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Abstract

The projection of future mortality experience constitutesa challenge for both actuaries and de-

mographers. As we show, some of the currently used standard mortality projections have several

shortcomings which might pose a serious threat to insurers,pension funds, and social security sys-

tems.

In this paper, we propose a new projection methodology whichovercomes these shortcomings.

We introduce a model which allows mortality improvements todepend on age, period, and cohort,

and we explain how the model can be estimated and applied. In particular, we show how coherent

projections for several populations, i.e. males and females of the same country and populations from

closely related countries, can be derived. The basis for these projections are coherent extrapolations

of historical life expectancies. As aggregated mortality statistics, life expectancies typically exhibit

steady patterns which often makes forecasting rather obvious. We observe that the incorporation

of information on the mortality experience of other populations can have a significant impact on

the projection for a given population. A comparison with other commonly used projection models

shows that our methodology provides stable and highly plausible projections. Finally, we discuss

uncertainties in our projection approach and explain how they can be accounted for. In order to

illustrate our methodology, we derive fully specified projections for German males and females as

members of a large reference set of European populations.
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1 Introduction

Longevity risk, i.e. the risk of insured/pensioners living longer than expected, is one of the most promi-

nent insurance risks. It is most relevant for pension funds, annuity providers, and social security sys-

tems. In the past, gains in life expectancy or, equivalently, improvements in mortality have been un-

derestimated consistently in most industrialized countries. The revision of mortalityprojections, i.e. the

realization of longevity risk, has then led to the requirement of additional funds to support increasing

liabilities. The potential need for additional funds poses a serious threat toany (financial) institution

concerned with the provision of survival benefits.

Longevity risk has always been present but its significance has gainedenormously in recent decades.

Riskless yields in the financial markets have fallen considerably in many countries leaving only little

funds for the provision of additional reserves. At the same time, the size oflongevity risk in the private

sector has increased. Benefits from social security systems have beenreduced in many countries which

in turn has increased the demand for private annuities and occupational pensions. This demand is often

supported by tax incentives, either for products with mandatory annuitization or to make annuitization

more attractive to the policyholder than taking the lump sum payment.

For the assessment of longevity risk, e.g. for risk management or solvency purposes, stochastic mortality

modeling or a scenario analysis is required. However, the resulting risk capital charges are only credible

if best estimate mortality is projected adequately. If best estimate liabilities are systematically underes-

timated, e.g., by an inappropriate mortality projection the risk capital charges willnever guarantee the

desired safety level.

Thus, mortality projections do not help in quantifying longevity risk, but an adequate mortality projec-

tion can significantly reduce longevity risk. Therefore, mortality projectionsare extremely important for

practical actuarial work, and insurers, pension funds, and social security institutions should consistently

look to improve their projections. However, graphical analyses reveal that some of the currently used

projections still seem questionable. As an example, in Figure 1, we plot the annual mortality improve-

ments embedded in the standard mortality table for reserving for private annuity business in Germany,

i.e. the table DAV 2004 R. In the left panel, we see historical mortality improvements for West German

males up to 2008 and projected best estimate improvements thereafter.1 The plot reveals several issues

which can also be identified for many other projections, and it indicates whatthe focus in the derivation

of new projections should be on:

• We observe a structural break between historical and forecast mortalityimprovements. In reality,

the transition will almost certainly be smooth.

• The projection assumes a rapid slowdown in mortality improvements over the nextyears which

1The historical improvements are derived from data from the Human Mortality Database (2012) (see Appendix A for de-
tails), and we apply P-splines to smooth the mortality rates before computing the improvements. To support interpretability
and comparability of different heat charts, here and throughout this paper, we sometimes cap rather extreme values. We use
data for West Germany only as the projection in the table DAV 2004 R was derived from data for that population, too. The
trend parameters in the projection are set toT1 = 10 andT2 = 15, and margins for possibly stronger mortality improve-
ments in insured mortality have been deducted. For more details on this projection and its parameters, we refer to Deutsche
Aktuarvereinigung (2004, DAV).
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Figure 1: Standard mortality projection for German annuity business

cannot be motivated from the historical data.

• The historical data contains significant diagonal structures, i.e. cohorteffects, which are not ex-

trapolated into the future.

The right panel of Figure 1 shows the projection of the table DAV 2004 R including margins. The struc-

ture of the projected mortality improvements still looks inadequate, and even with margins, mortality

improvements seem to be underestimated for some ages at least for the next years. One may argue

that the projection might be sufficient for a portfolio of contracts with a widelyspread age distribution.

However, regulatory requirements can prohibit the balancing of profits and losses from different prod-

ucts or product tranches. Thus, a spread of risk over a wide range of ages is not always possible which

underlines the need for an adequate projection for each age and cohort individually. We have made sim-

ilar observations for the corresponding projection for German females aswell as standard projections in

other countries.

Our observations clearly show that there is still need and space for improved projection methodologies.

The derivation of such a methodology is the goal of this paper. We propose a model structure which

allows mortality improvements to depend on age, period, and cohort – in contrast to many existing

projection methods which account for only one or two dependencies.2 Nevertheless, the proposed model

structure is fairly simple which facilitates a clear understanding of historical improvement patterns. We

also provide a framework for estimating the model and explain how coherentprojections for several

populations as well as different improvement scenarios can be derived. In the past, projections for males

and females and/or different populations have typically been constructedindependently from each other

which often lead to inconsistent long-term forecasts. As we show, taking into account data from several

populations can improve the reliability of projections for each single population.

It is important to note that we do not propose a fully fixed and data driven estimation and forecast-

ing procedure as it is typically applied for statistical projection models. Instead, we only establish a

2Note that, in many projection models for mortality rates which account for age, period, and cohort dependencies, the
projected mortality improvements often depend on period and cohort only. The age parameters then only describe the level of
mortality with age and not changes in this level over time.
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framework by outlining the necessary steps for estimation and forecasting and provide examples how

each of these steps can be implemented in practice. Thus, only the general procedure is fixed, while

the concrete design of each step is to be customized to the population under consideration and the data

available. Such a customized approach obviously requires some expert judgment which is often seen as

a disadvantage compared to fully data driven extrapolation models due to the implied loss in objectivity.

However, we believe that this approach also offers several advantages. In particular, it allows the user to

directly implement what he regards as consistent with the historical data and coherent between different

populations. When using statistical extrapolation models, this implementation is donerather indirectly.

One would typically choose the one model from the bunch of available models which appears to yield

the most plausible results given one’s own understanding of historical mortality patterns and expecta-

tion of the future mortality evolution. In fact, statistical models are often modified or the data set is

determined such that model outcomes are in line with the user’s intuition. The approach proposed in

this paper avoids this indirect implementation as well as being limited to the projection scenarios which

available statistical extrapolation models can provide. At the same time, the fixed framework for model

estimation and forecasting reduces the necessary user input to a minimum. Therefore, we believe that

the proposed methodology provides a useful alternative to fully data driven approaches, in particular

with respect to Solvency II requirements. Once Solvency II comes into effect, insurers will have to

explain in detail how they derived their mortality assumptions and why they think these assumptions are

valid. When using the framework of this paper, the reasoning comes with the derivation of a projection

automatically.

Most existing projection models consider mortality rates from which mortality improvements can then

be deduced. We directly forecast improvements as we see two main advantages in this approach: First,

we do not have to model the (current) level of mortality rates but only their changes over time. This re-

duces the number of required parameters and improves the interpretability ofthe remaining parameters.

