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Abstract

In general, the capital requirement under Solvency Il igdeined as the 99.5% Value-at-Risk of
the Available Capital. In the standard model’s longevisknnodule, this Value-at-Risk is approximated
by the change in Net Asset Value due to a pre-specified lohgsivock which assumes a 25% reduction
of mortality rates for all ages.

We analyze the adequacy of this shock by comparing the neguaéapital requirement to the Value-
at-Risk based on a stochastic mortality model. This corsparieveals structural shortcomings of the
25% shock and therefore, we propose a modified longevityksfowehe Solvency Il standard model.

We also discuss the properties of different Risk Margin aginations and find that they can yield
significantly different values. Moreover, we explain hove tRisk Margin may relate to market prices
for longevity risk and, based on this relation, we commenthancalibration of the cost of capital rate
and make inferences on prices for longevity derivatives.

*The author is very grateful to Andreas Reuf3, Jochen RuR,-Biaaxshim Zwiesler, and Richard Plat for their valuable canta
and support, and to the Continuous Mortality Investigafmrthe provision of data.
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1 Introduction

As part of the Solvency Il project, the capital requiremdat€E£uropean insurance companies will be revised
in the near future. The main goal of the new solvency regingerisore realistic modeling and assessment
of all types of risk insurance companies are exposed to. ihtipte, the Solvency Capital Requirement
(SCR) will then be determined as the 99.5% Value-at-RisIR)\&f the Available Capital over a 1-year time
horizon, i.e., the capital required today to cover all Igsatich may occur over the next year with at least
99.5% probability. For a detailed overview and a discussiothe Solvency Il proposals, we refer to Eling
et al. (2007), Steffen (2008), and Doff (2008). A comparigdgth other solvency regimes can be found in
Holzmduller (2009).

Insurance companies are encouraged to implement (stahattrnal models to assess their risks as accu-
rately as possible. However, the implementation of sudtrival models is rather costly and sophisticated.
Therefore, the European Commission with support of the Citimenof Insurance and Occupational Pen-
sion Supervisors (CEIOPS) has established a scenario bas®thrd model which all insurance companies
will be allowed to use in order to approximate their capitjuirements. In this model, the overall risk is
split into several modules, e.g. for market risk, operagiarsk, or life underwriting risk, and submodules
for which separate SCRs are computed. These SCRs are thesgatggl under the assumption of a multi-
variate normal distribution with pre-specified correlatimatrices to allow for diversification effects. The
setup and calibration of the standard model is currentigdestablished by a series of Quantitative Impact
Studies (QIS) in which the effects of the new capital requiats are analyzed. Even though this stan-
dard model certainly has some shortcomings (for criticetuésions see, e.g., Doff (2008) or Devineau and
Loisel (2009)), most small and medium-size insurance carnegaare expected to rely on this model. But
also larger companies are likely to adopt at least a few nesdialr their (partial) internal models. Hence, a
reasonable setup and calibration of the standard modalégatin order to ensure the financial stability of
the European insurance markets.

One prominent risk annuity providers and pension funds ar@cplarly exposed to is longevity risk, i.e.
the risk that insured on average survive longer than exgecide importance of this risk is very likely
to increase even further in the future: A general decreasmirefits from public pay as you go pension
schemes in most industrialized countries, often in contlminawith tax incentives for private annuitization,
will almost certainly lead to a further increasing demanddonuity products. Moreover, longevity risk
constitutes a systematic risk as it cannot be diversifiedyawa large insurance portfolio. It is also non-
hedgeable since, currently, no liquid and deep marketsefastthe securitization of this risk.

In the Solvency Il standard model, longevity risk is exglicaccounted for as part of the life underwriting
risk module. The SCR is, in principle, computed as the chamdjabilities due to a longevity shock that
assumes a permanent reduction of mortality rates. Up to @h&4reduction was set to 25% and was mainly
based on what insurance companies in the United Kingdom {RP04 regarded as consistent with the
general 99.5% VaR concept of Solvency Il (cf. CEIOPS (200Mywever, the shock’s magnitude has been
widely discussed over the last years. For instance, sontieipants of QIS4 regard a shock of 25% as very
high (cf. CEIOPS (2008c)) whereas CEIOPS (2010) is stilvaured that a reduction of mortality rates by
25% is adequate. In CEIOPS favor, one could argue that theksdtwmuld be rather large as the standard
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model is meant to be conservative in order to give incentiegeshe implementation of internal models.
Nevertheless, only very recently, the European Commis@0i0) has decided to reduce the longevity
stress to 20% for QIS5 without giving detailed reasoningtlfis recalibration. The computations in this
paper are still based on the value of 25% but, as we mainlsfoaolthe structure of the shock as opposed to
its magnitude, we are convinced that all major findings remalid also for a longevity stress of only 20%.

Besides the magnitude, also the structure of the longetriégs has been the topic of ongoing discussions.
A reason given by QIS4 participants for not applying the d&d model is that “the form of the longevity
stress within the SCR standard formula does not approfyriagiect the actual longevity risk, specifically it
does not appropriately allow for the risk of increases inffetmortality improvements” (CEIOPS (2008c)).
CEIOPS (2009a, 2010) acknowledges the feedback that aaradange in mortality rates may be more
appropriate than a one-off shock and also analyzes a pedsitdevity stress dependency on age and du-
ration but finally decides to stick to the equal one-off shfmkall ages and durations. A consequence of
this decision could be an unnecessarily high capitalinatibinsurance companies in case longevity risk
is overestimated by the current longevity shock. In the ems® case, a company’s default risk could be
significantly higher than the accepted level of 0.5%.

Therefore, a thorough analysis is required whether or r@ttiange in liabilities due to a 25% longevity
shock constitutes a reasonable approximation of the 99.8R0df the Available Capital. This analysis is
carried out in this paper. We examine the adequacy of thek&hsizucture, i.e. an equal shock for all ages
and maturities, and its calibration. Moreover, we explawlit could possibly be improved. In the second
part of the paper, we discuss the Risk Margin under Solvehfiy the case of longevity risk. Due to its
complexity, different approximations have been proposhdse properties and performances are yet rather
unclear. We examine these approximations, in particularagsumption of a constant ratio of SCRs and
liabilities over time which has turned out to be very poputapractice. Moreover, we contribute to the
ongoing debate on the calibration of the cost of capital bgteelating the Risk Margin to (hypothetical)
market prices for longevity risk. This approach offers a parspective compared to the shareholder return
models which have been applied in the calibration so farGeflOPS (2009b)). Using the same relation
and assuming the cost of capital rate to be fixed, we can finadlige inferences on the pricing of longevity
derivates.

The impact and the significance of longevity risk on annuitypension portfolios have already been an-
alyzed by several authors. However, not all of their worledily relates to capital requirements under a
particular solvency regime. For instance, Plat (2009) $eswon the additional longevity risk pension funds
can be exposed to due to fund specific mortality compared nergé population mortality. Stevens et al.
(2010) compare the risks inherent in pension funds witredffit product designs, and Dowd et al. (2006)
measure the remaining longevity risk in an annuity portfali case of imperfect hedges by various longevity
bonds. Others, like Hari et al. (2008a), Olivieri and Pita¢2008a,b), and Olivieri (2009), do analyze cap-
ital requirements for certain portfolios but consider aymhes which differ from the 1-year 99.5% VaR
concept of Solvency I, e.g. they assume longer time hoszom different default probabilities. Therefore,
no final conclusion regarding the standard model approaoebssible in their setting. Nevertheless, Olivieri
and Pitacco (2008a,b) come to the conclusion that the “shoekario referred to by the standard formula
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can be far away from the actual experience of the insurertfamsimay lead to a biased allocation of capi-
tal”. They find that the standard formula contains some gtgamplifications and argue that internal models
should be adopted instead. At least, the magnitude of nitgrtatuctions should be recalibrated to capital
requirements derived from an exemplary internal model.

The remainder of this paper is organized as follows: In a8 the relevant quantities, i.e. the Available
Capital, the Risk Margin, and the Solvency Capital Requéetare defined. For the latter, different defini-
tions based on the 25% longevity shock (the shock approachhpased on the VaR of the Available Capital
(the VaR approach) are given. Moreover, the practical caatjon of these SCRs is described. Since the
computation in the VaR approach requires stochastic muglefimortality, in Section 3, we discuss the suit-
ability of different mortality models and explain why we dged to use the forward model of Bauer et al.
(2008, 2010). Subsequently, we introduce the forward riyrtmodeling framework, in which this model
is specified. The full specification of the model and an imprbealibration algorithm are presented in the
appendix. In Section 4, we establish the setting in whichf@&s from both longevity stress approaches
are to be compared. In particular, assumptions and singtiifics are introduced which are necessary to
exclude risks other than longevity risk and to ensure thatecdcomparison of SCRs based on a one-off
shock approach and a gradual change in mortality as in thehoddauer et al. (2008, 2010) is possible.
The comparison is then performed in Section 5. In the pross®us term structures, ages, levels of mor-
tality rates, and portfolios of contracts are consideredsdsl on these comparisons, a modified longevity
stress for the standard model is proposed in Section 6, vidistill scenario based but allows for the shock
magnitude to depend on age and maturity. In Section 7, thie R&gins based on the 25% shock and
the modified longevity stress are compared and the propestidifferent Risk Margin approximations are
analyzed. Moreover, we discuss the adequacy of the curoshbé€capital rate and argue how the pricing of
longevity derivatives may relate to the Solvency Il capitgjuirements and the Risk Margin in particular.
Finally, Section 8 concludes.

2 The Solvency Capital Requirement under Solvency I

2.1 General definitions

Intuitively, the Solvency Capital Requirement (SCR) un8etvency Il is defined as the amount of capital
necessary at timé = 0 to cover all losses which may occur until= 1 with a probability of at least
99.5%. However, in order to give a precise definition of theRS@e first need to introduce the notion of
the Available Capital.

