal models. From this perspective, the modified shock also

offers the additional advantage that a markup is distributed over all ages and maturities according to the

actual risk, whereas, in the 25% shock, this distribution isnot directly risk-related.

As indicated in the previous section, the BBRZ model impliesthe application of an absolute volatility

and obviously, the same holds for the modified shock. The shock factors are only adequate as long as

the mortality level in the insurance portfolio in view (approximately) coincides with the level of mortality

experience to which the BBRZ model has been calibrated. However, this drawback could be dealt with by

calibrating the BBRZ model to the mortality experience of different populations (with different mortality

levels) such that the resulting shock factors allow for possibly different risk profiles – in magnitude as well

as in structure.

In case the provision of a matrix of shock factors is regardedunpractical or too complex for the standard

model, the surface formed by the factors could be approximated by a function of age and maturity. Then only

this function would have to be provided by the supervisory authorities. The fitting of such a function would

also allow for an extrapolation of the shock factors to ages below 20 for which the volatility in the BBRZ

model as specified in Bauer et al. (2008) is not defined. Figure5 shows the log log of the shock factors in

the current calibration of the BBRZ model for all feasible combinations of initial agesx0 and maturitiesT .

At first sight, the surface looks like a fairly even plane for all maturitiesT ≥ 10. Therefore, a function of the

form exp {exp {f(x0, T )}} might be applicable as an approximation of the shock factors, wheref(x0, T )

is a plane with a correction for short maturities. However, the surface of the shock factors may look different

for a different calibration of the BBRZ model and hence, alsothis approximating function might have to be

derived individually for each population in view. We leave this question for future work.

Figure 6 shows the ratio of shock factors forT -year survival probabilities based on the modified shock

and the original 25% shock of the mortality rates. Unfortunately, a general comparison is not possible as
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Figure 5: Log log of factors for modified shock approach

the magnitude of the original shock depends on the level of the mortality rates. Here, we apply the 25%

reduction to the aforementioned Life Office Pensioners mortality table. We observe that for combinations of

ages up to about 60 and maturities up to about 50 the shocks arevery similar. However, for higher initial ages

the ratios decrease significantly which means the modified shock demands significantly less SCR for those

ages. On the other hand, for rather young initial ages and long maturities, the ratios increase rapidly as can

be seen for maturitiesT up to 70 in the figure. Therefore, the 25% shock may significantly underestimate

the risk of changes in long-term mortality trends. All observations made from Figure 6 are in line with those

made in Section 5.

7 The Risk Margin for longevity risk

7.1 Risk Margin approximations

In Section 5, we found structural shortcomings of the longevity stress currently implemented in the Solvency

II standard model. These shortcomings may also affect the Risk Margin which is computed as the cost of

capital for future SCRs in the run-off of an insurance portfolio (cf. Equation (1)). We will now analyze this

point by comparing the Risk Margin in the 25% shock approach with its counterpart in the modified shock

approach (as a proxy of the VaR approach) introduced in the previous section.

However, an exact computation of the Risk Margin would require the determination of each year’s SCR,

SCRt, conditional on the mortality evolution up to timet. Since this is practically impossible, the Risk

Margin is usually approximated. In the literature and in CEIOPS (2008a) in particular, several such approx-

imations have been proposed and we will consider the following four:

(I) Approximation of theSCRt by assuming a mortality evolution up to timet according to its best
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Figure 6: Ratio of shock factors from modified and 25% longevity shock

estimate. Thus, we have

RM (I) =
∑

t≥0

CoC

(1 + i(0, t + 1))t+1
· SCRBE

t .

In practice, this calculation method is generally seen as yielding the “exact” Risk Margin and there-

fore, we are going to use it as a benchmark for the other approximation methods.

(II) Approximation of theSCRt using the proxy formula in CEIOPS (2008a, TS.XI.C.9), i.e.

RM (II) =
∑

t≥0

CoC

(1 + i(0, t + 1))t+1
· 25% · qavt · 1.1(durt−1)/2 · durt · BELt,

whereqavt is the expected average 1-year death rate at timet weighted by sum assured anddurt is the

modified duration of the liabilities at timet.

(III) Approximation of theSCRt as the fractionSCR0/BEL0 of the liabilitiesBELt, i.e. assuming a

constant ratio of SCRs and liabilities over time (cf. CEIOPS(2008a, TS.II.C.28)):

RM (III) =
∑

t≥0

CoC

(1 + i(0, t+ 1))t+1
·
SCR0

BEL0
· BELt.

(IV) Direct approximation of the Risk Margin via the modifiedduration of the liabilities (cf. CEIOPS

(2008a, TS.II.C.26)):

RM (IV ) = CoC · dur0 · SCR0.