Secondly, some features in the underlying mortality data become more obvious when changes in mor-

tality rates are considered instead of the mortality rates themselves. Appendix Aprovides an example of

such a feature. A case for modeling mortality rates is often seen in the stability ofmortality rates com-

pared to the improvements which can be interpreted as the rates’ first derivatives. However, from our

point of view, this is more a question of specifying an adequate model structure. As mentioned above,

the number of parameters should be smaller in case of a model for improvements, thus compensating

for the larger fluctuations in the data.

The increasing demand for assessing and managing longevity risk has provoked considerable academic

research in this field, with a focus on stochastic mortality modeling. Starting with thework of Lee and

Carter (1992), a variety of such mortality models has been proposed overthe last two decades, and some

of them have also been extended to yield coherent forecasts for several populations (see, e.g., Börger et

al. (2014), Cairns et al. (2011), Li and Hardy (2011), and Li and Lee (2005)). Obviously, the central

trajectories of these models can be interpreted as best estimate projections. However, stochastic models

are usually specified as parsimonious as possible in order to speed up simulations. For this reason, they

often cover the most important period and age effects only, thus ignoring cohort effects in particular

(see, e.g., the very popular models of Lee and Carter (1992) and Cairnset al. (2006)), and the stochastic
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processes usually allow for very little flexibility in the best estimate projection. For instance, most

stochastic models assume a linear trend (e.g. as part of a random walk with drift) in the log mortality

rates/intensities which is fixed for the entire projection period.

Mortality models which are particularly designed to describe the best estimate mortality evolution have

been proposed by, amongst others, Richards et al. (2013). Their so-called survival models however focus

more on mortality differentials between subgroups of a population rather thana best estimate projection,

and the authors also assume a fixed linear trend in the log mortality intensities. The best estimate

model of Hunt and Blake (2014) is extremely powerful in detecting patternsin historical mortality data

but, unfortunately, it does not allow for projections. A very popular best estimate projection model

is the P-spline model of Currie et al. (2004). It is very flexible in that it canaccount for age, period,

and cohort dependent effects, and we will see later that it discovers basically the same patterns in the

historical data as our model. However, the P-spline model does not allow for coherent projections

for different populations. A model for coherent projections has beenproposed by Jarner and Kryger

(2011), even though the model structure is rather rigid. It only considers one projection for the total

population and random fluctuations around this projection for the individual populations. Thus, the

central projections for all populations under consideration are equal inthe long run which is often not

a plausible assumption. Ahcan et al. (2014) and Hyndman at al. (2012) overcome this issue of equal

long-term projections. The former project mortality for a population of interest as a credibility weighted

average of mortality rates/improvements for this population and a large reference population. Hyndman

at al. (2012) assume constant differences between log mortality rates fordifferent populations in the

long run. However, the models of Jarner and Kryger (2011), Ahcan et al. (2014), and Hyndman at al.

(2012) do not account for cohort effects.

All the aforecited models consider mortality rates, mortality intensities, or probabilities of deaths, but not

mortality improvements (with the exception of the improvement model variant of Ahcan et al. (2014)).

Explicit models for mortality improvements have been proposed by Plat (2011)and Haberman and Ren-

shaw (2012, 2013). The authors come to the conclusion that stochastic modeling of mortality improve-

ments can be a valuable alternative to modeling mortality rates. However, they also focus on stochastic

modeling and not the derivation of most plausible best estimate projections. Moreover, the models of

Haberman and Renshaw are single population models. A best estimate mortality improvement model

has been proposed by the Continuous Mortality Investigation (2010, CMI), and the structure of this

model is in fact rather similar to the structure of our model. However, we provide a framework for the

full calibration of our model, whereas the CMI leaves the derivation of somecrucial parameter values

to the user. In particular, we show how long-term mortality improvements can beobtained from life

expectancy forecasts. This also automatically determines changes in mortality improvements over time.

The user of the CMI model has to decide over which time horizon age and cohort dependent mortality

improvements move from their current level to the expected long-term level. Thus, our methodology

provides additional insights which can be informative for the calibration of the CMI model as well.

The remainder of this text is structured as follows: In the next section, we analyze historical mortality

improvement patterns and deduce the specification of our projection model. In Section 3, we then es-

tablish the estimation framework, present several approaches for fitting the model to historical data, and
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discuss the advantages and the applicability of each of those approaches. We also show how random

noise in the model parameters can be eliminated and how the applicability of possible model simpli-

fications can be checked. The derivation of mortality projections is then discussed in Section 4. In

particular, we explain how coherent forecasts for several populations can be obtained. In the subsequent

section, we perform a back test and compare our model to other projectionmodels which are often used

in practice. We then analyze uncertainties inherent in our projection methodology and describe ways to

assess and account for these uncertainties. Finally, Section 7 concludes.

2 Model Specification

The mortality improvements in Figure 1 are computed as3

v(x, t) =
q(x, t− 1)− q(x, t)

q(x, t− 1)
= 1−

q(x, t)

q(x, t− 1)
. (1)

The historical parts in the heat charts clearly show vertical and diagonalstructures, i.e. mortality im-

provements depending on period and cohort. Moreover, we can observe that improvements for younger

ages tend to be larger on average than for older ages. Thus, there alsoseems to be a dependency on age.

Clearly, for other data sets, only one or two of these dependencies might be relevant, but a generally

applicable projection model should allow for all three. In Subsection 3.3, weexplain how the relevancy

of each dependency can be tested. In order to keep the model as simple aspossible and to ensure a robust

estimation of its parameters, we propose modeling mortality improvements accordingto the well-known

Age-Period-Cohort (APC) model:

v(x, t) = ax + pt + ct−x + ǫ(x, t),

whereax is the age dependent component,pt the calender year component,ct−x the cohort component,

andǫ(x, t) is an error term with mean zero. Obviously, other model structures which include age, period,

and cohort components could also be applied. However, as we will see, this most simple model structure

works very well. More sophisticated structures, as in the model of Renshaw and Haberman (2006),

might provide a slightly better fit but the significantly larger number of parameters makes the model

estimation more difficult. In fact, we have experienced numerical problems when trying to estimate the

Renshaw-Haberman model and, therefore, do not consider this model as a reasonable alternative to the

APC model. The cohort variant of the Cairns-Blake-Dowd model (see model M6 in Cairns et al. (2009))

possesses less parameters than the APC model but assumes a linear trend inthe age component which

is not a reasonable a priori assumption in any case.

In the following sections, we explain the general methodology for estimating themodel parameters and

deriving future mortality improvements. We first present three approaches for fitting the model to histor-

ical data. This provides us with age and cohort parameters which we adopt for projecting, i.e. we assume

3Obviously, this definition of mortality improvements is only valid as long asq(x, t − 1) > 0. For populations as large
as the German one, this is always the case, but for smaller populations, there might be raw mortality rates of zero. A few
undefined mortality improvements would be uncritical for the estimation of our model though.
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that, in the future, mortality improvements will depend on age and cohort as theydid in the past. For

the projection of future period parameters, we rely on life expectancy forecasts. Period life expectancies

at birth or any other age exhibit rather steady and often almost linear patterns since they are aggregate

mortality statistics. This makes forecasting rather obvious in many cases. However, any assumption on

the future life expectancy evolution can be incorporated in our framework. Coherence between projec-

tions for several populations is also to be achieved at the aggregate levelof life expectancies. Here, one

needs to provide reasonable long-term relationships between life expectancies for the populations under

consideration. For instance, life expectancy forecasts for females should be larger than those for males

until infinity in general. Once life expectancies are extrapolated, the periodparameters can be deduced

such that the assumed life expectancy for each respective year is obtained. This approach implies that

the historical period parameters from the model estimation are not required for the projection. Never-

theless, we think that they are an integral part of the model as, in the fitting to historical data, they take

up a significant amount of the random year by year fluctuations and, thereby, improve the estimation of

the age and cohort parameters.