By definition, the Available Capital at timg AC, is the difference between market value of assets and
market value of liabilities at timeé. Thus, it is a measure of the amount of capital which is alibgldo
cover future losses. In general, the market value of a cogpassets can be derived rather easily: Either
asset prices are directly obtainable from the financial etafkark-to-market) or the assets can be valued
by well established standard methods (mark-to-model). miaket value of liabilities, however, is difficult

to determine. There is no liquid market for such liabiliteesd due to options and guarantees embedded
in insurance contracts, the structure of the liabilitieyscally rather complex such that standard models
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for asset valuation cannot be applied directly. Thereforeler Solvency Il a market value of liabilities is
approximated by the so-called Technical Provisions whimhsist of the Best Estimate Liabilities (BEL)
and a Risk Margin (RM).

The Risk Margin can be interpreted as a loading for non-heolgerisk and has to “ensure that the value
of technical provisions is equivalent to the amount thalifeeirance undertakings would be expected to
require to take over and meet the (re)insurance obligati@sIOPS (2008a)). Thus, in case of a company’s
insolvency, the Risk Margin should be large enough for agrotiompany to guarantee the proper run-off of
the portfolio of contracts. It is computed via a cost of calpétpproach (cf. CEIOPS (2008a)) and reflects
the required return in excess of the risk-free return ontadsecking future SCRs. Hence, the Risk Margin
RM can be defined as (cf. CEIOPS (2009b))

RM — Z CoC - SCR; (1)

= (1 + it—i—l)t—’_l’

whereSCR; is the SCR at time, i, is the annual risk-free interest rate at time zero for maturiandCoC
is the cost of capital rate, i.e. the required return in excéghe risk-free return.
The SCR is defined as the 99.5% VaR of the Available Capital bweear, i.e. the smallest amountfor
which (cf. Bauer et al. (2010))

P(AC, > 0|ACy = x) > 99.5%. (2

However, since this implicit definition is rather unpraatiin (numerical) computations, one often uses the
following approximately equal definition (cf. Bauer et &0(0))

SCRY .= argmin, {P (AC'O — AC? > x> < 0.005} . 3)
1414

From Equations (1) and (3), a mutual dependence betweetaBl@iCapital and SCR becomes obvious:
The SCR is computed as the VaR of the Available Capital, aadAtrailable Capital depends on the SCR
via the Risk Margin. In order to solve this circular relati?@EIOPS (2009a) states that — whenever a life
underwriting risk stress is based on the change in valuesatasninus liabilities — the liabilities should not
include a Risk Margin when computing the SCR. Thus, it is emlithat the Risk Margin does not change
in stress scenarios and that the change in Available Cagaitebe approximated by the change in Net Asset
Value

NAV; .= A, — BEL;.

Here, A; denotes the market value of assets &1dL, the Best Estimate Liabilities at tinte For simplicity,
we will refer to the latter as the liabilities only in what lolvs.

2.2 The Solvency Capital Requirement for longevity risk

As mentioned in the introduction, the Solvency |l standamdai follows a modular approach where the
modules’ and submodules’ SCRs are computed separatelyhandaggregated according to pre-specified
correlation matrices. Thus, for the submodule of longesigi the SCR should, in principle, be computed
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as (cf. Equation (3))

NAW :13) < 0.005}, (4)

1412

SC’R%Z? = argming {P (NAVO -
whereBE L; and A, in the definition ofV AV, correspond to the liabilities of all contracts which are@sgd
to longevity risk and the associated assets, respectively.

In the current specification of the Solvency Il standard niduavever, the SCR for longevity risk — as an
approximation ofSCR)“® — is determined as the change in Net Asset Value due to a lapgghock at

long

timet¢ = 0 (cf. CEIOPS (2008a)), i.e.

SCR;Mck .— N AVy — (N AVy|longevity shock). ®)

long

The longevity shock is a permanent reduction of the moytadites for each age by 25%. This shock is only
meant to account for systematic changes in mortality and doeaccount for small sample risk. Therefore,
we also disregard any small sample risk in the VaR approaeim asclusion would blur the results of our
comparison in Section 5. In what follows, we only consider 8CR for longevity risk and thus omit the
index ;o4 for simplicity.

3 The mortality model

3.1 Model requirements

The computation of the SCR for longevity risk via the VaR agwh obviously requires stochastic modeling
of mortality. In the literature, a considerable number otbkistic mortality models has been proposed and
for an overview we refer to Cairns et al. (2008). Howeveryomry few of these models are suitable for the
computation of a VaR over a 1-year time horizon.

From an annuity provider’s perspective, longevity riskhe tL-year setting of Solvency Il consists of two
components: First, there is the risk that next year’s redlimortality will be (significantly) below its ex-
pectation, e.g., due to a mild winter with less people tharauidying from flu. The second component is
the risk of a decrease in expected mortality beyond next, yeawhich a cure for cancer is the classical
example. A newly discovered medication against cancer dvbalve to be tested thoroughly first and it
would take some time until it would be available to a group eéple large enough such that mortality on
a population scale would be affected. Thus, a noticeabexiefin next year's realized mortality is rather
unlikely. However, (long-term) mortality assumptions Wwabaertainly have to be revised. Both components
of the longevity risk lead to higher than expected liakgbtiatt = 1: in the first case, because more insured
would still be alive than assumed and in the second caseubsedar those who are still alive liabilities at
t = 1 on a best estimate basis would be larger than anticipatee-at. Hence, in order to properly assess
longevity risk over a 1-year time horizon, a stochastic iyt model must account for both components
of the risk.

The most common mortality models belong to the class of spatats where only realized (period) mortal-
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ity is modeled. To account for anticipated changes in mitytalzer time (typically by assuming a decrease
in mortality), spot models contain a mortality trend asstiomp However, in most spot models this trend
is fixed as part of the calibration process and scenariosatizesl mortality are derived as random devia-
tions from this trend. This means that the liabilities at 1 are always computed based on the same trend
assumption as @t= 0 and thus, these models do not account for the second conipointire longevity
risk.

Some authors have overcome the issue of a fixed mortality titeough and explicitly allow for changes
in this trend. For instance, Cox et al. (2009) propose a vemprehensive model which includes compo-
nents for mortality jumps and for mortality trend reducBoilowever, besides the issue that the calibration
of their model significantly relies on expert judgment, tlogy allow for temporary trend changes. The
long-term mortality trend assumption is fixed and thus, qudits of the second component of the longevity
risk are covered by their model. Very similar arguments Holdthe models of Biffis (2005) and Hari et
al. (2008b) where the process which models the mortalitydtis mean reverting with the mean fixed at
t = 0. Milidonis et al. (2010) take a different approach and usezakdv regime switching model with dif-
ferent trend and volatility assumptions in the two monyatiégimes under consideration. However, in their
model, the anticipated long-term mortality trend is ratfivezd by the stationary distribution of the Markov
chain and hence, the model does also not sufficiently acdoupissible changes in the anticipated long-
term mortality trend. A way to overcome this issue is preseriy Sweeting (2009) who incorporates a
trend change component into the model of Cairns et al. (9006 trend parameters in the two stochastic
factors can change each year and, in contrast to the premiodsls, the current trend parameters always
determine the best estimate mortality trend until infinidpwever, due to only three possible scenarios for
each trend parameter in a 1-year simulation (upward/dowshweovement by a fixed amount or remain-
ing unchanged), the range of possible overall trend chaogeisone year is very limited. This makes a
reasonable computation of a 99.5% quantile impossiblecasuich a computation to be sound, the distri-
bution of the magnitude of trend changes would have to beeéat lapproximately) continuous. Therefore,
we conclude that also very recently developed spot modeishwdilow for trend changes are not directly
applicable in the Solvency Il framework.

A class of mortality models which overcomes the outlinedudiracks of spot models are so-called forward
mortality models. Such models can be seen as an extensipotahedels in the time/maturity dimension as
they require the expected future mortality as input and rhclinges in this quantity over time. Thus, they
simultaneously allow for random evolutions of realized tality and for changes in the long-term mortality
expectation. Even changes in expected mortality for oniyaae future time periods can be modeled in
contrast to trend-varying spot models where changes inr¢imel tparameters influence expected mortality
at all future points in time. This makes forward models ulsualore complex than spot models but for a
reasonable computation of a 1-year VaR this additional d¢exity seems inevitable. Moreover, even if an
adequate spot model existed, a forward model would stiiraffie advantage that no nested simulations
would be required for the computation of the liabilitiestat 1. In a forward modeling framework, these
liabilities can be computed directly based on the currenttatity surface, whereas, when using a spot
model, for each 1-year simulation path another set of patineé€ded to compute the liabilities by Monte
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Carlo simulation.

For our analyses in the following sections, we use a slightbgified version of the forward mortality model
introduced by Bauer et al. (2008, 2010) which we refer to aBBRZ model. Forward mortality models
have been proposed by other authors as well, e.g. Dahl (2D0H@rsen and Persson (2005), or Cairns et
al. (2006b). However, to our knowledge, they do not providectete specifications of their models. Thus,
the BBRZ model is the only forward model which is readily #able for practical applications. In the
following subsection, we introduce the forward mortalitgrhework in which the BBRZ model is specified.
The full specification of the model is given in the appendieréralso an improved calibration algorithm is
presented.

3.2 The forward mortality framework

Following Bauer et al. (2008, 2010), for the remainder of théper we fix a time horizof* and a filtered
probability spacg$?, 7, F, P), whereF = (F),.,.~ Satisfies the usual conditions. We assume a large but
fixed underlying population of individuals, which is reaabte as we disregard any small sample risk in our
setting. Each age cohort in this population is denoted bggese, at timety = 0. We also assume that the
best estimate forward force of mortality with maturifyas from timet,

]:t} } (S log {EP [T—tpglt‘ ]:t] } ; (6)

0 log {EP [Tpg) 37

T

(T, xg) :=

is well defined. HereT_tngrt denotes the proportion dfcy + ¢)-year olds at tim¢ < 7" who are still
alive at timeT, i.e. it is the survival rate or the “realized survival prbbidy”. Moreover, we assume that
(1 (T, xg)) satisfies the stochastic differential equations

dp (T, zo) = a(t, T, zo) dt + o(t, T, zo) dWy, po(T,xz0) > 0, z, T > 0, (7)

where (Wy);>0 is a d-dimensional standard Brownian motion independent of thantiial market, and
a(t,T,zo) as well aso(t,T, zp) are continuous irt. Furthermore, the drift term(¢, T, zo) has to sat-
isfy the drift condition (cf. Bauer et al. (2008))

T
alt, Tyzo) = ot Too) x [ ot ds. ®)
t

This implies that a forward mortality model is fully specdidy the volatility o(¢, T, z¢) and the initial
curveuo (T, xo).