Table 8 contains the Risk Margins for the 25% longevity shockand the modified longevity shock, the two

portfolios of annuity contracts and all four approximationmethods as far as they are well defined. The

cost of capital rateCoC is set to its current calibration in the Solvency II standardmodel, i.e. 6%. For the
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25% longevity shock Modified longevity shock

Portfolio Method BEL0 RM Rel. dev. RM
BEL0

RM Rel. dev. RM
BEL0

(I) 36,394.73 2,383.87 6.6% 1,143.08 3.1%
Immediate (II) 36,394.73 2,751.71 15.4% 7.6% n/a n/a n/a
annuities (III) 36,394.73 1,957.24 -17.9% 5.4% 988.11 -13.6% 2.7%

(IV) 36,394.73 2,051.70 -13.9% 5.6% 1,035.80 -9.4% 2.9%

(I) 88,165.37 11,240.74 12.8% 12,159.44 13.8%
Deferred (II) 88,165.37 10,126.91 -9.9% 11.5% n/a n/a n/a
annuities (III) 88,165.37 10,034.70 -10.7% 11.4% 13,206.71 8.6% 15.0%

(IV) 88,165.37 10,488.60 -6.7% 11.9% 13,804.08 13.5% 15.7%

Table 8: Risk Margins for different portfolios, approximation methods, and longevity shocks

modified longevity shock, approximation method (II) is obviously not applicable since it is based on the

25% shock of the mortality rates. Also note that this method is actually not admissible for the portfolio of

deferred annuities because the average age in this portfolio does not reach the required 60 years (cf. CEIOPS

(2008a)). Thus, the value for the deferred annuities in caseof a 25% shock is only given for comparison.

Regarding the two portfolios, we find that the Risk Margin in relation to the liabilities is generally larger for

the portfolio of deferred annuities which seems reasonablegiven the more long-term risk resulting in larger

uncertainty. This finding is supported by the graphs in the left panels of Figure 7 where the evolutions of the

SCRs according to approximation method (I) are displayed for both portfolios and shock approaches. For

the immediate annuities, the SCRs decrease toward zero quite directly whereas for the deferred annuities,

the SCRs first increase before fading out as less and less insured survive.

Furthermore, for the “exact” calculation method (I) and theimmediate annuities portfolio, we observe that

the Risk Margin in the 25% shock approach more than doubles its counterpart in the modified shock ap-

proach. This is not surprising as we have observed the same relation for the SCRs att = 0 (see Table 5).

Moreover, in the top left panel of Figure 7, we can see that this relation holds thereafter as well. For the

portfolio of deferred annuities, however, the Risk Marginsare similar even though the SCRs att = 0 differ

significantly (see Table 7). Here, a compensation over time occurs which becomes obvious in the bottom left

panel of Figure 7: The higher SCRs in the modified shock approach for smallert to some extent compensate

for the smaller SCRs later on, i.e. when the portfolio becomes similar to the immediate annuities portfolio.

Nevertheless, depending on the portfolio under consideration, the structural shortcomings of the 25% shock

also adversly affect the Risk Margin.

With respect to the Risk Margin approximations, we find that they seem rather crude in general with the

closest approximation still being about 6.7% away from the “exact” value. However, the deviations ap-

pear less significant in light of the large uncertainty regarding the correct cost of capital rate (cf. CEIOPS

(2009b)) and the value from calculation method (I) itself only being an approximation of unknown accuracy.

Nevertheless, we think that the wide range of values for the approximated Risk Margin for each portfolio

and longevity shock combination is problematic. The Solvency II regime is supposed to ease and improve

comparisons of the solvency situations of European insurance companies, but such comparisons might get
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Figure 7: Evolution of the SCRs in portfolio run-offs

blurred simply by the use of different Risk Margin approximations. Moreover, instead of assessing their risk

as accurately as possible, insurance companies might be tempted to apply the Risk Margin approximation

which yields the smallest value.

Finally, we have a closer look at the Risk Margin for approximation method (III) which is very popu-

lar in practice. From Table 8, we observe that the assumption, that future SCRs are proportional to fu-

ture liabilities, results in the largest relative deviations in three of the four combinations of portfolios and

longevity shocks. In each of these cases, the “exact” Risk Margin is underestimated. This is due to the ratio

SCR0/BEL0 being a very crude if not inadequate proxy for ratios of future SCRs and liabilities as can

be seen in the right panels of Figure 7. For both portfolios and both longevity shocks, the ratio is not even

approximately constant but, in general, increases with time. This observation is in line with the findings

of Haslip (2008) for non-life insurance. Thus, approximation method (III) does not seem appropriate in its

current form. However, an adjustment of the proxy, e.g., in form of a dependence on the average age in the

portfolio may improve results considerably.