In order to illustrate our methodology, we derive projections for German males and females as part of a

larger reference set of European populations. We show exemplarily how each step in our rather general

framework for model estimation and projection can be carried out such thatit best fits the population

under consideration and the available data. Note though that the projection methodology is not derived

specifically for the case of Germany. It can be applied to basically any population with a sufficient data

history.

For our example projections, we use historical data for West Germany from the Human Mortality

Database (2012). We exclude data from East Germany as there seems to be a consensus that the reuni-

fication in 1990 has led to the East German mortality experience moving towards that of West Germany

(see, e.g., Kunde and Ortmann (2011)). Thus, a combined data set may beblurred by this one-off effect.

However, for simplicity, we refer to the West German population as the Germanpopulation only in the

following. For reasons outlined in Appendix A, we do not use the mortality rates which are tabulated

in the Human Mortality Database but derive mortality rates from the also provided deaths counts and

population sizes. This yields mortality rates for years 1956 to 2008 and ages0 to 109. However, since

mortality rates fluctuate extremely for very old ages or are not even defineddue to nobody being alive at

those ages anymore, we cap the data set at age 100.

3 Projection of Age and Cohort Parameters

As outlined above, age and cohort parameters for the projection are to beobtained from fitting the model

to historical data. For this, we propose a four step approach:
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Step 1: Estimation of all model parameters based on mortality improvements in the historical mor-

tality data.

Step 2: Modification of the parameters to account for the fact that the APC model is not uniquely

determined. Constraints are imposed on the model parameters ex post such that the param-

eters have a clear interpretation and that the parameters of different populations become

comparable.

Step 3: Smoothing of the raw parameters to eliminate remaining noise, and possiblysignificance

tests of the model components.

Step 4: If applicable, another modification of the age parameters to obtain coherent projections for

the populations under consideration. Since the age parameters prevail until infinity, differing

age parameters for two populations imply that – assuming rather equal periodparameters –

mortality rates will diverge in the long run.

These four steps are discussed in detail in the following subsections where we explain rather generally

how each step could be carried out and where we provide concrete implementations for the example

case of Germany.

3.1 Step 1: Model Estimation

There are several ways to calibrate the model parameters to historical mortality improvements, and we

present three possible approaches here. The most important difference between them is the assumed

distribution for the improvements.

Least squares estimation

The most intuitive approach is weighted least squares estimation of the model parameters. The general

need for weighting becomes obvious from Figure 9. The variability in the mortality improvements differs

significantly between different age groups and periods. For young ages and old ages in the earlier years

of the data set, the raw mortality improvements fluctuate much stronger because the numbers of observed

deaths are much lower there than elsewhere. Unfortunately, the most obvious choice of weights, i.e.

the improvements’ variances, are unknown. Therefore, we suggest approximating the variances from

the residuals and applying these sample variances as weights. To this end, one could assume that the

variances are rather constant for adjacent ages and calender years and, for each improvement, compute

the sample variance from a set of surrounding data points. The appropriate number of data points clearly

depends on the data set under consideration.4 Since the sample variances can only be computed from

the residuals once the model has been estimated, an iterative procedure is required. In a first run, the

4For the case of German males and females, we have found that a rectangle of data points with length 5 in the age direction
and length 15 in the time direction is a good choice. Thus, for age 30 in 1970,for instance, the residuals for ages 28 to 32
in the years 1963 to 1977 are considered. For ages and calender years close to the boundaries of the data set, this rectangle
shrinks obviously. The dimensions of the rectangles are chosen as small as possible to accommodate the assumption of equal
variances for all data points in a rectangle, and as large as necessary toeliminate any significant random fluctuations in the
variance estimates. However, in general, we have found that the number of data points for computing the empirical variances
has a rather small impact on the model estimation results.
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model has to be estimated without weights (or with weights all equal to 1); then residuals and sample

variances can be derived and applied in a second weighted estimation run.This procedure of deriving

weights and re-estimating model parameters should be repeated until the model estimation converges,

i.e. until the model parameters hardly change from one run to the next.

By estimating in least squares, one implicitly assumes normally distributed residuals. However, this

is not always an adequate assumption; in particular, the light tails of the normal distribution may be

inappropriate in many cases. Given initial exposure, the number of deathscan be assumed as binomially

distributed, and thus, for a sufficiently large population, mortality rates can be seen as approximately

normal. This means that, according to Equation (1), the improvements follow a distribution of the ratio

of two normally distributed random variables. Such a ratio distribution can be stated explicitly (see

Hinkley (1969)), but its tails are so heavy that moments are not defined. Nevertheless, least squares

estimation can still be a valid approach for populations with rather steady mortalitypatterns.

Maximum Likelihood Estimation based on Non-standardized Student’s t-Distribution

In order to account for possibly heavy tails, it seems reasonable to assume the ratio distribution of normal

random variables for the improvements. However, in order to fully specifythis distribution, means and

variances of the two normal variables, i.e. the mortality rates in our case, arerequired which we do not

know in general and which we cannot express in terms of our model parameters. As an alternative, we

can assume a non-standardized student’s t-distribution for the improvementsor residuals, respectively,

which – depending on the chosen degrees of freedom – has significantlyheavier tails than the normal

distribution. The model parameters can then be estimated via the method of maximum likelihood. As

for the least squares case, estimation should be carried out iteratively, with the scale parameter in the

student’s t-distribution updated after each run according to the sample variances. The degrees of freedom

of the student’s t-distribution can be derived from distributional tests; the t-distribution should be as close

as possible to the empirical distribution of the residuals in the final estimation run.

Least squares Estimation based on the Logarithm of Mortality Reduction Factors

An alternative approach for estimating the model parameters is to assume a lognormal distribution for

the mortality reduction factors

r(x, t) = 1− v(x, t) =
q(x, t)

q(x, t− 1)
.

This assumption can be motivated by the fact that mortality improvements lie in the interval (−∞, 1] by

definition. Thus, reduction factors range from zero to infinity, with mean typically somewhere slightly

below 1. This indicates that a skewed distribution with the positive axis as support might be a reasonable

choice. Moreover, the binomial distribution for the number of deaths and thus also the distribution for

the mortality rates might sometimes be better approximated by the lognormal distributioncompared to

the normal distribution. This is particularly the case when the number of deathsis rather small and the
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Figure 2: Estimated parameter values for German males

binomial distribution becomes significantly skewed. We then obtain

log {r(x, t)} = log

{

q(x, t)

q(x, t− 1)

}

= log {q(x, t)} − log{q(x, t− 1)} ∼ N,

i.e. the log reduction factors are normally distributed, and the model can be estimated via iteratively

re-weighted least squares or, equivalently, maximum likelihood on these factors. This approach appears

particularly suited for small populations with rather small numbers of deaths.

Estimation Results for German Males and Females

Figure 2 shows the three parameter sets for the three estimation approaches(the degrees of freedom in

the student’s t-distribution are set to 30) and German males. The parameter modifications which are

described in the following subsection have already been applied to the plottedparameter values, but this

does not affect the conclusions we draw here. We observe that the period and the cohort parameters

are almost equal for all three approaches. Moreover, the period parameters fluctuate considerably which

shows the year by year random noise. In the age parameters, we observe significant differences between

the estimation approaches only for young ages. There, the volatility in the rawmortality improvements

is rather large, and the distributional assumptions thus have a significant impact on the estimation results.

The most applicable estimation approach for a given data set can be determined by distributional tests.

Figure 3 shows a combined QQ-plot of the residuals in the case of German males. Here, it seems that

the lognormal assumption is least applicable which is confirmed by the smallestR2 statistic. Table 1

contains p-values of Kolmogorov-Smirnov (KS) tests and Chi-squared tests for both males and females.