From definition (6), we can deduce the best estimate surgiaddability for anzq-year old to survive from
time zero to timél” as seen at time

Ep [Tpg)

]:t] =FEp [e— ST b (u,z0) du

}‘t] — o Jo m(uzo)du 9)

Fort = 1, these are the survival probabilities we need in order topmgenthe liabilities and the Net
Asset Value after one year. Note that(u, z¢) = p.(u, z¢) for u < ¢ since the volatilityo (¢, u, zo) must
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obviously be equal to zero far < ¢. Inserting the dynamics (7) into (9) yields

Ep [Tpg)

]:t] Ep [Tp ] < e fO (fo a(s,u,zo) ds+ [ O'(S,u,:l}o)dWs)du7 (10)

which means that we actually do not have to specify the faiviarce of mortality. For our purposes, it is
sufficient to provide — besides the volatility(s, u, z¢) — best estimatd’-year survival probabilities as at
time ¢ = 0 which can, from a technical point of view, be obtained frony generational mortality table.
Given these quantities, we are able to compute the SCR fgelaty risk via the VaR approach empirically
by means of Monte Carlo simulation.

Since we use a deterministic volatility (cf. appendix) theafard force of mortality is Gaussian. Hence, it
could become negative for extreme scenarios with survik@babilities becoming larger than 1. However,
for the 50,000 paths we have randomly chosen for the empaaraputation of the VaR in the subsequent
analysis such a scenario does not occur and therefore, welréts as a negligible shortcoming for practical
considerations, even in tail scenarios. Moreover, suhyuebabilities larger than 1 can also be regarded as
unproblematic with respect to longevity risk as they menebke a Gaussian forward mortality model more
conservative.

An appealing feature of the Gaussian setting is that — giveeterministic “market price of risk” process
(A(t)),;( — the volatilities under the real world measureand under the equivalent martingale measire
genera:ted byA(t)),~, Via its Radon-Nikodym density (see, e.g., Harrison and Ki@®79) or Duffie and
Skiadas (1994))

aQ o ! ! 1 ! 2
P, —exp{/o AGs) dWs—§/0 IAGS)] ds},

coincide (cf. Bauer et al. (2008)). Hence, risk-adjustedtigal probabilities, i.e. survival probabilities under
the measuré), can easily be derived from their best estimate countesaat

Eq [Tpg)

— g [e K s

d

]:t:| _ EQ [e— fOT(ut(u,xo)—i—ftu afs,u,xo) ds+ [} J(S,U,xo)dWS)du

d

— e fOT S o(s,u,xo) A(s) ds du % EQ [e— fOT(ut(u,xo)-i-ftu afs,u,mo) ds+ [ o(s,u,m0) (dWs—A(s) ds))du

|

= e Rt x@ s g [ F] (1)

o

since (Wt) with W, = fo u) du is a @-Brownian motion by Girsanov’s Theorem (see e.g.
Theorem 3. 5 1 in Karatzas and Shreve (1991)) We will makeofithis relation when we analyze the Risk
Margin in Section 7.

4 The model setup

In this section, we describe the setting for our analysiheflongevity stress in the Solvency Il standard
model which includes assumptions on the interest rate #oolthe reference company’s asset strategy, the
contracts under consideration, as well as the best estimatiality.
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Our reference company is situated in the UK and is closed wo mesiness. We set = 0 in 2007 and

as risk-free interest rates we deploy the risk-free termctire for year-end 2007 provided by CEIOPS
(2008Db) as part of QIS4. For the approximative definitionhef §CR (cf. Equation (3)) to coincide with the
exact definition (cf. Equation (2)), we assume that the campaassets and Technical Provisions coincide
att = 0. Since we want our company to be solely exposed to longeigky we also assume that it only
invests in risk-free assets and that it is completely he@ggdhst changes in interest rates. As a consequence
of the latter, a deterministic approach for the interest mtolution is sufficient and the company specific
risk-free term structure at timecan be deduced from the 2007 term structure. We denotétby) the
annual interest rate for maturiflj at timet¢, ¢ < T. The company’s risk-free assets are traded only when
premium payments are received or survival benefits are paidreeach case the asset cash flow coincides
with the liability cash flow. Hence, differing values of atssand Technical Provisions at> 0 are always
and only due to changes in (expected) mortality. Finallydigeegard any operational risk.

As standard contracts we consider immediate and defefeedrinuities which pay a fixed annuity amount
yearly in arrears if the insured is still alive. We assumd thase contracts do not contain any options or
guarantees for death benefits. Moreover, there is no suppldiEipation and any charges are disregarded.
Thus, in case am(-year old att, = 0 is still alive at timet, the liabilities for an exemplary immediate
annuity contract payingl are

1

BEL; = B (T)
=Ly [

ft} : (12)

The best estimate survival probabilitiestat= 0 are as for UK Life Office Pensioners in 2007. More
specifically, we use the basis table PNMAOO which contain®warts based mortality rates for normal
entries in 2000, and a projection according to the averagara@éctions used by 5 large UK insurance
companies in 2006. For details on this average projectianrefer to Bauer et al. (2010) and Grimshaw
(2007).

As a consequence of the assumptions on payment dates arss#tegolution, we have
Ay = Ay (1—1—2(0, 1))—|—CF1, (13)

whereC'F; denotes the company’s (stochastic) cash flow at 1. In case of immediate annuities, this

cash flow is always negative, for deferred annuities it istpasas long as premiums are paid. For a mixed

portfolio of running and deferred annuities, it may be pesibr negative. Equation (13) implies that
NAVy  BEL - CF

NAV, — = — BEL
"7 14i(0,1) 1+4(0,1) 0

and hence, the SCR formula in the VaR approach, Equatiosi(plifies to

BEL, — CF;

VaR __ .
SCR = argming {P < T i(0.1)

— BELy > x> < 0.005} . (14)

Thus, we can disregard the evolution of the assets in our atatipns. In our subsequent analysis, this
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SCR is computed empirically based on the forward mortaligded introduced in the previous section.
Fort = 1, Equation (10) describes how best estimate survival piibtied at the end of the year can be
simulated. For each path, the Best Estimate Liabilitiestardcash flow at = 1 are then computed based
on these probabilities and the SCR finally corresponds tertmgrical 99.5% quantile of the loss variable

BEL, — CF;

— BEL,.
1+i(0,1) 0

Analogously to the SCR formula in the VaR approach, also &R o rmula in the shock approach, Equation
(5), can be reformulated in terms of the liabilities:

SCR*ho% = (BE L|longevity shock) — BEL,. (15)

Before we can start the comparison of the different SCR féasunowever, we need to ensure that the com-
parison does not get blurred simply because of the diffestngctures of the SCR formulas in combination
with peculiarities of our modeling setup. To this end, anamant observation can be made from the sim-
plified SCR formulas: The SCR in the VaR approach only dependfe expected mortality at the end of
the year, i.e. at = 1, because cash flows occur only yearly in our setting. Hehdegis not matter whether
changes in mortality emerge gradually over the year or ineaafiishock at = 0. Moreover, every gradual
mortality evolution can be expressed in a one-off shock-at0, namely in a shock which transforms the
expected survival probabilities &= 0 into the ones obtained at= 1 via the gradual evolution. Therefore,

if we express a longevity scenario which yields the SCR irvdde approach by a one-off shock denoted by
shockVeE we obtain

BEL, — CF;

VaR .
SCR argmin, { ( 1540 1)

— BELy > m) < 0.005}

BEL, — CF,
144(0,1)
= (BELg|shock”"?) — BEL,

_ SCRShOCk.

shockV“R> — BFELy

The question for the subsequent analysis is now whetheek" *®* can be the 25% shock. If the SCRs
computed according to Equations (14) and (15) coincide a Bdaction in mortality rates corresponds
to a 200-year scenario for the mortality evolution over oeary Or in other words, if the SCRs differ
significantly, the 25% shock approach is not a reasonablegippation of the VaR concept.

5 Comparison of the SCR formulas

We start our analysis with a life annuity 81000 for a 65-year old. The liabilities and the SCRs for the
shock approach and the VaR approach are given in Table 1 anbseeve that the shock approach requires
about 26% more capital than the VaR approach. Even thougstdinelard model longevity stress is meant
to be conservative, this deviation seems rather large. ilsslation to the liabilities at = 0, the deviation
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BELy | BEL, —CF; | SCR | SCRIBELy
Shock approach 12,619.28| 14,238.81 | 869.87 6.9%
VaR approach | 12,619.28) 14,050.62 | 691.59 5.5%

Table 1: SCRs for a 65-year old

6% |

54— e QIS4 term structure
- - QlIS4term structure — 100bps--——
= 4% - - QIS4 term structure + 100bps -
= . e Flat term structure (4.5%)

3% A UK swap curve 01/06/2009

2%

10 20 30 40 50
T

Figure 1: Different term structures for SCR computation

of about 1.4% is significant.

A natural question now is what happens if we vary certain ipatars in our computations, e.g. the age,
the best estimate survival probabilities, or the paymetagdaf the survival benefits. However, in order to
ensure that the deviation in SCRs is not primarily due to ¢nentstructure under consideration, let us first
recompute the SCRs in Table 1 for different interest ratesaddition to the QIS4 risk-free term structure,
we consider term structures shifted upwards and downward®@bps, a flat term structure at 4.5%, and the
UK swap curve as at 01/06/2009 (obtained from Bloomberg d86/2009). For the latter, we interpolate
the quotes for the first 30 years with cubic splines and assuftad yield curve thereafter. The differences
between these term structures are illustrated in FiguredlTable 2 provides the resulting liabilities and
SCRs.