7.2 The Cost of Capital rate

As already indicated, there is a large uncertainty and hence, an ongoing discussion regarding the correct cost

of capital rate. It is currently set to 6%, but in CEIOPS (2009b) and references therein, values between 2%

and 8% have been derived from different shareholder return models. An alternative idea for the calibration

of the cost of capital rate has been brought forward by Olivieri and Pitacco (2008c) who rely on reinsurance

premiums. However, since data on such premiums is not sufficiently available their idea is currently more
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Portfolio 25% longevity shock Modified longevity shock
of contracts RM λ RM λ

Immediate annuities 2,383.87 18.6% 1,143.08 13.2%
Deferred annuities 11,240.74 8.7% 12,159.44 8.9%

Table 9: Risk Margins and corresponding Sharpe ratiosλ

of theoretical interest.

In what follows, we take a different approach to finding an adequate cost of capital rate. We compare

the Risk Margin based on the current rate to hypothetical market prices of longevity dependent liabilities.

The Risk Margin should coincide with the markup of the risk-adjusted liabilities over their best estimate

counterparts in such a market as it is supposed to provide a risk adjustment of the Best Estimate Liabilities.

This idea is also in line with the Risk Margin’s more specific interpretation in the cost of capital setting, i.e.

the provision of sufficient capital to guarantee a proper run-off of a portfolio. If a market for longevity risk

existed an insolvent insurer could guarantee the portfoliorun-off by transferring the risk to the market at the

cost of the Best Estimate Liabilities and the Risk Margin.

We assume that, in the hypothetical longevity market, risk-adjusted survival probabilities are derived from

their best estimate counterparts as explained in Section 3.For the market price of longevity risk process

λ(t), we assume a time-constant Sharpe ratioλ, i.e. the simplest possible process, since currently, there is

no information available on the structure of a market price of longevity risk process (cf. Bauer et al. (2010)).

The comparison is then performed by finding the Sharpe ratio which yields a markup in the liabilities equal

to the cost of capital Risk Margin.

Table 9 shows the Risk Margins and the corresponding Sharpe ratios for all combinations of portfolios and

longevity shocks. For each portfolio, we observe that the Sharpe ratios increase with the Risk Margin which

is what one would expect. Moreover, we see that the Sharpe ratios for the deferred annuities are smaller than

those for the immediate annuities. This means that the risk adjustment of the survival probabilities perceives

a larger risk in the longer maturities of the deferred annuities than the Risk Margin does as the Sharpe ra-

tios are chosen such that the markups in the hypothetical longevity market coincide with the Risk Margins.

Nevertheless, we observe that the Sharpe ratios are all of reasonable magnitude. For the modified longevity

shock, where the computation of the Risk Margin and the risk-adjustment of the survival probabilities are

performed based on (essentially) the same model/volatility, the Sharpe ratios do not seem too large in par-

ticular. For comparison, Bauer et al. (2010) find that Sharperatios for longevity risk might lie somewhere

between 5% and 17% and Loeys et al. (2007) regard a value of 25%as reasonable. The moderate values of

λ we have found suggest that, at least in the case of longevity risk, the current cost of capital rate of 6% is

not overly conservative. This is particularly the case if wetake into account that, in a shock scenario which

leads to a company’s insolvency and for which the Risk Marginis to be provided, investors typically require

higher risk compensation than usual.

So far, we have assumed the existence of a market for longevity risk and based on that we have made

inferences on the Risk Margin and the cost of capital rate in particular. However, it is very likely that in
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practice, the Solvency II regime and its Risk Margin requirements will come into effect before a deep and

liquid market for longevity risk exists. Hence, it makes sense to look at the relation between the Risk Margin

and the market-consistent valuation of longevity risk alsofrom the opposite perspective. Thus, we now want

to analyze what conclusions for the pricing of longevity-linked securities can possibly be drawn from Risk

Margin requirements once the latter have been fixed.

Given an appropriate mortality model, the pricing of longevity derivatives narrows down to the specification

of a reasonable market price of longevity risk process (or parameter) –λ(t) in our setting. Hence, we need

to answer the question whether such a process can be reasonably derived from Risk Margin requirements. In

the literature, several ideas have already been proposed onhow such processes could be obtained, e.g. from

market annuity quotes (cf. Lin and Cox (2005)) or other assetclasses like stocks (cf. Loeys et al. (2007)),

but none of these approaches is really satisfactory. For a thorough discussion of this issue, we refer to Bauer

et al. (2010).