For females, test results are fairly conclusive; the assumption of a student’s t-distribution cannot be

rejected in both tests, whereas the normal and the lognormal distribution are only slightly significant

in the Chi-squared test. For males, the Chi-squared test clearly rejects the assumption of a lognormal
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Females Males
Distribution KS test Chi-squared test KS test Chi-squared test

Normal 0.059 0.028 0.336 0.028
Student’s t 0.108 0.114 0.402 0.030
Lognormal 0.017 0.020 0.044 0.003

Table 1: P-values for Kolmogorov-Smirnov (KS) and Chi-squared distributional tests

distribution which confirms our observation from the QQ-plot. The p-valuesfor the other two candidate

distributions are very similar in both tests, with the Kolmogorov-Smirnov test clearly accepting both

distributions. In conclusion, a student’s t-distribution appears most reasonable for both genders, and we

therefore proceed by using the parameter values from that estimation approach in our example.

3.2 Step 2: Parameter Modifications for Model Identifiability

The parameters in the APC model cannot be uniquely determined without constraints. For instance,

increasing all age parameters and decreasing all period parameters by the same amount would not change

the model’s responses, i.e. the estimated mortality improvements. Therefore, constraints are typically

imposed before the model parameters are estimated. In our estimation framework, we do not explicitly

state such constraints but constrain the model implicitly such that all parameterscan be easily interpreted

and that coherent projections of the age parameters for different populations are intuitive (details on this

issue follow in Subsection 3.4). Due to the linear structure in the APC model, setsof optimal parameter

estimates only differ by linear trends in age and time (cf. Carstensen (2007)or Kuang et al. (2008a)).

Thus, a switch from one set of constraints to another is equivalent to deducting a linear trend from one

parameter set and adding it to the other parameters sets. The shifting of linear trends does not affect the

estimated mortality improvements; in fact, such shifts do not even affect projected improvements in the

APC model as long as linear trends in the period and cohort parameters areextrapolated into the future
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(cf. Kuang et al. (2008b)). In line with these findings, we accept any set of “optimal” parameter estimates

in Step 1 instead of constraining the parameters before estimation and then modify these estimates as

follows: We determine a possible linear trendmc · (t − x) + dc in the cohort parameters and subtract

this trend from the original cohort parameters.5 The modified cohort parameters then all lie around zero

as can be seen in Figure 2. To compensate for the change in the cohort parameters, the age component

and the constant of the estimated trend, i.e.−mc ·x+dc, are added to the age parameters and the period

componentmc · t to the period parameters. Moreover, we modify the period parameters by subtracting

their mean and adding this mean to the age parameters.

These parameter modifications should be carried out for any population, not only in our example case of

Germany, since they provide all parameters with clear interpretations: The cohort parameters describe

the differences in mortality improvements between cohorts; a cohort parameter greater than zero means

that the respective cohort experiences larger than average improvements, whereas a negative cohort

parameter indicates below average improvement. The period parameters arezero on average, and we

can thus identify years and/or decades with above- or below-average improvements. In Figure 2, we

observe a generally increasing tendency in the period parameters which means that improvements have

been increasing for German males over the last half-century. The age parameters can be interpreted as

the average mortality improvement for each respective age over the whole period under consideration.

The elimination of a possible trend in the cohort parameters supports the comparison of improvements

for different cohorts. Furthermore, parameters for future cohorts can then be plausibly forecast in a

very simple manner, i.e. by setting them equal to zero. Since one hardly has any knowledge about

the mortality improvements of cohorts still to be born, the most obvious forecastis to assume average

improvements which, after the elimination of a trend, are zero improvements. If we still observed a trend

in the historical cohort parameters, a reasonable projection for this trend, which would to some extent

indicate increasing or decreasing improvements with time, would have to be derived.

Since the first and last cohort parameters are fitted to only a few data points, they can assume rather large

values which are most likely due to random noise rather than actual cohorteffects. In order to account

for this, the cohort parameters should be “standardized” by multiplying themby
√

n
m

wheren is the

number of data points available for estimating the parameter under consideration andm is the maximum

number of data points available for estimating any of the cohort parameters, i.e. the maximum of ages

and periods under consideration.6 This standardization reduces the volatility in the first and last cohort

parameters in particular and makes volatility comparable for the whole data set which is necessary for

the parameter smoothing in Step 3.

Finally, one needs to extrapolate the age parameters up to the desired limiting ageof the projection.

Here, different approaches can be applicable, depending on the dataset under consideration. In our

example, simple extrapolations equal to zero appear plausible for both genders. This is in line with the

5This trend should be obtained via weighted regression to account for the increasing volatility in the first and last cohort
parameters. We suggest applying weightsn

m
wheren is the number of data points available for the parameter under consider-

ation andm is the maximum number of data points available for estimating any of the cohort parameters, i.e. the maximum of
ages and periods under consideration. These weights can be motivatedby the fact that, in general, the variance of a parameter
estimate decreases linearly with the number of data points available for estimation.

6These weights can be motivated by the fact that, in general, the variance of a parameter estimate decreases linearly with
the number of data points available for estimation.
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finding of Gampe (2010) that mortality rates for the oldest old in Europe havenot improved in recent

decades. Moreover, we set all negative age parameters to zero sinceforecasting mortality deterioration

for some ages does not seem plausible in the long run when positive mortality improvements are assumed

in general.

3.3 Step 3: Parameter Smoothing and Significance Tests

The estimated parameter values typically still contain some random noise which can also be seen in

Figure 2. Thus, smoothing is required. In principle, any smoothing method can be applied; we have

decided to use the method of Whittaker and Henderson (see Whittaker (1923) and Henderson (1924,

1925)) in our example as it is well known and widely applied in actuarial science. The method of

Whittaker and Henderson requires provision of a smoothing parameter which determines how strongly

the data is smoothed or – put differently – how close the smoothed data still is to theoriginal data. We

suggest using a smoothing parameter which minimizes generalized cross-validation.7 The idea behind

the concept of generalized cross-validation is that the error in predictingany one data point based on all

other data points is minimized (see, e.g., Craven and Wahba (1978)). This intuition coincides with our

goal of determining the “true” parameters from the noisy estimates, and thus,the smoothing parameter

which minimizes generalized cross-validation seems a natural choice.8

Once the model parameters are smoothed, they can be used for projecting future mortality improvements.

However, in order to have a model as parsimonious as possible, the significance of the age and cohort

parameters may be checked.9 To this end, likelihood ratio tests can be carried out for restricted models

without age or cohort parameters. These tests should be performed on the smoothed parameters since

those are the parameters used for projection. A test on the raw parametersmight be misleading. For

instance, if the raw cohort parameters fluctuated considerably due to random noise, a likelihood ratio

test might indicate high significance since, without the cohort component, theabsolute values of the

residuals would increase significantly. The smoothed cohort parameters might all be (close to) zero

though which means that the cohort component is not relevant for the projection at all.

Smoothing of the parameter estimates reduces the effective number of parameters or the degrees of

freedom in our model. If, for instance, the smoothed parameters follow a straight line, the effective

number of parameters is reduced to 2. Consequently, the likelihood ratio teststatistic follows a chi-

squared distribution with degrees of freedom equal to the difference between the effective numbers of

parameters in the full model and the restricted model. In both cases, the effective number of parameters

can be determined as the trace of the so called hat matrix in the Whittaker-Henderson smoothing (see,

e.g., Garcia (2010) for details). Exemplarily, Table 2 contains the effective numbers of parameters for

different model variants and p-values for according likelihood ratio testsfor German males and females.