As expected, the liabilities and also the SCRs increase ddgtheasing interest rates. Moreover, from the
values of SCR*"** | BE Ly and SCRY*F/BE L, we can observe that the SCR in the shock approach is
slightly more volatile than its counterpart in the VaR ammio and thus more sensitive to changing interest
rates. Nevertheless, the relative deviation between tHRsSC

ASCR  SCRshock _ g RVaelt

SORVaR — SCORVaR (16)

remains rather constant as can be seen in the last colummeHéwe interest rates obviously do not have a
significant impact on our analysis.

In order to analyze the SCRs for different ages, we consiges @etween 55 and 105 as given in the first
column of Table 3. In the third and fourth column we see that3ER in the shock approach first increases
with age and then decreases again and that the SCR relathve liabilities B 'L, becomes rather large for
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Term structure BELy | SCRshock | SCIC ;ZCk SCRVelt | 5 ggzzR Sl
QlIs4 12,619.28| 869.87 6.9% 691.59 5.5% 25.8%
QIS4 - 100bps 14,002.91| 1,090.17 7.8% 848.91 6.1% 28.4%
QIS4 + 100bps 11,448.34| 701.71 6.1% 569.47 5.0% 23.2%
Flat (4.5%) 13,040.42| 887.65 6.8% 710.19 5.5% 25.0%
Swap 01/06/2009| 13,646.54| 950.05 7.0% 753.73 5.5% 26.0%
Table 2: SCRs for different term structures
Age|| BEL, | SCRehock | SCETZT T goRVaR [ SCETT ASCR T ASCH
55 || 15,671.10f 657.23 4.2% 729.88 4.7% -10.0% | -0.5%
65 || 12,619.28| 869.87 6.9% 691.59 5.5% 25.8% | 1.4%
75 8,941.83 | 1,009.81 | 11.3% 513.27 5.7% 96.7% | 5.6%
85 4,940.13 | 1,003.43 | 20.3% 304.89 6.2% | 229.1% | 14.1%
95 2,549.75| 818.58 32.1% 214.38 8.4% | 281.8% | 23.7%
105 || 1,413.19 646.23 45.7% 180.79 12.8% | 257.4% | 32.9%

Table 3: SCRs for different ages

very old ages. These observations are due to the structtine tdngevity shock since the effect of the 25%
reduction increases as the mortality rates increase. IWdReapproach, the SCR decreases with age and
decreasing liabilities, and only the ratio of SCR and liie# increases which seems more intuitive. In the
last two columns, we can observe that for ages above 85, tReiste shock approach more than triples
the SCR in the VaR approach and also in relation to the ligslithe deviation is huge. These observations
clearly question the adequacy of the longevity stress irsthiedard model.

On the other hand, for age 55 the SCR for the current shodbratitin is already smaller than its counterpart
in the VaR approach. Therefore, a simple adjustment of theksh magnitude such that the SCRs for old
ages approximately coincide may lead to a significant urstienation of the longevity risk for younger
ages. Hence, the shortcoming of the standard model loygeivéss seems to be more a structural one and,
in principle, an age-dependent stress with smaller rela#ductions for old ages might be more appropriate.
This coincides with epidemiological findings: The numberalévant causes of death is larger for old ages
than for young ages (cf. Tabeau et al. (2001)) which mearisethem if some cause of death is contained,
older people are more likely to die from another cause ofrdegterefore, significant reductions in mortality
rates seem to be more difficult to achieve for old ages condpgargoung ages.

Table 4 shows SCRs for various mortality levels for a 65-ydar The different levels have been established
by shifting the mortality rates in the basis table as statete first column of the table. Here, two opposing
trends can be observed. With increasing mortality, the SCRe shock approach increases whereas the
SCR in the VaR approach decreases — in absolute value assmellative to the liabilities. This leads to
an almost identical SCR for a 20% mortality downward shifil arfurther increasing deviation in SCRs for
mortality upward shifts. The reason for the increas&@R*"°°* is again the structure of the shock: the
higher the mortality rates, the larger the shocks in abedkerms. For small mortality rates, an increased
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Mortality shift | BELy | SCRetock | ST | gopVer | SCREE | ASCR [ A8CR
-20% 13296.28] 849.03 | 6.4% | 844.65 | 6.4% | 0.5% | 0.03%
-10% 12,940.87| 860.24 | 6.7% | 758.61 | 5.9% | 13.4% | 0.79%

original | 12,619.28| 869.87 | 6.9% | 69159 | 55% | 25.8% | 1.41%
+10% 12,325.42| 87843 | 7.% | 637.37 | 5.2% | 37.8% | 1.96%
+20% 12,054.68) 886.19 | 7.4% | 593.84 | 4.9% | 49.2% | 2.43%

Table 4: SCRs for different mortality levels

Absolute SCRs Relative deviation in SCRs
35 - - Shock 90% -
ock approach——— 80%

30 - vy VaR approach--—--——--
25 |

20 4
15 A
10
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ot ‘ ‘ ‘ — e 0% ; ‘ ; ‘ ‘
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Figure 2: SCRs for 1-year endowment contracts with matarity

long-term risk due to longer survival does not compensatéhsmaller shocks. In contrast to this kind of
“relative volatility” assumption in the shock approache tholatility in the BBRZ model does not depend on
the mortality level. This results in the decreasing SCR witheasing mortality as earlier deaths reduce the
long-term risk. The automatic adjustment to the mortaétyel under consideration is a convenient property
of the standard model approach and the results emphastabétBBRZ model should be calibrated to data
at the mortality level in view for the application. In caseludata is not sufficiently available, the deficit
may be reduced by calibrating the model to a more extensivef siata and then adjusting the volatility to
the mortality level of the population under consideratiery. by some kind of scaling.

Finally, we want to analyze the impact of varying paymenedain the deviation in SCRs. To this end,
we do not consider an annuity contract but simple endowmentracts for a 65-year old with only one
payment o£1000 conditional on survival up to tin#e. Thus, a combination of these contracts for maturities
T =1, ..,55 equals the payoff structure of the life annuity. In the lefhpl of Figure 2, the SCRs are plotted
for maturities up tdl"’ = 55. We observe that until’ = 20, the SCRs in both approaches are rather close in
absolute value. Thereafter, the shock approach demamificagtly more SCR which explains the larger
SCR for the life annuity. Finally, the SCRs in both approachenverge to zero due to an extremely low
probability of survival. Note though that in the VaR approathe sum of SCRs in Figure 2 is about 5%
larger than the SCR for the corresponding life annuity bsealiversification between different maturities
is disregarded when computing the SCR for each endowmeatatefy. In the shock approach, the sum of
the SCRs for the endowments coincides with the SCR for tlkealifnuity since the stress in the standard
model does not allow for any diversification. In the right ebof Figure 2, the relative deviation in SCRs
(cf. Equation (16)) is displayed. It varies considerablgotime ranging from about -10% to more than
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Figure 3: Age composition of the portfolio of immediate aitygontracts

BEL, | BEL; —-CF, | SCR | SCRBEL,
Shock approach 36,394.73] 42,939.27 | 4,283.83] 11.8%
VaR approach || 36,394.73| 40,587.52 | 2,055.90, 5.7%

Table 5: SCRs for a portfolio of immediate life annuities

80%. Hence, we can conclude that a longevity stress indepeiod the maturity under consideration is not
adequate.

So far, we have only compared SCRs for single contracts. Nawvant to investigate if the depicted
shortcomings of the standard model longevity stress atsw tie deviating SCRs for a realistic portfolio of
immediate life annuities. In order to ensure a reasonal#ecamposition, we choose a portfolio according
to Continuous Mortality Investigation (CMI) data on the amts based exposures of UK Life Office Pen-
sioners in 2006. We only consider males and normal entridgsestale the data by dividing by 100,000 to
obtain results in a handy range. The age composition of thofio is illustrated in Figure 3.

From Table 5, we observe that, for this portfolio of contsadche SCR in the shock approach more than
doubles the SCR in the VaR approach. Given the age compuositithe portfolio, this is consistent with
the observed SCRs for different ages (see Table 3). Thusfinecited structural shortcomings of the
standard model longevity stress also affect the SCR for listieaportfolio of contracts. According to
Table 5, an insurance company which applies the standarelmanild have to raise additional solvency
capital of about 6% of its liabilities compared to a compartyich implements the BBRZ model for VaR
computation in an internal model. This is a huge amount gikay according to a stylized balance sheet for
all undertakings in QIS4, Net Asset Value accounts for ohlgta 18% of the total liabilities (cf. CEIOPS
(2008c)).

When analyzing the SCRs for different ages, we found thatdlaion between the SCRs seems to turn
around for young ages. To further investigate this, we amrsdieferred life annuities for different ages
which again pay1000 in arrears starting at age 65. Table 6 contains thespmmneling SCRs.

The SCRs increase in absolute value with age and for age®@GlRs in both approaches almost coincide.
However, for younger ages the SCR in the VaR approach isifisigntly) larger than its counterpart in the
shock approach with the relative deviation growing, thengmr the age under consideration. Here, the
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shock | SCRshock VaR | SCRVaE ASCR ASCR
Age BELO SCR BELg SCR BELqg SCRVaR BELqg

30 || 3,205.97| 217.90 6.8% 382.66 | 11.9% | -43.1% | -5.1%
35 || 3,851.54| 268.30 7.0% 428.53 | 11.1% | -37.4% | -4.2%
40 | 4,623.92| 329.89 7.1% 489.79 | 10.6% | -32.7% | -3.5%
45 | 5,549.28| 404.85 7.3% 561.71 | 10.1% | -27.9% | -2.8%
50 || 6,676.64| 495.51 7.4% 631.44 9.5% | -21.5% | -2.0%
55 || 8,100.16| 604.29 7.5% 688.98 8.5% | -12.3% | -1.1%
60 | 9,978.02| 733.27 7.4% 724.06 7.3% 1.3% | 0.1%

Table 6: SCRs for deferred annuities at different ages
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Figure 4: Age composition of the portfolio of deferred aripwontracts

longevity stress in the standard model seems to (signifigamhderestimate the longevity risk. Thus, we
again find that a longevity shock independent of age doesamoh ppropriate.