A company which is completely hedged against longevity riskdoes not have to provide any solvency capital

for longevity risk anymore. In our setting, where the reference company is solely exposed to longevity risk

this obviously reduces the future cost of solvency capital to zero. Thus, neglecting any possible credit risk

arising from a longevity transaction, the company might be interested in securitizing its longevity risk as

long as the transaction price does not exceed the present value of the future cost of capital in case it keeps

the risk. By definition, the Risk Margin is equal to this present value for a typical insurance company and

therefore, it corresponds to the maximum price such a company would be willing to pay for longevity risk

securitization. Consequently, the Sharpe ratios in Table 9reflect the level of risk compensation a typical

market supplier of longevity risk might accept and hence, what a reasonable market price of longevity risk

could be.

Obviously, this approach to finding a market price of longevity risk also has its shortcomings, in particular

because a company’s decision of securitizing its longevityrisk is influenced by several other effects. For

instance, the maximum price a company is willing to accept may be lower because it may expect its own

cost of capital to be lower than the Risk Margin, e.g. becauseof diversification effects with other risks

than longevity. On the other hand, a company might accept a higher Sharpe ratio for strategic reasons, e.g.

the abandonment of a line of business, or due to difficulties in raising capital and the risk of increasing

cost of capital in the future. Obviously, the relevance of these effects will vary between companies and as a

consequence, different companies will accept different market prices of longevity risk. The market’s appetite

for longevity risk will then decide on which company can securitize its risk at an acceptable price and what

the market price for longevity risk will finally be. Nevertheless, we believe that solvency requirements and

the Solvency II Risk Margin in particular, can provide valuable insights into and a reasonable starting point

for the pricing of longevity derivatives.

8 Conclusion

In the Solvency II standard model, the SCR for longevity riskis computed as the change in Net Asset Value

due to a permanent 25% reduction in mortality rates. This scenario based approach is to approximate the
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99.5% VaR of the Available Capital over one year which can only be determined exactly via stochastic

simulation of mortality. However, this standard model longevity stress has come under some criticism for

its possibly unrealistically simple structure. In particular, the reduction in mortality rates does not depend on

age and maturity which may lead to an incorrect assessment ofthe true longevity risk. To assess this issue,

we compare the standard model longevity stress to the 99.5% VaR for longevity risk which we compute by

the forward mortality model of Bauer et al. (2008, BBRZ model).

We find that, in our setting, the SCRs from both approaches differ considerably in most cases. In general, the

VaR approach yields a larger SCR for young ages whereas the shock approach demands more SCR for old

ages. Moreover, we observe varying SCRs for different maturities. Thus, depending on the composition of

an insurance portfolio, the longevity stress in the standard model may significantly overestimate or underes-

timate the true longevity risk. In the former case, companies would be forced to hold an unnecessarily large

amount of capital whereas in the latter case, a company’s default risk would be significantly higher than

the accepted level of 0.5%. For instance, for an exemplary but realistic portfolio of deferred annuities we

observe that the standard model longevity stress demands anSCR which corresponds to a default probability

of 1.5% in the VaR approach.

Hence, the current longevity stress in the Solvency II standard model seems to have some crucial struc-

tural shortcomings. In particular, the shock magnitude’s independence of age and maturity does not seem

appropriate. Even though we have performed our analysis in arather simple setting, we expect that our ob-

servations are valid rather generally. Allowing, e.g., formore complex contracts with surplus participation

and various options and guarantees might change the company’s exposure to longevity risk. For instance,

the risk for certain ages or maturities might be reduced and SCR values may therefore change considerably.

However, the inherent longevity risk would still be very similar and we must expect the observed devia-

tions between the two approaches and the structural shortcomings of the standard model longevity stress to

remain.

Therefore, we believe that a modification of this longevity stress is necessary so that it more appropriately

reflects the risk insurance companies are exposed to. Such a modified longevity stress is proposed in this

paper. In order to keep the standard model’s longevity risk module as simple as possible, we keep the one-

off shock structure. However, we define a different shock – for each agex0 and maturityT – according to

the 99.5% quantile of the expectedT -year survival probability for anx0-year old as in a 1-year simulation

of the BBRZ model. This shock can be applied by multiplying the best estimate survival probabilities with

corresponding shock factors. Thus, the computational efforts for calculating the SCR would essentially

remain similar to the 25% shock but the risk perception wouldbe improved considerably.