We observe that smoothing significantly reduces the number of parameters inthe full model, from 305 to

7The concept of minimizing generalized cross-validation for smoothing theparameters of a mortality model is not new. It
has already been applied by Delwarde et al. (2007) for smoothing the age dependent parameters in the Lee-Carter model.

8The concept of generalized cross-validation assumes normally distributed errors in the noisy data which implies a slight
inconsistency if the mortality improvements are not assumed normal, but we regard this issue as negligible.

9Obviously, also the period parameters could be checked for significance. However, since they are not used for projection
in our framework, but just included for improving the estimation of the ageand cohort parameters, this is counterintuitive.
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Model Females Males
variant #parameters p-value #parameters p-value

APC model 48.9 51.5

AP model 21.2 2.2 · 10−15 24.0 8.0 · 10−12

PC model 31.8 7.5 · 10−10 18.8 4.4 · 10−2

Table 2: Effective numbers of parameters for model variants and p-values of likelihood ratio tests

about 50 for both genders. Moreover, the age and cohort components are significant – the age component

for males only slightly though. Thus, the projection model cannot be restricted in our example.

3.4 Step 4: Parameter Modifications for Coherent Projections

With the age and cohort parameters smoothed and checked for significance, projections for individual

populations could be derived. However, another adjustment may be necessary in order to guarantee

coherent projections between closely related populations in the long run. The age parameters prevail

until infinity, and thus, differences in the age dependencies for two populations yield steadily diverging

mortality rates (assuming similar period parameter values for both populations).In particular for the case

of males and females in the same country who are exposed to the same social, political, and economic

environment, such a scenario seems highly implausible as a best estimate scenario. Mortality rates may

be significantly different also in the long run, but they should not diverge until infinity. This issue can

be overcome by requiring coherent long-term age parameters for both genders.

Due to the parameter modifications in Step 2, coherence can be obtained by assuming equal age param-

eters in the long run. The shifting of the linear trend from the cohort parameters to the other parameters

and the resulting projection of the cohort parameters as zero imply that thereis no age dependent trend

in the cohort parameters anymore. If there were such trends in the cohort parameters for two popula-

tions and if these trends were different, equal age parameters would notimply coherence. The different

age-dependent trends in the cohort parameters would yield diverging mortality rates until infinity. Thus,

the parameter modifications in Step 2 do not only provide all model parameters with an intuitive inter-

pretation but also prevent long-term divergence in projected mortality rates for related populations.

Equal long-term age parameters, e.g., for males and females in the same country could be obtained

by introducing a functional structure in the age parameters which interpolates between the estimated

parameters for each gender and some kind of “average long-term age parameters”. However, such a

functional structure would significantly increase model complexity. Alternatively, one could fit the APC

model to a combined set of historical data, allowing for possibly different cohort and period parameters

for both genders but demanding equal age parameters. The simplest approach certainly is to average the

individually fitted age parameters for males and females and to assume the resulting parameter averages

for both genders in the future. This approach is only valid if the structuresin the age parameters for

both genders are rather similar which is typically the case. Otherwise, one would observe a significant

structural break between historical and projected mortality improvements. Inour example, we can and

do proceed by using this simple approach.

For populations from different countries, it is not obvious whether ageparameters should be adjusted.
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This depends on the social, political, and economic differences between thecountries as well as the

significance of differences in the individually estimated age parameters. Edwards and Tuljapurkar (2005)

show that the distributions of deaths often differ between countries. The authors also detect differences

in the variances of life spans – in the level as well as in the trend of the variances. Thus, (slightly)

different age parameters seem generally acceptable even for populations in closely related countries. We

therefore refrain from adjusting the age parameters based on cross-country information in our example.

The cohort parameters describe only temporary effects. Even if they differ significantly for two pop-

ulations, mortality rates will not automatically diverge in the long run. MacMinn and Weber (2011)

also show that cohort effects do not necessarily appear for males andfemales simultaneously and find

no convincing evidence of correlated cohort effects in different countries. Nevertheless, there might be

reason for adjusting the cohort parameters in some cases, but for our example, we stick to the cohort

parameters which we estimated for each population individually.

With the age and cohort parameters fully specified for the projection, we turn to forecasting future period

parameters in the following section.

4 Projection of Period Parameters

The future period parameters are most difficult to forecast. They determine the overall level of mortality

improvements in the future and are thus the most crucial set of parameters. Here, our projection method-

ology benefits from large flexibility in forecasting these parameters. Since there are no constraints on

these parameters a priori, they could follow any pattern derived from basically any forecasting approach.

In particular, this flexibility allows for coherent forecasting of the period parameters for several popula-

tions.

The most obvious projection approach is an extrapolation of the historical period parameters. However,

these parameters fluctuate quite strongly in general which makes trend identification difficult. Moreover,

it is not clear how to handle trends in the historical period parameters at all. Aclearly visible and long

lasting trend as in Figure 2 must be taken into account somehow when projecting but it is questionable

whether such a trend can persist in the long run; mortality rates would decrease more and more rapidly

every year without any limit on the mortality improvements. If one wanted to introduce such a limit for

the long-term improvements, it would not be clear when and at which level thislimit should come into

effect.

For our projection framework, we therefore propose an alternative approach that is based on period life

expectancy extrapolations. Once such an extrapolation is provided, the period parameter for each year

in the future can be determined such that the forecast period life expectancy in that particular year is

attained.10 This approach has the following advantages:

• Life expectancies typically exhibit stable patterns since they are aggregated mortality statistics.

10Note that this approach does not imply that the parameter modifications in Subsection 3.2 impact the forecast mortality
improvements. If one did not modify the parameters and projected the timetrend in the original cohort parameters instead, the
period parameters derived from the life expectancy extrapolation wouldbe different, but the projected mortality improvements
would be the same.
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Often, they also follow clear trends which makes forecasting rather obvious. Moreover, it is

typically easier to assess the plausibility and prudence of a certain life expectancy forecast than

to judge whether a mortality improvement of, say, 2% for some age and year in the future is

adequate.

• The forecast life expectancies can be the period life expectancies at birth or at any other age. Thus,

period parameters can be derived with a focus on certain age groups, e.g. retirement ages in case

the period life expectancy at, say, age 65 is forecast.

• Coherent mortality projections for several populations can be derived easily based on coherent

life expectancy forecasts. We will provide an example for this later in this section and show how

taking into account information from other countries can impact the projectionfor an individual

population.

• The derivation of different projection scenarios is straightforward asonly different life expectancy

extrapolations need to be provided. This can be particularly helpful whenbuilding mortality

projections with and without margins or when specifying a mortality/longevity stress scenario,

e.g., for a (partial) internal model under Solvency II. Larger life expectancy gains imply larger

period parameters, and thus, mortality improvements for all ages are increased.