As for the immediate annuities, we also want to analyze timseguences of the highlighted shortcomings
of the shock approach for a realistic portfolio of deferredhaity contracts. This time, we derive the age
composition of our portfolio from CMI data on lives based espres of male UK Personal Pensioners in
2006. We confine the data to pension annuities in defermehbanit data on ages below 20 as the BBRZ
model does not cover those ages. The latter restrictionpsobiematic for our purposes as exposures for
those ages are very small in the CMI data. Moreover, we asyeanty benefits in arrears &0.01 for all
contracts to keep all values in a handy range. The resultirgah amount insured for each age is displayed
in Figure 4. The benefit payments are assumed to commence &baxy, in case age 65 has already been
reached, after one more year of deferment.

The results in Table 7 confirm the observation for single digaisthe shock approach demands significantly
less SCR for young ages. The significance of this differescmderlined by the fact that the shock SCR of
6629.31 corresponds to a 1.5% default probability in the ®aRoach. Thus, under the assumption that the
BBRZ model assesses longevity risk correctly, the trueuefmobability of our reference company would
be three times as large as accepted if the company used ten8yplll standard model. This also holds for
the case when premiums are paid during the deferment périafurther analysis, we found that, in such
a setting, the liabilities were obviously much lower butttthee SCRs changed only slightly.

For a combined portfolio of immediate and deferred anmiitiee deviations in SCRs from the two ap-
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BELy | BEL, —CF, SCR | SCRBELy
Shock approach 88,165.37| 100,062.89 | 6,629.31 7.5%
VaR approach | 88,165.37| 101,485.14 | 7,976.68 9.1%

Table 7: SCRs for a portfolio of deferred life annuities

proaches would obviously cancel each other out to some extéuns, despite its depicted structural short-
comings the standard model longevity stress may yield anedode overall value for the longevity SCR in

some cases. However, there are insurance companies in tketménose portfolios have a strong focus
on certain age groups. Therefore, an equal reduction ofatityrtates for all ages and maturities does not
seem appropriate for the Solvency Il standard model. Tdéurillustrate this, we can cite the magnitudes
of shocks which would yield SCRs for the two considered ptidé equal to those in the VaR approach.
For the immediate annuities, a shock of about 13.0% woule lh@en sufficient, whereas for the deferred
annuities, a shock of about 29.4% would have been required.

Therefore, in the following section we propose a modificgatié the longevity stress in the standard model
which overcomes the shortcomings of the current approathkdm®s still not require stochastic simulation

of mortality.

6 A modification of the standard model longevity stress

In this section, we explain how the longevity stress in thiv&wy |l standard model could be modified in
order to overcome the shortcomings highlighted in the previsection which result from an equal shock
for all ages and maturities.

We keep the structure of a one-off shock which means theriatieg of the longevity stress into the standard
model does not change. From our point of view, such a onehuitls is an acceptable approximation of
gradual changes in expected mortality over only one yedredistinction between a one-off and a gradual
mortality evolution only affects cash flows (premium paytseand/or survival benefits) during the first
year. Cash flows thereafter only depend on the expected lihoetet = 1 and not on how this expectation
emerged (cf. Section 4). Regarding the cash flows in the faat,ywe see in the left panel of Figure 2
that the corresponding SCR is typically very small comparethose for later years. Furthermore, the
implementation of gradual mortality changes would makestia@dard model more complex as, currently,
all risks other than longevity risk are implicitly excludegi computing the shocked liabilities at= 0.

We modify the longevity shock according to the volatilitytimee BBRZ model which introduces a depen-
dency structure of the shock magnitude on age and matunisgedd of the 1-year mortality rates, we now
shock the (expected)-year survival probabilities. These are the quantitiesclaire typically required for
computing the liabilities of longevity prone contractsdigannuities (cf. Equation (12)). Thus, it seems plau-
sible to specify a longevity shock in terms of extreme charigghese quantities over one year. Moreover,
the increasing uncertainty with time in the expected futmatality evolution is accounted for explicitly
and thus, in a more plausible way. When shocking the annughtitg rates, this increasing uncertainty is
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only considered implicitly by the accumulation of an in@ieg number of shocked annual probabilities. If
one wanted to stick to a shock of the annual mortality rateskiocks for different maturiti€s should thus
be specified such that the accumulated shock is reasonable.

For the modified shock, we set eafhyear survival probability to its individual 99.5% quastih a 1-year
simulation of the BBRZ model. From Equation (10), factors easily be derived for each age and maturity
which, when multiplied with the best estimdieyear survival probabilities, yield the desired percestil
Thus, once the BBRZ model is calibrated, supervisory aittesrwould only have to provide insurance
companies with a matrix of these factors and the computaitieiforts for calculating the SCR based on this
modified shock would basically remain as in the 25% shockagar.

In principle, the modified shock yields an SCR which is larjen the one in the VaR approach since
any diversification effects between different ages and riigtsi are disregarded when computing the 99.5%
guantiles of each survival probability individually. Insmof the portfolios considered in the previous
section, this gives a markup of about 5.2% of the SCR for theéuhliate annuities and of about 9.4% for
the deferred annuities. However, we regard this inaccuaacgcceptable given the considerable structural
improvement of the modified shock compared to the origin& Z2hock. Moreover, such a markup might
actually be desirable since the longevity stress in thedst@ahmodel is supposed to be conservative in order
to give incentives for the implementation of internal madéirom this perspective, the modified shock also
offers the additional advantage that a markup is distributeer all ages and maturities according to the
actual risk, whereas, in the 25% shock, this distributionasdirectly risk-related.

As indicated in the previous section, the BBRZ model implies application of an absolute volatility
and obviously, the same holds for the modified shock. Thelskaxtors are only adequate as long as
the mortality level in the insurance portfolio in view (apgimately) coincides with the level of mortality
experience to which the BBRZ model has been calibrated. Mexyvéhis drawback could be dealt with by
calibrating the BBRZ model to the mortality experience dfatient populations (with different mortality
levels) such that the resulting shock factors allow for fbgglifferent risk profiles — in magnitude as well
as in structure.

In case the provision of a matrix of shock factors is regandigoractical or too complex for the standard
model, the surface formed by the factors could be approxdiay a function of age and maturity. Then only
this function would have to be provided by the supervisopaiities. The fitting of such a function would
also allow for an extrapolation of the shock factors to ageevio 20 for which the volatility in the BBRZ
model as specified in Bauer et al. (2008) is not defined. Fi§sleows the log log of the shock factors in
the current calibration of the BBRZ model for all feasiblardmnations of initial ages, and maturities".

At first sight, the surface looks like a fairly even plane fbinaaturities?” > 10. Therefore, a function of the
form exp {exp { f(zo, T')} } might be applicable as an approximation of the shock factehere f (zo, T)

is a plane with a correction for short maturities. Howeues, surface of the shock factors may look different
for a different calibration of the BBRZ model and hence, dhis approximating function might have to be
derived individually for each population in view. We leaéstquestion for future work.

Figure 6 shows the ratio of shock factors fBryear survival probabilities based on the modified shock
and the original 25% shock of the mortality rates. Unforteha a general comparison is not possible as
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Figure 5: Log log of factors for modified shock approach

the magnitude of the original shock depends on the level @intlortality rates. Here, we apply the 25%
reduction to the aforementioned Life Office Pensioners atibrttable. We observe that for combinations of
ages up to about 60 and maturities up to about 50 the shocksrgrsimilar. However, for higher initial ages
the ratios decrease significantly which means the modifiedksHemands significantly less SCR for those
ages. On the other hand, for rather young initial ages argl hoaturities, the ratios increase rapidly as can
be seen for maturitie¥’ up to 70 in the figure. Therefore, the 25% shock may signifigamderestimate
the risk of changes in long-term mortality trends. All obsgions made from Figure 6 are in line with those
made in Section 5.

7 The Risk Margin for longevity risk

7.1 Risk Margin approximations

In Section 5, we found structural shortcomings of the loiitgestress currently implemented in the Solvency
Il standard model. These shortcomings may also affect tek Rargin which is computed as the cost of
capital for future SCRs in the run-off of an insurance pdidfécf. Equation (1)). We will now analyze this
point by comparing the Risk Margin in the 25% shock approaith its counterpart in the modified shock
approach (as a proxy of the VaR approach) introduced in txd@qus section.

However, an exact computation of the Risk Margin would regjtine determination of each year's SCR,
SC Ry, conditional on the mortality evolution up to tinte Since this is practically impossible, the Risk
Margin is usually approximated. In the literature and in OBE (2008a) in particular, several such approx-
imations have been proposed and we will consider the fofigvfour:

() Approximation of theSCR; by assuming a mortality evolution up to tinteaccording to its best
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Figure 6: Ratio of shock factors from modified and 25% lontyeshock

estimate. Thus, we have

CoC

- . BE
RM tz>(:) (1+i(0,t—|—1))t+1 SCR;".

In practice, this calculation method is generally seen akliyig the “exact” Risk Margin and there-
fore, we are going to use it as a benchmark for the other appeadion methods.

(1) Approximation of theSC R, using the proxy formula in CEIOPS (2008a, TS.XI.C.9), i.e.

CoC
D = 959 . g . 1.1(dure=D/2 g
RM —Z(lﬂ.(o T 2L dur, - BELy,
t>0 ’

whereg{" is the expected average 1-year death rate attweghted by sum assured addr; is the
modified duration of the liabilities at time

(1) Approximation of the SC'R; as the fractionSCRy/BE L of the liabilities BEL,, i.e. assuming a
constant ratio of SCRs and liabilities over time (cf. CEIQRS®08a, TS.11.C.28)):

CoC SCR
RM D) — : 0. BEL,.
; (144(0,t + 1))t BELg !

(IV) Direct approximation of the Risk Margin via the modifietliration of the liabilities (cf. CEIOPS
(2008a, TS.I1.C.26)):
RMIY) = CoC - durg - SCRy.