We then analyze the cost of capital Risk Margin – in our case for longevity risk only – and find that the

proposed approximations in CEIOPS (2008a) lead to significantly different values. Thus, two companies’

solvency situations might differ considerably only due to the chosen approximation method for the Risk

Margin. Moreover, we observe that the assumption of a constant ratio of SCRs and liabilities over time,

which is a popular proxy for future SCRs in practice, often leads to inadequate results. We find mostly

increasing ratios for the two portfolios under consideration which means that the approximated Risk Margin

might be too small to fulfill its purpose of guaranteeing a proper run-off of a portfolio in case of insolvency.
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This finding should be particularly interesting for regulators.

Subsequently, we discuss the adequacy of the current calibration of the cost of capital rate by comparing

the Risk Margin to the price of a securitization in a hypothetical market for longevity risk. We observe that

the cost of capital rate of 6% corresponds to Sharpe ratios inthe market which are of reasonable magnitude.

Thus, the rate of 6% does not seem overly conservative for longevity risk. Finally, we explain how market

prices for longevity risk may be derived from solvency requirements and the Solvency II Risk Margin in

particular. The securitization of longevity risk reduces acompany’s future cost of solvency capital and

the Risk Margin as the present value of these costs thereforeprovides a maximum price which a typical

insurance company might be willing to accept for the securitization of its risk. Even though there are

several other effects which may influence the company’s decision on securitization, we believe that solvency

requirements can provide a reasonable starting point for the pricing of longevity derivatives.
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Appendix

A Specification and calibration of the BBRZ-model

A.1 Model specification

In general, a forward mortality model in the framework of Section 3 is fully specified by the volatility

σ(t, T, x0) and the initial curveµ0(T, x0). For our purposes, however, the volatility andT -year survival

probabilities are sufficient, where for the latter we refer to Section 4. Regarding the volatility, Bauer et

al. (2008) propose a 6-factor specification of which we use a slightly modified version in this paper. We

keep the general functional structure of the volatility vector σ(t, T, x0) = (σ1(t, T, x0), . . . , σ6(t, T, x0))

and only deploy a different functional form for what they refer to as the “correction term”. Instead of

a standard Gompertz form, we use a logistic Gompertz formµx = exp (ax+b)
1+exp (ax+b) + c as introduced by

Thatcher et al. (1998). In contrast to the standard Gompertzlaw, this prevents the volatility from becoming

unrealistically large for very old ages. Hence, forT ≥ t the volatility vectorσ(t, T, x0) consists of the

following components:

general: σ1(t, T, x0) = c1 ×
(

exp (a(x0+T )+b)
1+exp (a(x0+T )+b) + c

)

;

short-term: σ2(t, T, x0) = c2 ×
(

exp (a(x0+T )+b)
1+exp (a(x0+T )+b) + c

)

× exp (log (0.1)(T − t));

young age: σ3(t, T, x0) = c3 ×
(

exp (a(x0+T )+b)
1+exp (a(x0+T )+b) + c

)

× exp ( log (0.5)
202

(T − t− 20)2 + log (0.5)
17.52

(x0 + T − 37.5)2);

middle age: σ4(t, T, x0) = c4 ×
(

exp (a(x0+T )+b)
1+exp (a(x0+T )+b) + c

)

× exp ( log (0.5)
202

(T − t− 20)2 + log (0.5)
12.52

(x0 + T − 67.5)2);

old age: σ5(t, T, x0) = c5 ×
(

exp (a(x0+T )+b)
1+exp (a(x0+T )+b) + c

)

× exp ( log (0.5)202 (T − t− 20)2 + log (0.5)
302 (x0 + T − 110)2);

long-term: σ6(t, T, x0) = c6 ×
(

exp (a(x0+T )+b)
1+exp (a(x0+T )+b) + c

)

× exp ( log (0.5)
802

(T − t− 120)2).

For T < t, the volatility has to be zero obviously, since the forward force of mortality for maturityT is

already known at timet and hence deterministic.

A.2 Generational mortality tables for model calibration

Since forward mortality models reflect changes in expected future mortality they need to be calibrated to

quantities which contain information on the evolution of expected mortality. Such quantities could, e.g., be

market prices of longevity derivatives, market annuity quotes, or generational mortality tables. However,

since data on longevity derivatives’ prices and annuity quotes is very sparse and/or blurred due to charges,

profit margins etc., currently, generational mortality tables seem to be the most appropriate starting point for

the calibration of forward mortality models. Hence, Bauer et al. (2008, 2010) calibrate their model to series

of generational mortality tables for US and UK pensioners. However, they have only available 4 or 7 tables,

respectively, which is a rather thin data base for model calibration.
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Moreover, it is not clear how good the volatility derived from such historical mortality tables fits the future

volatility since the methodology of constructing mortality projections has changed significantly over the

past decades, i.e. from the technique of age shifting to stochastic (spot) mortality models. Therefore, the

transition in projection methods often lead to rather sudden and strong “jumps” in predicted mortality rates

from one table to the next which might result in an unreasonably high volatility in the forward model.