Obviously, there cannot be a purely data driven standard procedurefor deriving life expectancy extrapo-

lations. Several issues need to be taken into account, e.g. the number of populations under consideration

and observable patterns in the historical mortality evolution. Thus, a crucialuser input is required here

which certainly involves some amount of expert judgment. However, a thorough analysis of historical

life expectancies and relationships between closely related populations cansignificantly limit the implied

subjectivity. In order to illustrate this, we continue our example and show howfuture period parameters

can be derived coherently for German males and females. Most of the recently proposed methods for

coherently projecting life expectancies follow the idea of forecasting the worldwide maximum life ex-

pectancy and a life expectancy gap for each population under consideration. The worldwide maximum

life expectancy has exhibited a surprisingly linear pattern for more than 160years (see Oeppen and Vau-

pel (2002)) which makes extrapolation straightforward and this approach very tempting.11 Models for

the gaps between worldwide maximum life expectancy and life expectancies ofparticular populations

have been proposed by, amongst others, Andreev and Vaupel (2006), Lee (2006), and Torri and Vaupel

(2012), and, in principle, any of these models could be applied here. However, we do not follow the

approach of forecasting the worldwide maximum life expectancy since it impliesan inconsistency with

the historical life expectancy evolution in Europe. Worldwide maximum life expectancies for males and

females have diverged over the last two centuries which implies forecastingof a widening gender gap

also for the future (see, e.g., Torri and Vaupel (2012)). In Europe, however, this gender gap has narrowed

continuously and increasingly fast, from 6.8 years in 1980 to 5.3 years in 2008 (see also Figure 10 in

Appendix B). Therefore, assuming a sudden increase of the gender gap in the future is counterintuitive.
11There is an extensive literature on the question whether life expectancies can increase infinitely or whether there is some

biological limit. From an actuarial perspective, we think it is dangerous to assume a limit. History tells us that previously
assumed limits have been surpassed rather quickly (cf. Oeppen and Vaupel (2002)).
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Figure 4: Historical life expectancies at birth in Europe

As can be seen in Figure 4, life expectancies in European countries haveconverged for both genders over

the last decades. Moreover, we observe a common trend between countries, and clearly, life expectancy

forecasts for any country should relate to this common trend. It can be plausible to assume above- or

below-average life expectancies for one or both genders in a certain country, but the gaps between the

country’s life expectancies and the European average life expectancies should stay in a reasonable range.

Therefore, we proceed by extrapolating the European life expectancytrend – coherently for males and

females – and then analyze and forecast the life expectancy gap for Germany and some other countries.

Figure 5 shows life expectancy forecasts for the male and female total populations in Europe which

we regard as coherent between genders. The assumptions underlyingthese forecasts are explained in

Appendix B. In brief, we assume that the gender gap will continue to shrinkfor the next decades and

then level off in the long run. The long-term increase in life expectancy is fixed according to the trend

in the historical data.

With life expectancy forecasts for the European populations at hand, weturn to possible deviations from

these forecasts for some selected countries. In Figure 4, we observedconvergence in life expectan-

cies for males and females across Europe which indicates that best estimate life expectancies might be
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Figure 5: Coherent extrapolations of life expectancies for female (solid)and male (dashed) total popu-
lations in Europe

equal for all countries in the long run (see also Jarner and Kryger (2011) and references therein for

this assumption). In that case, only transitions from current life expectancies to the common long-term

life expectancies would have to be specified for each population. However, convergence seems to stop

around 1980. Therefore, it is not directly clear whether the remaining variability in life expectancies is

simply due to random fluctuations or whether some populations have consistently experienced longer

life spans than others.

Figure 6 shows how life expectancies in selected countries have deviated from those of the total pop-

ulations in the past. We have chosen these countries as we can observe significantly different patterns

in their deviations which are somewhat exemplary. Regarding the question from above, the deviations

for Switzerland are fairly conclusive. For both genders, they are significantly positive over the whole

data period. The reason for this may be above average socio-economic conditions in Switzerland. Thus,

Swiss actuaries should feel rather uncomfortable with projecting local life expectancies as being equal

to the European average, even in the long run. Instead, the data suggests assuming a sustainable differ-

ence of about 1.5 years and introducing a smooth transition to that level over the next decade or so. An

analogous conclusion can be drawn for Finish males where average European life expectancies seem

overly prudent for a best estimate projection.

Opposing trends can be observed for Italy and Denmark. Italian life expectancies were below average at

the beginning of the data period but have risen significantly above towardsthe end. In Denmark, on the

other hand, the life expectancy increase has been 5 to 6 years lower thanthe European average increase.

Here, we see how valuable coherent projections can be. Forecasting of life expectancies according

to individual historical trends would almost certainly yield implausible long-termprojections for both

countries. We would move away from the European average rapidly and continuously. Instead, it is

more reasonable to assume a leveling-off in the deviations from the European average at the current

level or somewhat closer to zero.

For the Netherlands, we observe a fairly linear downward trend for mostof the data period. Over the last
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Figure 6: Differences between life expectancies of the total populations and populations in selected
countries

years, this trend seems to have bottomed out though – slightly above the European average for males

and about one year below average for females. Thus, assuming sustainable differences at these levels,

a long-term gender gap of three years in Europe would imply a long-term gap of slightly less than two

years between Dutch males and females. This can well be possible but may also require additional

demographic justification.

Finally, we have a closer look at the deviations for Germany as this is the final step to completing our

example. We see in Figure 6 that, from about 1985, fluctuations become rather small around a fixed

level of about -0.3 for males and -0.5 for females. Therefore, the most obvious forecast for German life

expectancies is to assume the forecast for the total populations, slightly shifted downward according to

the observed deviations. We therefore fit the future period parameters tothus shifted life expectancies

and obtain coherent projections as plotted in Figure 7.12 The historical data is smoothed using either

P-splines or our methodology. In the latter case, the charts also contain ages beyond 100.

We observe that our methodology smoothes the data more strongly than the P-spline method does. This

then obviously leads to a slight break between the historical and the projected data in the P-spline case.

12Note that coherence is only achieved at an aggregate level; forecasts of individual mortality rates might not be fully
coherent between genders. However, full coherence is hardly achievable in general, and slight incoherences for individual
mortality rates should average out between different ages and/or periods.
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Figure 7: Coherent mortality projections for German males and females

In general, it is difficult to tell which level of smoothing is most appropriate, but we have provided

reasoning for our smoothing in Subsection 3.3. More importantly, however,the general structure in the

historical data is the same for both smoothing methods, and our projection extrapolates this structure

nicely. Therefore, we think our projection looks highly plausible for both males and females. In partic-

ular, all cohort dependent structures are carried forward appropriately. The very slight breaks in 2009 in

the graphs on the right hand side are due to the use of average age parameters in the projections.

5 Comparison with other Projection Models and Back Test

In the Introduction, we referred to the current standard projection forprivate annuities in Germany. In

order to compare that projection to the projection which we exemplarily derived in this paper, Table 3

provides life annuity present values for males and different ages and deferment periods. For the annuity

present values based on the DAV 2004 R mortality table, also percentage deviations from the annuity

present values according to the new projection are provided.13 The most striking observation is that the

new projection consistently yields the largest annuity present values. Thisobservation does not only

hold for a comparison with the DAV 2004 R best estimate projection but also fora comparison with

13The present values are computed based on a time constant interest rateof 1.75% which is the maximum admissible interest
rate for annuity reserving in Germany at the time or writing. The base mortality rates to which the projections are applied are
equal in all cases, i.e. observed mortality rates in 2008.
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Deferment Age at first New DAV 2004 R DAV 2004 R
period payment projection best estimate incl. margins

65 16.84 15.88 -5.7% 16.45 -2.3%
0 years 75 10.61 10.16 -4.2% 10.42 -1.8%

85 5.69 5.61 -1.4% 5.68 -0.1%

65 12.83 10.81 -15.8% 11.97 -6.7%
20 years 75 7.14 6.03 -15.5% 6.87 -3.9%

85 2.73 2.03 -25.7% 2.44 -10.6%

65 11.01 8.23 -25.2% 9.61 -12.7%
40 years 75 7.02 4.73 -32.5% 5.90 -15.9%

85 2.93 1.64 -44.1% 2.35 -19.9%

Table 3: Annuity present values and percentage deviations for males according to the newly constructed
projection and the projection in the mortality table DAV 2004 R

the projection with margins. The differences in the annuity present values increase with the deferment

period, i.e. with the time period over which the projection is applied. A discussionof the appropriateness

of existing tables is not within the scope of this paper though since we focus on developing a new

projection methodology here and have derived the new projection only forillustrative purposes.