Table 8 contains the Risk Margins for the 25% longevity shawc# the modified longevity shock, the two
portfolios of annuity contracts and all four approximatiorethods as far as they are well defined. The
cost of capital rat€'oC is set to its current calibration in the Solvency Il standanadel, i.e. 6%. For the
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25% longevity shock Madified longevity shock

Portfolio | Method || BELg RM | Rel.dev.| L RM | Rel. dev.| 2L
() 36,394.73| 2,383.87 6.6% | 1,143.08 3.1%

Immediate| (II) 36,394.73|| 2,751.71| 15.4% | 7.6% n/a n/a n/a
annuities | (Il 36,394.73|| 1,957.24 | -17.9% | 5.4% 988.11 | -13.6% | 2.7%
(V) 36,394.73|| 2,051.70 | -13.9% | 5.6% || 1,035.80| -9.4% | 2.9%
() 88,165.37| 11,240.74 12.8% | 12,159.44 13.8%

Deferred | (1) 88,165.37| 10,126.91| -9.9% | 11.5% n/a n/a n/a
annuities | (Il 88,165.37| 10,034.70| -10.7% | 11.4% | 13,206.71| 8.6% | 15.0%
(V) 88,165.37| 10,488.60| -6.7% | 11.9% || 13,804.08| 13.5% | 15.7%

Table 8: Risk Margins for different portfolios, approxinmat methods, and longevity shocks

modified longevity shock, approximation method (Il) is alnsly not applicable since it is based on the
25% shock of the mortality rates. Also note that this mettsodctually not admissible for the portfolio of
deferred annuities because the average age in this pordfods not reach the required 60 years (cf. CEIOPS
(2008a)). Thus, the value for the deferred annuities in 0d8e25% shock is only given for comparison.

Regarding the two portfolios, we find that the Risk Marginetation to the liabilities is generally larger for
the portfolio of deferred annuities which seems reasongilskn the more long-term risk resulting in larger
uncertainty. This finding is supported by the graphs in tfieplenels of Figure 7 where the evolutions of the
SCRs according to approximation method (I) are displayedd&h portfolios and shock approaches. For
the immediate annuities, the SCRs decrease toward zem djugictly whereas for the deferred annuities,
the SCRs first increase before fading out as less and lesgthsurvive.

Furthermore, for the “exact” calculation method (1) and itimenediate annuities portfolio, we observe that
the Risk Margin in the 25% shock approach more than doubdesoiinterpart in the modified shock ap-
proach. This is not surprising as we have observed the sdat®nefor the SCRs at = 0 (see Table 5).
Moreover, in the top left panel of Figure 7, we can see that tkbiation holds thereafter as well. For the
portfolio of deferred annuities, however, the Risk Margane similar even though the SCRg at 0 differ
significantly (see Table 7). Here, a compensation over ticoes which becomes obvious in the bottom left
panel of Figure 7: The higher SCRs in the modified shock agbréa smallert to some extent compensate
for the smaller SCRs later on, i.e. when the portfolio becosimilar to the immediate annuities portfolio.
Nevertheless, depending on the portfolio under considerate structural shortcomings of the 25% shock
also adversly affect the Risk Margin.

With respect to the Risk Margin approximations, we find thegtytseem rather crude in general with the
closest approximation still being about 6.7% away from thratt” value. However, the deviations ap-
pear less significant in light of the large uncertainty regay the correct cost of capital rate (cf. CEIOPS
(2009b)) and the value from calculation method (1) itselfydreing an approximation of unknown accuracy.
Nevertheless, we think that the wide range of values for gpaimated Risk Margin for each portfolio
and longevity shock combination is problematic. The Satyelh regime is supposed to ease and improve
comparisons of the solvency situations of European inggr@ompanies, but such comparisons might get
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Figure 7: Evolution of the SCRs in portfolio run-offs

blurred simply by the use of different Risk Margin approxtioas. Moreover, instead of assessing their risk
as accurately as possible, insurance companies might heddno apply the Risk Margin approximation
which yields the smallest value.

Finally, we have a closer look at the Risk Margin for appraiion method (111) which is very popu-
lar in practice. From Table 8, we observe that the assumptiat future SCRs are proportional to fu-
ture liabilities, results in the largest relative deviasan three of the four combinations of portfolios and
longevity shocks. In each of these cases, the “exact” RisigMas underestimated. This is due to the ratio
SCRy/BELy being a very crude if not inadequate proxy for ratios of fat&CRs and liabilities as can
be seen in the right panels of Figure 7. For both portfolias laoth longevity shocks, the ratio is not even
approximately constant but, in general, increases witke tiffihis observation is in line with the findings
of Haslip (2008) for non-life insurance. Thus, approxirmatmethod (l1l) does not seem appropriate in its
current form. However, an adjustment of the proxy, e.g.pimfof a dependence on the average age in the
portfolio may improve results considerably.

7.2 The Cost of Capital rate

As already indicated, there is a large uncertainty and hexrcengoing discussion regarding the correct cost
of capital rate. It is currently set to 6%, but in CEIOPS (2008nd references therein, values between 2%
and 8% have been derived from different shareholder retwaets. An alternative idea for the calibration
of the cost of capital rate has been brought forward by Qligied Pitacco (2008c) who rely on reinsurance
premiums. However, since data on such premiums is not sritigi available their idea is currently more
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Portfolio 25% longevity shock| Modified longevity shock
of contracts RM | X RM | A
Immediate annuitie§ 2,383.87 | 18.6% || 1,143.08 13.2%
Deferred annuities || 11,240.74] 8.7% 12,159.44 8.9%

Table 9: Risk Margins and corresponding Sharpe ratios

of theoretical interest.

In what follows, we take a different approach to finding ancadde cost of capital rate. We compare
the Risk Margin based on the current rate to hypotheticaketairices of longevity dependent liabilities.
The Risk Margin should coincide with the markup of the rigluated liabilities over their best estimate
counterparts in such a market as it is supposed to providsk adjustment of the Best Estimate Liabilities.
This idea is also in line with the Risk Margin’s more specifiterpretation in the cost of capital setting, i.e.
the provision of sufficient capital to guarantee a properatirof a portfolio. If a market for longevity risk
existed an insolvent insurer could guarantee the portfaleoff by transferring the risk to the market at the
cost of the Best Estimate Liabilities and the Risk Margin.

We assume that, in the hypothetical longevity market, aidkisted survival probabilities are derived from
their best estimate counterparts as explained in SectidroBthe market price of longevity risk process
A(t), we assume a time-constant Sharpe ratioe. the simplest possible process, since currentlyetrger
no information available on the structure of a market pricegevity risk process (cf. Bauer et al. (2010)).
The comparison is then performed by finding the Sharpe raticlwyields a markup in the liabilities equal
to the cost of capital Risk Margin.

Table 9 shows the Risk Margins and the corresponding Shatjms ffor all combinations of portfolios and
longevity shocks. For each portfolio, we observe that ther@nratios increase with the Risk Margin which
is what one would expect. Moreover, we see that the Sharjos fat the deferred annuities are smaller than
those for the immediate annuities. This means that the dlstment of the survival probabilities perceives
a larger risk in the longer maturities of the deferred anesithan the Risk Margin does as the Sharpe ra-
tios are chosen such that the markups in the hypotheticgkloty market coincide with the Risk Margins.
Nevertheless, we observe that the Sharpe ratios are athsbnable magnitude. For the modified longevity
shock, where the computation of the Risk Margin and the aidjkistment of the survival probabilities are
performed based on (essentially) the same model/vojatitie Sharpe ratios do not seem too large in par-
ticular. For comparison, Bauer et al. (2010) find that Shagties for longevity risk might lie somewhere
between 5% and 17% and Loeys et al. (2007) regard a value ofla@5%asonable. The moderate values of
A we have found suggest that, at least in the case of longeskythe current cost of capital rate of 6% is
not overly conservative. This is particularly the case iftalee into account that, in a shock scenario which
leads to a company'’s insolvency and for which the Risk Maigjito be provided, investors typically require
higher risk compensation than usual.

So far, we have assumed the existence of a market for loggeask and based on that we have made
inferences on the Risk Margin and the cost of capital rateaiiqular. However, it is very likely that in
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practice, the Solvency Il regime and its Risk Margin reguieats will come into effect before a deep and
liquid market for longevity risk exists. Hence, it makesseto look at the relation between the Risk Margin
and the market-consistent valuation of longevity risk &tem the opposite perspective. Thus, we now want
to analyze what conclusions for the pricing of longevitykked securities can possibly be drawn from Risk
Margin requirements once the latter have been fixed.

Given an appropriate mortality model, the pricing of loniggederivatives narrows down to the specification
of a reasonable market price of longevity risk process (campater) -\(¢) in our setting. Hence, we need
to answer the question whether such a process can be rebsdeabed from Risk Margin requirements. In
the literature, several ideas have already been proposkdwsuch processes could be obtained, e.g. from
market annuity quotes (cf. Lin and Cox (2005)) or other asketses like stocks (cf. Loeys et al. (2007)),
but none of these approaches is really satisfactory. Fasratigh discussion of this issue, we refer to Bauer
et al. (2010).

A company which is completely hedged against longevity disks not have to provide any solvency capital
for longevity risk anymore. In our setting, where the refeme company is solely exposed to longevity risk
this obviously reduces the future cost of solvency capitaldro. Thus, neglecting any possible credit risk
arising from a longevity transaction, the company mightrteriested in securitizing its longevity risk as
long as the transaction price does not exceed the presemt @hthe future cost of capital in case it keeps
the risk. By definition, the Risk Margin is equal to this presealue for a typical insurance company and
therefore, it corresponds to the maximum price such a coynpanild be willing to pay for longevity risk
securitization. Consequently, the Sharpe ratios in Tabieflect the level of risk compensation a typical
market supplier of longevity risk might accept and henceatvehreasonable market price of longevity risk
could be.