Therefore, we believe that it is more appropriate to calibrate forward mortality models to a series of historical

generational mortality tables which have all been constructed using the same and up-to-date projection

methodology. In order to build such tables, we use the model of Lee and Carter (1992). With this model,

a generational mortality table is constructed for each historical year based on the mortality data which was

available in that year. We opt for the Lee-Carter model because it has become a standard model in the

literature on mortality forecasting (cf. Booth and Tickle (2008)) and it has also been used by the CMI in

the construction of some of their recent projections for UK annuitants and pensioners (cf. CMI (2009) and

references therein). However, we think that the model choice is not crucial in our setting for two reasons:

First, for the calibration of the forward model, we are not interested in absolute values of projected mortality

rates but only in their changes over time. Secondly, the conclusions drawn in this paper with respect to

the structure of the longevity stress in the Solvency II standard model should still be valid even if the true

volatility in the forward model was generally overestimated or underestimated.

In the Lee-Carter model, the (central) mortality ratem(x, t) for agex in yeart is parameterized as

log {m(x, t)} = αx + βx · κt + εx,t,

where theαx describe the average mortality rate for each agex over time,βx specifies the magnitude of

changes in mortality for agex relative to other ages,εx,t is an age and time dependent normally distributed

error term, andκt is the time trend (often also referred to as mortality index). The latter is usually assumed

to follow an ARIMA(0,1,0) process, i.e.

κt = κt−1 + γ + et,

whereγ is a constant drift andet is a normally distributed error term with mean zero.

For fitting this model to historical mortality data, we use the weighted least squares algorithm introduced by

Wilmoth (1993) and adjust theκt by fitting a Poisson regression model to the annual number of deaths at

each age (see Booth et al. (2002) for details). Since mortality data usually becomes very sparse for old ages,

we only fit the model for ages 20 to 95 and use the following extrapolation up to age 120: We extract theαx

for x ≥ 96 from a logistic Gompertz form which we fit in least squares to theαx for x ≤ 95. For theβx, we

assume the average value ofβ91 to β95 to hold for allx ≥ 91.

The (deterministic) projection of future mortality rates is then conducted by setting the error termsεx,t and

et equal to their mean zero for all future years. Due to the lognormal distribution of them(x, t), the thus

derived mortality rates are actually not the expectations of the futurem(x, t), which are typically listed in

a generational mortality table, but their medians. However, even though not fully correct, this approach to

projecting mortality within the Lee-Carter model is widelyaccepted (see, e.g., Wilmoth (1993), Lee and
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Miller (2001), or Booth and Tickle (2008)) and should be unproblematic in particular in our setting, where

only changes in projected mortality over time are considered. Finally, we derive approximate 1-year initial

mortality ratesq(x, t) from the central mortality rates as (cf. Cairns et al. (2009))

q(x, t) ≈ 1− exp {−m(x, t)} .

The generational mortality tables are constructed for the male general population of England and Wales.

For our purposes, it would obviously be preferable to build tables from annuitant or pensioner mortality

data. However, a sufficient amount of such data is only available for a limited number of years and ages.

Therefore, we make the assumption that the volatility derived from the general population tables is also valid

for insured’s mortality. As discussed in Sections 5 and 6, anadjustment of the volatility to the mortality level

of the population in view may be appropriate to account for this issue but for simplicity we do not consider

such an adjustment here.

Mortality data, i.e. deaths and exposures, for years 1947 to2006 has been obtained from the Human Mortal-

ity Database (2009). A generational mortality table is thenconstructed based on a Lee-Carter fit to each set

of 30 consecutive years of data which yields a series of 31 tables. We decided to use only 30 years of data for

each Lee-Carter fit as we think it is not reasonable to calibrate a mortality model with constant parameters

bx andγ to a significantly longer time series of historical data. Changes in age dependent mortality reduc-

tion rates have been observed for most countries in the past (see, e.g., Vaupel (1986) and Booth and Tickle

(2008)), including England and Wales, and using a larger setof data would thus imply the risk of extrapo-

lating outdated mortality trends from the far past into the future. Moreover, Chan et al. (2008), Hanewald

(2009), and Booth et al. (2002), amongst others, find structural breaks in the time trendκt for England and

Wales as well as for other industrialized countries. A significantly shorter time series of data, on the other

hand, might lead to the extrapolation of noise and merely temporary mortality trends. Nevertheless, the

choice of 30 years is still rather arbitrary. Additionally,we assume a gap year for data collection between

the fitting period for the Lee-Carter model and the starting year of the corresponding mortality table, e.g.,

from the data for years 1947 to 1976 a table with starting year1978 is derived. Thus, in total, we obtain a

series of 31 mortality tables.