In order to further illustrate the applicability of our projection methodology, weperform a back test and

benchmark it to other commonly used projection models. In the back test, we onlyuse data up to 1990

for model estimation and then project mortality improvements up to 2008, i.e. the lastyear for which

data is available.

The age and cohort parameters in our model are derived as in the exampleon the full data set. The

life expectancy extrapolations have to be adjusted slightly according to the historical life expectancy

evolution up to 1990. Since the gender gap in European life expectancies has remained rather constant in

the 1980’s (see also Figure 10 in Appendix B), a parallel extrapolation ofthe historical life expectancies

would have been a plausible and coherent forecast. The slope of theseextrapolations is chosen as the

average of the slopes in the historical trends for males and females. The lifeexpectancy forecasts for

Germany are derived by a downward shift of the forecasts for the European populations. Between 1985

and 1990, the gap between European and German life expectancy has been rather constant at about 0.5

for males and 0.3 for females (see Figure 6).

As alternative projection models, we consider the Lee-Carter model with cohort effects as proposed

by Renshaw and Haberman (2006) and the P-spline model by Currie et al.(2004). We have chosen

these models because they are widely accepted and applied in practice, because they project mortality

improvements dependent on age, period, and cohort, and because theycover the full age range. These

are requirements which only few of the existing mortality models comply with. For both models, we

apply standard estimation and projection techniques and refer to Appendix Cfor details. However, we

apply two variants of each model: In case of the Renshaw-Haberman model,we once use the parameter

values as fitted to the historical data, and we smooth them using the Whittaker-Henderson method. In

case of the P-spline model, we consider two different fits, one to data up to 1990 and one to data up to

1985 only. The reason for using two different data periods becomes clear from Figure 8.
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The figure shows actual and projected cumulative mortality improvements from1990 to 2008, i.e.

1−qx,2008/qx,1990, for ages up to 100, both genders, and the three projection methods in theirrespective

variants. The most striking observation is that the P-spline model fitted to data up to 1990 yields highly

implausible projections for both genders. For most ages, (significant) mortality deterioration is assumed

which contradicts the general historical trend of decreasing mortality with time.This implausible pro-

jection is due to the P-spline model being very sensitive to the mortality trend in the last few data points.

In Figure 1, we see that, at the end of the 1980’s, mortality improvements for males were negative for

many ages, in particular for those around age 30, and this is carried overinto the projection. When

these last data points are omitted, i.e. when the model is fitted to data up to 1985 only, the projections

look more plausible, but generally overestimate mortality improvements. The sensitivity to only very

few data points and the resulting instability of the projections question the general applicability of the

P-spline model.

The Renshaw-Haberman model and our methodology provide more stable projections for both gen-

ders which, at the same time, match the actual mortality improvements significantly better in general.

However, the Renshaw-Haberman variant with raw model parameters canyield questionable patterns at

times, e.g. the rather extreme dent around age 30 for males.

Table 4 shows some statistics which measure the projection methods’ performances. The average er-

ror is the average difference between actual and projected improvements. Thus, a positive error means

that the projected improvements are, on average, too large, a negative error means that the projected

improvements are too small. The root mean square (RMS) error is a measure for how well a projec-

tion method performs in matching the actual mortality improvement for each age, i.e.how similar the

age structures of actual and projected improvements are. We observe that, in comparison to the other

projection methods, the P-spline model variants perform poorly in terms of both average error and root

mean square error. Comparing the other two methods, we see that, for females, the average errors for the

Renshaw-Haberman model variants are smaller but that the root mean square errors are similar. Thus,

the Renshaw-Haberman projections are closer to the average of the actual improvements, but the errors

in the projection for each age are about the same for both methods. For males, our methodology performs

better in terms of both average error and root mean square error. In Figure 8, we see that the Renshaw-

Haberman model significantly underestimates improvements for ages 60 to 90 in particular which are

the most relevant ages with respect to longevity risk. Therefore, we conclude that our methodology

outperforms the alternative models in this example and that it provides a valuable alternative to existing

projection models.

6 Modeling Uncertainties and Margins

The modeling and forecasting of mortality always involves a considerable amount of uncertainty. There-

fore, often projections with margins are required for prudent calculations of premiums and reserves. In

this section, we highlight potential sources of uncertainty and show how uncertainty can be accounted

for within our methodology. Moreover, we explain how basis risk can be assessed in case a projection

is applied to a population which it has not been constructed for originally.



AGE, PERIOD, AND COHORT DEPENDENTMORTALITY IMPROVEMENTS 23

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

0 20 40 60 80 100

Age

Males

Actual improvements
New projection model
P-spline model (data up to 1985)
P-spline model (data up to 1990)
Renshaw-Haberman model (raw)
Renshaw-Haberman model (smoothed)

-1.6

-1.2

-0.8

-0.4

0

0.4

0.8

0 20 40 60 80 100

Age

Females

Actual improvements
New projection model
P-spline model (data up to 1985)
P-spline model (data up to 1990)
Renshaw-Haberman model (raw)
Renshaw-Haberman model (smoothed)

Figure 8: Cumulative mortality improvements from 1990 to 2008 for different projection methods

The largest uncertainty arises from the fact that future mortality might evolve differently from historical

patterns. For our projection methodology, we see three main points where thisrisk of changes can

materialize:

• The long-term trend in the life expectancy evolution (in our example: the long-term trend for the

total population);

• The long-term relationship between the life expectancies of different populations (in our example:

the long-term gender gap and the difference between life expectancies for the total population and

the German population);

• The age pattern of mortality improvements.

All three issues can be accounted for by adjusting the life expectancy extrapolations, e.g. by increasing

the slope of the long-term life expectancy trend. This implies a margin which increases with time, thus
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Females Males
Projection method Average error RMS error Average error RMS error

New methodology 0.074 0.126 -0.043 0.099
Renshaw-Haberman (raw) -0.013 0.140 -0.081 0.150
Renshaw-Haberman (smoothed) -0.013 0.127 -0.082 0.139
P-splines (data up to 1985) 0.170 0.233 0.149 0.215
P-splines (data up to 1990) -0.485 0.660 -1.004 1.157

Table 4: Average errors and root mean square (RMS) errors for different projection methods

matching the structure of the uncertainty it is to account for. For the next years, one is generally well

informed about the forthcoming mortality evolution (as long as no mortality/longevityshock occurs),

but in the long run, uncertainty becomes considerable. At the same time, an increase in projected life

expectancies and thus in the period parameters would imply a margin which is evenly spread over all

ages. Therefore, this approach can also account for the uncertaintyregarding a change in the age pattern

of mortality improvement. In case one is particularly concerned about the evolution for certain ages

or cohorts, the respective parameters could also be adjusted individually. Note though that the order

of adjusting those parameters and estimating the future period parameters is crucial since the period

parameters react to and, to some extent, compensate for increases in the other parameters.

Compared to the risk of significant changes in the future mortality evolution, theparameter uncertainty

in the model estimation seems rather small. If one nevertheless wants to accountfor parameter uncer-

tainty in the age and cohort parameters, confidence bounds for these parameters can either be derived

analytically (depending on the estimation approach under consideration) orby bootstrapping. Koissi et

al. (2005) and Brouhns et al. (2004) describe a residual bootstrap or a parametric bootstrap, respectively,

for the Lee-Carter model which could be applied analogously in our setting.The parameter uncertainty

in the future period parameters typically stems from potential misestimation of long-term life expectancy

trends. Here, confidence bounds for the regression parameters canbe derived analytically.