Obviously, this approach to finding a market price of longevisk also has its shortcomings, in particular
because a company’s decision of securitizing its longendly is influenced by several other effects. For
instance, the maximum price a company is willing to accepy belower because it may expect its own
cost of capital to be lower than the Risk Margin, e.g. becafsdiversification effects with other risks
than longevity. On the other hand, a company might accepgleehiSharpe ratio for strategic reasons, e.g.
the abandonment of a line of business, or due to difficultiemising capital and the risk of increasing
cost of capital in the future. Obviously, the relevance ekt effects will vary between companies and as a
consequence, different companies will accept differemketarices of longevity risk. The market’s appetite
for longevity risk will then decide on which company can si#@e its risk at an acceptable price and what
the market price for longevity risk will finally be. Nevertlkss, we believe that solvency requirements and
the Solvency Il Risk Margin in particular, can provide vadll@insights into and a reasonable starting point
for the pricing of longevity derivatives.

8 Conclusion

In the Solvency Il standard model, the SCR for longevity isskomputed as the change in Net Asset Value
due to a permanent 25% reduction in mortality rates. Thisatwe based approach is to approximate the
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99.5% VaR of the Available Capital over one year which carydréd determined exactly via stochastic
simulation of mortality. However, this standard model lewity stress has come under some criticism for
its possibly unrealistically simple structure. In partaruthe reduction in mortality rates does not depend on
age and maturity which may lead to an incorrect assessmené dfue longevity risk. To assess this issue,
we compare the standard model longevity stress to the 99&Rof&f longevity risk which we compute by
the forward mortality model of Bauer et al. (2008, BBRZ model

We find that, in our setting, the SCRs from both approachésrdibnsiderably in most cases. In general, the
VaR approach yields a larger SCR for young ages whereas tio& sipproach demands more SCR for old
ages. Moreover, we observe varying SCRs for different nitasr Thus, depending on the composition of
an insurance portfolio, the longevity stress in the stashdawdel may significantly overestimate or underes-
timate the true longevity risk. In the former case, compamieuld be forced to hold an unnecessarily large
amount of capital whereas in the latter case, a companyautieisk would be significantly higher than
the accepted level of 0.5%. For instance, for an exemplarydalistic portfolio of deferred annuities we
observe that the standard model longevity stress demarsi§€Rmwhich corresponds to a default probability
of 1.5% in the VaR approach.

Hence, the current longevity stress in the Solvency Il sieshanodel seems to have some crucial struc-
tural shortcomings. In particular, the shock magnitudedependence of age and maturity does not seem
appropriate. Even though we have performed our analysisathar simple setting, we expect that our ob-
servations are valid rather generally. Allowing, e.g.,faore complex contracts with surplus participation
and various options and guarantees might change the coragposure to longevity risk. For instance,
the risk for certain ages or maturities might be reduced dl $alues may therefore change considerably.
However, the inherent longevity risk would still be very dam and we must expect the observed devia-
tions between the two approaches and the structural shairigs of the standard model longevity stress to
remain.

Therefore, we believe that a modification of this longevitgss is necessary so that it more appropriately
reflects the risk insurance companies are exposed to. Suddified longevity stress is proposed in this
paper. In order to keep the standard model’'s longevity riskluhe as simple as possible, we keep the one-
off shock structure. However, we define a different shockr-efch agery and maturity7” — according to
the 99.5% quantile of the expect&dyear survival probability for any-year old as in a 1-year simulation
of the BBRZ model. This shock can be applied by multiplying best estimate survival probabilities with
corresponding shock factors. Thus, the computationakteffior calculating the SCR would essentially
remain similar to the 25% shock but the risk perception wdanddmproved considerably.

We then analyze the cost of capital Risk Margin — in our casddiogevity risk only — and find that the
proposed approximations in CEIOPS (2008a) lead to significalifferent values. Thus, two companies’
solvency situations might differ considerably only due e thosen approximation method for the Risk
Margin. Moreover, we observe that the assumption of a cahs#io of SCRs and liabilities over time,
which is a popular proxy for future SCRs in practice, ofteade to inadequate results. We find mostly
increasing ratios for the two portfolios under considerativhich means that the approximated Risk Margin
might be too small to fulfill its purpose of guaranteeing agaorun-off of a portfolio in case of insolvency.
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This finding should be particularly interesting for regolast

Subsequently, we discuss the adequacy of the current a@tibrof the cost of capital rate by comparing
the Risk Margin to the price of a securitization in a hypoitetmarket for longevity risk. We observe that
the cost of capital rate of 6% corresponds to Sharpe ratitteeimarket which are of reasonable magnitude.
Thus, the rate of 6% does not seem overly conservative fgelty risk. Finally, we explain how market
prices for longevity risk may be derived from solvency regmients and the Solvency Il Risk Margin in
particular. The securitization of longevity risk reducesampany’s future cost of solvency capital and
the Risk Margin as the present value of these costs therpforedes a maximum price which a typical
insurance company might be willing to accept for the seiatibn of its risk. Even though there are
several other effects which may influence the company’sstletion securitization, we believe that solvency
requirements can provide a reasonable starting point éptiting of longevity derivatives.
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Appendix

A Specification and calibration of the BBRZ-model

A.1 Model specification

In general, a forward mortality model in the framework of &t 3 is fully specified by the volatility
o(t,T,zy) and the initial curveuy(T, zp). For our purposes, however, the volatility afidyear survival
probabilities are sufficient, where for the latter we ref@iSection 4. Regarding the volatility, Bauer et
al. (2008) propose a 6-factor specification of which we uskgatty modified version in this paper. We
keep the general functional structure of the volatility teee (¢, T, z9) = (o1(¢, T, x¢), ..., 06(t, T, xq))
and only deploy a different functional form for what theyeeto as the “correction term”. Instead of
a standard Gompertz form, we use a logistic Gompertz fagm= % + ¢ as introduced by
Thatcher et al. (1998). In contrast to the standard Gomesizthis prevents the volatility from becoming
unrealistically large for very old ages. Hence, for> ¢ the volatility vectoro(t, T, z() consists of the

following components:

general: o1(t,T,z0) = 13;1}9(1&‘1(2?(;11:);;?@ te):
short-term:  o5(, T, z0) = ¢z X 1_?;2;“&%1%27) + ¢) x exp (log (0.1)(T — t));
young age (. T.) =y (SR

x exp (BG8 (7 ¢ — 20)2 4 18105 (4 1 T 37.5)2);
middle age: o4(t,T,x0) = ¢4 X (1-?22%?2§IT+% n )

x exp (52 (T 20)2 + 2500 (25 + T — 67.5)%);
old age: a5(t, T, ) = ¢5 <1i);§1ga(gi(;jIT+i)b) +c

x exp (O (T — t — 20)2 + 209 (35 + T — 110)?);
long-term:  o¢(t, T, z0) = g x <1i>;§éaé;i<;;r$:r+i)b) n C)

x exp (REG5) (7 ¢ — 120)2).

For T < t, the volatility has to be zero obviously, since the forwamdcé of mortality for maturity?” is
already known at timeé and hence deterministic.

A.2 Generational mortality tables for model calibration

Since forward mortality models reflect changes in expecttaré mortality they need to be calibrated to
guantities which contain information on the evolution opegted mortality. Such quantities could, e.g., be
market prices of longevity derivatives, market annuity 880 or generational mortality tables. However,
since data on longevity derivatives’ prices and annuitytgsids very sparse and/or blurred due to charges,
profit margins etc., currently, generational mortalityléslseem to be the most appropriate starting point for
the calibration of forward mortality models. Hence, Baueale(2008, 2010) calibrate their model to series
of generational mortality tables for US and UK pensionerswelver, they have only available 4 or 7 tables,
respectively, which is a rather thin data base for modebcatiion.
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Moreover, it is not clear how good the volatility derivedrftsuch historical mortality tables fits the future
volatility since the methodology of constructing mortgalirojections has changed significantly over the
past decades, i.e. from the technique of age shifting tchagiic (spot) mortality models. Therefore, the
transition in projection methods often lead to rather sudaled strong “jumps” in predicted mortality rates
from one table to the next which might result in an unreaslyniaiigh volatility in the forward model.

Therefore, we believe that it is more appropriate to caléofarward mortality models to a series of historical
generational mortality tables which have all been consgtdiaising the same and up-to-date projection
methodology. In order to build such tables, we use the mofdeée and Carter (1992). With this model,
a generational mortality table is constructed for eactohisdl year based on the mortality data which was
available in that year. We opt for the Lee-Carter model bsedtihas become a standard model in the
literature on mortality forecasting (cf. Booth and Tick0Q8)) and it has also been used by the CMI in
the construction of some of their recent projections for Uiaitants and pensioners (cf. CMI (2009) and
references therein). However, we think that the model &i@aot crucial in our setting for two reasons:
First, for the calibration of the forward model, we are naenested in absolute values of projected mortality
rates but only in their changes over time. Secondly, the lositns drawn in this paper with respect to
the structure of the longevity stress in the Solvency Il d&d model should still be valid even if the true
volatility in the forward model was generally overestintht® underestimated.

In the Lee-Carter model, the (central) mortality ratéz, ¢t) for agex in yeart is parameterized as
10g {m(ma t)} =g+ ﬁ:p “ Kt + €zt

where thea, describe the average mortality rate for each agwer time, 5, specifies the magnitude of
changes in mortality for age relative to other ages,, ; is an age and time dependent normally distributed
error term, andk; is the time trend (often also referred to as mortality indéxtje latter is usually assumed
to follow an ARIMA(0,1,0) process, i.e.

Kt = Kt—1 + 77 + €4,

where~ is a constant drift and; is a normally distributed error term with mean zero.

For fitting this model to historical mortality data, we use theighted least squares algorithm introduced by
Wilmoth (1993) and adjust the; by fitting a Poisson regression model to the annual numbeeathd at
each age (see Booth et al. (2002) for details). Since miyrtddita usually becomes very sparse for old ages,
we only fit the model for ages 20 to 95 and use the followingapdtation up to age 120: We extract ihg

for x > 96 from a logistic Gompertz form which we fit in least squaredt, for x < 95. For thes,., we
assume the average valueff to Sg5 to hold for allz > 91.