A.3 Calibration algorithm

Based on the series of generational mortality tables derived in the previous subsection, we are now able to

calibrate the parameters in the forward model. In analogy toBauer et al. (2010), we fit the correction term

to the forward force of mortality for a 20-year old in the mostrecent mortality table using least squares and

obtain parameter values ofa = 0.1069, b = 12.57, andc = 0.0007896.

For the parametersci, i = 1, .., d with d = 6 in our case, Bauer et al. (2008) present a calibration algorithm

based on Maximum Likelihood estimation. However, due to numerical issues they can only use a small

part of the available data, i.e. six 1-year survival probabilities for different ages and maturities from each

generational mortality table, the choice of which obviously implies some arbitrariness. Here, we propose

a new 2-step calibration algorithm which makes use of all available data and the fact that the deterministic
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volatility specified in Appendix A.1 can be re-written in theform σi(s, u, x0) = ci · ri(s, u, x0), i = 1, .., d,

with theci the only free parameters.

Let t0 = 0 be the year of the first generational mortality table, i.e. 1978 in our case, and lett1, .., tN−1

denote the (hypothetical) compilation years of all later tables. We define by

p
(tn):T→T+1
x0+T :=

E
[

T+1p
(T+1)
x0

∣

∣

∣Ftn

]

E
[

T p
(T )
x0

∣

∣

∣Ftn

] = exp

{

−

∫ T+1

T
µtn(u, x0) du

}

the 1-year forward survival probability fromT to T + 1 for anx0-year old at time zero as seen at timetn,

which can be obtained from the mortality tables. However, given a set of forward survival probabilities at

time tn, n ∈ {0, 1, .., N − 2}, the fixed volatility specification only allows for certain changes in the for-

ward survival probabilities up to timetn+1. We denote bȳp(tn+1):T→T+1
x0+T the “attainable” forward survival

probabilities at timetn+1 with respect to the forward survival probabilities at timetn and the given volatility

specification, and these probabilities satisfy the relation

p̄
(tn+1):T→T+1
x0+T = p

(tn):T→T+1
x0+T

× exp

{

−

∫ T+1

T

∫ tn+1

tn

α(s, u, x0) ds du−

∫ T+1

T

∫ tn+1

tn

σ(s, u, x0) dW (s) du

}

.

Inserting the drift condition (8), some further computations yield

log
{

p̄
(tn+1):T→T+1
x0+T

}

= log
{

p
(tn):T→T+1
x0+T

}

−

d
∑

i=1

c2i

∫ T+1

T

∫ tn+1

tn

ri(s, u, x0)

∫ u

s
ri(s, v, x0) dv ds du

−

d
∑

i=1

M
∑

m=1

|ci|N
(tn+1)
i,m

(

∫ tn+
m
M

tn+
m−1
M

[∫ T+1

T
ri(s, u, x0) du

]2

ds

) 1
2

= log
{

p
(tn):T→T+1
x0+T

}

−

d
∑

i=1

a
(tn+1)
i

∫ T+1

T

∫ tn+1

tn

ri(s, u, x0)

∫ u

s
ri(s, v, x0) dv ds du

−

d
∑

i=1

M
∑

m=1

b
(tn+1)
i,m

(

∫ tn+
m
M

tn+
m−1
M

[
∫ T+1

T
ri(s, u, x0) du

]2

ds

)
1
2

,

where theN (tn+1)
i,m , i = 1, .., d, m = 1, ..,M are standard normally distributed random variables,a

(tn+1)
i ≥

0, andb(tn+1)
i,m ∈ R, i = 1, .., d. Obviously, the above equations hold for anyM ∈ N, but in case forward

survival probabilities for different agesx0 and maturitiesT are considered the choice ofM has a significant

influence on the correlation between the evolutions of theseprobabilities. ForM = 1, they would be fully

correlated which, in general, is only the case if the volatility vector is 1-dimensional or component-wise

constant. These conditions are clearly not fulfilled in our situation and hence, the parameterM should be
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chosen as large as numerically feasible to meet the actual correlation structure as accurately as possible. We

will come back to this issue later.