The (deterministic) projection of future mortality ratesthen conducted by setting the error tepg and
e; equal to their mean zero for all future years. Due to the lograd distribution of them(z,t), the thus
derived mortality rates are actually not the expectatidithe futurem(z, t), which are typically listed in
a generational mortality table, but their medians. Howeseen though not fully correct, this approach to
projecting mortality within the Lee-Carter model is widedgcepted (see, e.g., Wilmoth (1993), Lee and
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Miller (2001), or Booth and Tickle (2008)) and should be wipgematic in particular in our setting, where
only changes in projected mortality over time are considleFenally, we derive approximate 1-year initial
mortality rates;(x, t) from the central mortality rates as (cf. Cairns et al. (2009)

q(z,t) =~ 1 —exp{—m(z,t)}.

The generational mortality tables are constructed for tlaéergeneral population of England and Wales.
For our purposes, it would obviously be preferable to budlbles from annuitant or pensioner mortality
data. However, a sufficient amount of such data is only dvailéor a limited number of years and ages.
Therefore, we make the assumption that the volatility @erivom the general population tables is also valid
for insured’s mortality. As discussed in Sections 5 and &djnstment of the volatility to the mortality level
of the population in view may be appropriate to account fa igsue but for simplicity we do not consider
such an adjustment here.

Mortality data, i.e. deaths and exposures, for years 192006 has been obtained from the Human Mortal-
ity Database (2009). A generational mortality table is thenstructed based on a Lee-Carter fit to each set
of 30 consecutive years of data which yields a series of 3@sable decided to use only 30 years of data for
each Lee-Carter fit as we think it is not reasonable to caébsamortality model with constant parameters
b, and~ to a significantly longer time series of historical data. @es in age dependent mortality reduc-
tion rates have been observed for most countries in the pest €.9., Vaupel (1986) and Booth and Tickle
(2008)), including England and Wales, and using a largeofséata would thus imply the risk of extrapo-
lating outdated mortality trends from the far past into thufe. Moreover, Chan et al. (2008), Hanewald
(2009), and Booth et al. (2002), amongst others, find strathreaks in the time treng; for England and
Wales as well as for other industrialized countries. A digantly shorter time series of data, on the other
hand, might lead to the extrapolation of noise and merelyptaary mortality trends. Nevertheless, the
choice of 30 years is still rather arbitrary. Additionallye assume a gap year for data collection between
the fitting period for the Lee-Carter model and the startingryof the corresponding mortality table, e.g.,
from the data for years 1947 to 1976 a table with starting ¥8&8 is derived. Thus, in total, we obtain a
series of 31 mortality tables.

A.3 Calibration algorithm

Based on the series of generational mortality tables ditiivéhe previous subsection, we are now able to
calibrate the parameters in the forward model. In analodyatoer et al. (2010), we fit the correction term
to the forward force of mortality for a 20-year old in the mostent mortality table using least squares and
obtain parameter values of= 0.1069, b = 12.57, andc = 0.0007896.

For the parameters, i = 1, .., d with d = 6 in our case, Bauer et al. (2008) present a calibration dlguori
based on Maximum Likelihood estimation. However, due to eroal issues they can only use a small
part of the available data, i.e. six 1-year survival prolids for different ages and maturities from each
generational mortality table, the choice of which obvigushplies some arbitrariness. Here, we propose
a new 2-step calibration algorithm which makes use of alilabve data and the fact that the deterministic



AN ANALYSIS OF THE SOLVENCY Il STANDARD MODEL APPROACH TOLONGEVITY RISK 33

volatility specified in Appendix A.1 can be re-written in them o; (s, u, xo) = ¢; - r5(s, u, x0), i = 1, .., d,
with the ¢; the only free parameters.

Letty = 0 be the year of the first generational mortality table, i.e/8.8 our case, and let, ...ty _1
denote the (hypothetical) compilation years of all latétea. We define by

(T+1)
(tn)T—T+1 B {T+1px0 ‘}—t"} B B
p"EO—‘rT T ( ) - exp - lu’tn (u7 xo) du
E |:Tp:to ]:t :| T

the 1-year forward survival probability froffi to T' + 1 for anxy-year old at time zero as seen at time
which can be obtained from the mortality tables. Howevereigia set of forward survival probabilities at

timet,, n € {0,1,.., N — 2}, the fixed volatility specification only allows for certaihanges in the for-
ward survival probabilities up to timg,; ;. We denote byyfj”j}) T=TH the “attainable” forward survival

probabilities at time,,, 1 with respect to the forward survival probabilities at titpeand the given volatility
specification, and these probabilities satisfy the refatio

,(tn+1)ZT—>T+1 _ (tn)T—>T+1
zo+T - zo+T

T+1 ptnt1 T+1 ptps1
xexp{ / / a(s,u, x dsdu—/ / o(s,u,xg dW()du}.

Inserting the drift condition (8), some further computatgield

(tn+1):T—T+1 . (tn):T—T+1
lOg {pxoi% } - log {pxo-i-T }

d T+1 tnt1 u
—ZC?/ / Ti(&%%)/ ri(s,v,20) dvdsdu
_ T tn s

(1) tnt+ 1 T+1 2
—Z Z \cZ\N ot / / ri(s,u, o) du| ds
t m—1 T
d

i=1 m=1 nt 37

(t ) T+1 tnt1 u
E a; "t / / ri(s,u,xo)/ ri(s,v,x0) dv ds du
_ T tn s

— log {p(tn):T—>T+1}
b1 T4+1 2
- Z Z b tn+1) / {/ ri(s,u, o) du} ds |
tn+ 2L LT

D=

D=

zo+T
i=1 m=1

where theZVﬁ’;*”, i=1,..d,m =1,.., M are standard normally distributed random variabi¢s,"") >

0, andbl(,t;;“) € R,7 =1,..,d. Obviously, the above equations hold for ah € N, but in case forward
survival probabilities for different ages, and maturities” are considered the choice &f has a significant
influence on the correlation between the evolutions of tipegbabilities. Forl/ = 1, they would be fully
correlated which, in general, is only the case if the vatgtivector is 1-dimensional or component-wise
constant. These conditions are clearly not fulfilled in dtuagion and hence, the paramefdr should be
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chosen as large as numerically feasible to meet the actualation structure as accurately as possible. We
will come back to this issue later.

The idea behind the first calibration step is now to choosqn&nametera( nt1) andb( »+1) such that the
attainable forward probabilities are as close as possittteetactual probabilities listed in the mortality table
att,.1. This is done by minimizing, for eaclh, the least squares expression

2
log {p:(vt;.ﬁ“) T—>T+1} ~log {p;t::%) T—>T+1}
LStn+1 = Z

1 ( 7L+1) T—T+1 ?
(T,20): T>tp 41, 0 +tn >20, og xo—i-T
zo+T—tp41<w

wherew is the limiting age. The changes in forward mortality froomei¢,, to time ¢,,.; can then be
described by the parameterg”“) andbz(f;}jl) in combination with the volatilityr (s, u, zo).

In the second step, we derive values for the parameters = 1,..,d from the agt"“) and bgf;;jl) via
Maximum Likelihood estimation. For eaehe {0,1,.., N — 2}, the aggregated change over all ages and
maturities in log forward survival probabilities resutiifrom thei?* mortality effect, i.e. the changes driven
by thei*” component of the vector of Brownian motiol§ (cf. Equation (7)); = 1, ..,d, is given by

. T+1 tnt1 U
MLZ( n+1) L Z C@z/ / ri(s,u,xo)/ ri(s,v,x0) dvdsdu
tn s

(T,zo):TZtn+1,zO+tn220, T
ZO+T7t7L+1 <w

1
m 2 2
oy ([T
+ \cZ]N ri(s,u,zo)du| ds| .
t _’_mfl T
n 1\/1

This expression is normally distributed with mean

T+1 tnt1 u
mgt"“) =F [MLZ@”“)] = Z 022/ / ri(s,u,xo)/ ri(s,v,x0) dv ds du,
tn s

(Tywg): T2ty 41, 20+tn>20, T
20+ T —tn 41 <w

and variance

2
tn 6
(35 +1)> = Var |:ML§ +1)]
2
1
Y tntar T+1 2 1
— Z il Z / » [/ m(s,u,mo)du} ds ’
m=1 (T2(): Tty 41, 29 +tn>20, tn+"57 T

2o +T—tp 41 <w

and according to the independent increments property obavBan motion, theMLZ(t”“) are independent
foralli =1,..,dandn =0, .., N — 2. Hence, the density of the random vector

(ML, ML ML, ML ML, ML)
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Parameters a Co c3 cy cs Co
0.07744| 0.07456| 0.06747| 0.25902| 0.04215| 0.24054

Table 10: Optimal values for the volatility parameters

is the product of the marginal densiti¢%L<tn+1) and we need to maximize the likelihood

N—-2 d
T (tn ) T (tn )
L:: H HfMLEt"H'l) (MLl i 77MLd i ;Cl,...,cd)
n=0 =1

with respect tar;, @ = 1,..,d, where the realizationMLEt”“)

spondinga!"*") and|c;| N\""*") by the corresponding!+"). For numerical reasons, we chose to maxi-

7

are given by substituting? by the corre-

mize the corresponding log-likelihood

N-2 d

= (tn+1) (tn+1) 2
o (tns1) 1 (ML, —-m,
log{L} := Z Z —log {32‘ +1 } -3 ( nt1) )

n=0 i=1

Table 10 contains the resulting parameter values\ioe= 365, i.e. a daily approximation ofl’;. However,

due to different correction terms (cf. Appendix A.1), theseameter values cannot be directly compared to
those in Bauer et al. (2010).

As mentioned above, the correlation structure betweenhhages in mortality for different ages and ma-
turities can only be approximated with the quality of the @ppmation increasing id/. In order to check

the stability of the calibration algorithm and to ensure ftbigability of the resulting parameter values, we
performed the algorithm for different choices bf and observed a convergence of the optimal parameter
values. For instance, from/ = 200 to M = 365 none of the parameter values changed by more than
0.05%. Therefore, we think the calibration algorithm ibt#aand the results given in Table 10 are reliable.