The idea behind the first calibration step is now to choose theparametersa(tn+1)
i andb(tn+1)

i,m such that the

attainable forward probabilities are as close as possible to the actual probabilities listed in the mortality table

at tn+1. This is done by minimizing, for eachn, the least squares expression

LStn+1 :=
∑

(T,x0): T≥tn+1, x0+tn≥20,

x0+T−tn+1≤ω





log
{

p
(tn+1):T→T+1
x0+T

}

− log
{

p̄
(tn+1):T→T+1
x0+T

}

log
{

p
(tn+1):T→T+1
x0+T

}





2

,

whereω is the limiting age. The changes in forward mortality from time tn to time tn+1 can then be

described by the parametersa(tn+1)
i andb(tn+1)

i,m in combination with the volatilityσ(s, u, x0).

In the second step, we derive values for the parametersci, i = 1, .., d from thea
(tn+1)
i and b

(tn+1)
i,m via

Maximum Likelihood estimation. For eachn ∈ {0, 1, .., N − 2}, the aggregated change over all ages and

maturities in log forward survival probabilities resulting from theith mortality effect, i.e. the changes driven

by theith component of the vector of Brownian motionsWt (cf. Equation (7)),i = 1, .., d, is given by

ML
(tn+1)
i :=

∑

(T,x0):T≥tn+1, x0+tn≥20,

x0+T−tn+1≤ω

c2i

∫ T+1

T

∫ tn+1

tn

ri(s, u, x0)

∫ u

s
ri(s, v, x0) dv ds du

+

M
∑

m=1

|ci|N
(tn+1)
i,m

(

∫ tn+
m
M

tn+
m−1
M

[∫ T+1

T
ri(s, u, x0) du

]2

ds

)
1
2

.

This expression is normally distributed with mean

m
(tn+1)
i := E

[

ML
(tn+1)
i

]

=
∑

(T,x0):T≥tn+1, x0+tn≥20,

x0+T−tn+1≤ω

c2i

∫ T+1

T

∫ tn+1

tn

ri(s, u, x0)

∫ u

s
ri(s, v, x0) dv ds du,

and variance

(

s
(tn+1)
i

)2
:= V ar

[

ML
(tn+1)
i

]

=
M
∑

m=1









|ci|
∑

(T,x0):T≥tn+1, x0+tn≥20,

x0+T−tn+1≤ω

(

∫ tn+
m
M

tn+
m−1
M

[∫ T+1

T
ri(s, u, x0) du

]2

ds

)
1
2









2

,

and according to the independent increments property of a Brownian motion, theML
(tn+1)
i are independent

for all i = 1, .., d andn = 0, .., N − 2. Hence, the density of the random vector

(

ML
t(1)
1 , . . . ,ML

t(1)
d ,ML

t(2)
1 , . . . ,ML

t(N−2)

d ,ML
t(N−1)

1 , . . . ,ML
t(N−1)

d

)
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Parameters c1 c2 c3 c4 c5 c6
0.07744 0.07456 0.06747 0.25902 0.04215 0.24054

Table 10: Optimal values for the volatility parameters

is the product of the marginal densitiesf
ML

(tn+1)

i

and we need to maximize the likelihood

L :=
N−2
∏

n=0

d
∏

i=1

f
ML

(tn+1)

i

(

M̂L
(tn+1)
1 , . . . , M̂L

(tn+1)
d ; c1, . . . , cd

)

with respect toci, i = 1, .., d, where the realizationsM̂L
(tn+1)
i are given by substitutingc2i by the corre-

spondinga(tn+1)
i and|ci|N

(tn+1)
i,m by the correspondingb(tn+1)

i,m . For numerical reasons, we chose to maxi-

mize the corresponding log-likelihood

log{L} :=
N−2
∑

n=0

d
∑

i=1

− log
{

s
(tn+1)
i

}

−
1

2

(

M̂L
(tn+1)
i −m

(tn+1)
i

s
(tn+1)
i

)2

.

Table 10 contains the resulting parameter values forM = 365, i.e. a daily approximation ofWt. However,

due to different correction terms (cf. Appendix A.1), theseparameter values cannot be directly compared to

those in Bauer et al. (2010).

As mentioned above, the correlation structure between the changes in mortality for different ages and ma-

turities can only be approximated with the quality of the approximation increasing inM . In order to check

the stability of the calibration algorithm and to ensure thereliability of the resulting parameter values, we

performed the algorithm for different choices ofM and observed a convergence of the optimal parameter

values. For instance, fromM = 200 to M = 365 none of the parameter values changed by more than

0.05%. Therefore, we think the calibration algorithm is stable and the results given in Table 10 are reliable.