A risk not related to the construction of the projection but to its application is basis risk. Basis risk arises

from the use of a projection for a population which is different from the one the projection has originally

been constructed for. In our example, we derived projections for German males and females which may

or may not be applicable to, e.g., the particular population of a pension fund.In most cases, however,

basis risk is limited in the long run since the mortality evolutions of some wider reference population,

e.g. the general population, and a subpopulation, e.g. the population of a pension fund, should not diverge

until infinity. Over the next years, mortality improvements might differ though. If no data is available for

the subpopulation, it is virtually impossible to measure basis risk and to adjust theprojection accordingly.

One would have to rely on expert opinion or, possibly, information from other (sub)populations. If some

data is available but not sufficient for the derivation of a full projection,our setup allows to quantify basis

risk. We can carry age and cohort parameters for the reference population over to the subpopulation and

fit only the period parameters to the subpopulation’s limited data. These periodparameters are possibly

more volatile than those for the larger reference population, but the average level and possible trends

of both period parameter sets should be very similar. Significant differences, on the other hand, would
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indicate the potential need for an adjustment to the projection according to the observed differences. If

one questions the adequacy of the age parameters or the cohort parameters, basis risk in these parameters

could be measured and accounted for analogously.

The highlighted uncertainties illustrate the general difficulties in forecasting future mortality experience

– not only in our methodology but in any modeling framework. Margins can help mitigating these

uncertainties, but the most effective approach certainly is to update mortalityprojections on a regular

basis.

7 Conclusion

Projections of future mortality evolutions are particularly necessary for thecomputation of reserves

and risk management in the insurance and pension business as well as forpopulation forecasts for

social security systems. The derivation of reliable projections, however, is very sophisticated, and some

projections which are currently used in practice seem questionable. In thispaper, we develop a projection

methodology for mortality improvements based on the Age-Period-Cohort (APC) model and present a

general framework for parameter estimation and forecasting. We propose different approaches for fitting

the APC model to historical mortality data and discuss their advantages and applicability in certain

situations.

A feature which distinguishes our methodology from most other projection methods is that the future

period parameters are not necessarily forecast based on the evolutionof the historical period parameters.

Instead, we propose using life expectancy extrapolations and derivingthe period parameters such that

the forecast life expectancies are obtained. Life expectancies typically evolve fairly stable since they

are aggregate mortality statistics, and they often exhibit rather obvious patterns which can be easily ex-

trapolated. Moreover, this approach allows for high flexibility in the projection which can be utilized to

derive coherent forecasts for several populations. As we have shown, the simultaneous consideration of

several populations can in fact have a significant impact on the projectionfor each individual population.

Therefore, a model for projecting best estimate mortality should always takeinto account information

provided by data from other closely related populations. The approach of forecasting life expectancies

also provides an intuitive way to include margins into a projection by simply increasing the slope in the

life expectancy trend. In that case, margins are spread evenly over allages, and they increase with time

which is in line with the structure of the uncertainty about the future mortality evolution.

The proposed projection methodology provides a valuable alternative to other projection methods, in

particular statistical extrapolation models. The latter typically have rather rigid model structures which

can limit their applicability in cases where these structures do not match the historical and/or expected

mortality patterns. In contrast, the methodology proposed in this paper offers a high degree of flexibility

and a way to combine data driven extrapolations with expert judgment. Moreover, in comparison to

stochastic mortality models, unnecessary complexity and restrictions which arerelated to the stochastic

simulation are omitted, thus offering a clear focus on the best estimate forecast. On the other hand, the

application of our methodology is not straightforward in any case, and it requires some case specific

assumptions from the user. Thus, our methodology is not suitable for repeated and quick re-estimation,
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Figure 9: Raw mortality improvements based on HMD data and the Becker-Zeuner method

e.g. within simulations. However, this is hardly an issue when best estimate mortalityprojections are

updated once in a while in practice.

In order to illustrate our methodology, we have derived projections for German males and females as part

of a larger European reference population. A back test and comparison with commonly used projection

models shows that our methodology provides highly plausible forecasts andconfirms that it constitutes

a valuable alternative to existing projection approaches.

Appendix

A Data

Throughout this paper, we use mortality data from the Human Mortality Database (2012, HMD) in

order to illustrate our projection methodology. However, we do not use the mortality rates provided by

the HMD but, instead, derive mortality rates from the also provided deaths counts and population sizes

by applying a different methodology. The reason is that – at least for thecase of West Germany – the

HMD methodology implies some implausible cohort features (cf. Hiester et al. (2012)). The left panel

of Figure 9 shows the raw mortality improvements for West German males as derived from the mortality

rates of the HMD. The clear diagonal patterns are not surprising at first sight as we can see obvious cohort

effects also in Figure 1. However, the repeated switches from large mortality improvements (yellow) to

strong mortality deterioration (black) and vice versa from one cohort to thenext look ominous and are

hardly justifiable by demographic intuition. In fact, they are probably only anartifact of an assumption

made when deriving the mortality rates. A uniform distribution of birthdays withineach calender year

is assumed which is typically not the case. This assumption is uncritical as long as successive cohorts

are rather equal in size. For West Germany, however, this is not the case for cohorts which were born

during or shortly after the world wars. Here, cohort sizes sometimes change significantly from one birth

year to the next.

A method for deriving mortality rates which overcomes this critical assumption ofbirthdays being uni-
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formly distributed is the method of Becker-Zeuner. While the HMD methodology isbased on the number

of deaths at a certain age in a certain calender year, the Becker-Zeuner method considers the number

of deaths at a certain age for a certain cohort. For further details on this “cohort mortality method”,

we refer to standard textbooks. The right panel of Figure 9 shows mortality improvements which are

derived from Becker-Zeuner mortality rates. The rapid switches from strong mortality improvements

to mortality deterioration have disappeared, and cohort effects are hardly visible anymore. However,

that does not mean that cohort effects do not exist. As we see in Figures1 and 7, cohort effects are

still present and can easily be detected in the smoothed data. However, theyare somewhat obscured by

random fluctuations in the raw data.

Finally, we should note that the methodology for deriving mortality rates only has a minor effect on

the results presented in this paper. When projecting mortality improvements, we smooth the model

parameters to eliminate random fluctuations. At that stage, also the cohort features in the HMD mortality

rates would get smoothed out, resulting in mortality projections which are very similar to those derived

from the Becker-Zeuner mortality rates.

B Life Expectancy Forecasts for the European Total Populations

In Section 4, we project the period parameters for German males and femalesin coherence with mortality

evolutions in other European countries. These projections are based onlife expectancy forecasts for the

male and female total populations in Europe as plotted in Figure 5. In order to derive these forecasts,

a couple of assumptions had to be made. Note that these assumptions particularly relate to our specific

example and are not meant to be most suitable in any case. Nevertheless, thegeneral approach described

here should be valid for most populations.

First of all, we assume a long-term difference in life expectancies betweenmales and females of∆ = 3

years. The gender difference has been shrinking since 1980 in Europe, with a significant acceleration

starting in the mid-1990’s (cf. the red curve in Figure 10). This shrinkagehas often been explained by

convergence in lifestyles of males and females. For instance, the consumption of tobacco has increased

significantly for females but decreased for males, thus narrowing the gapbetween the genders (see, e.g.,

European Commission (2009)). The same holds for the share of women in employment compared to

the corresponding share of men (see OECD (2010)). The latter trend, inparticular, is very likely to

continue. Luy (2002) also comes to the conclusion that the life expectancy gap must be mostly due to

differences in lifestyles. He finds that the gap between life expectancies of nuns and monks, who live

under very similar socio-economic conditions, is only about one year in young adult ages. Therefore,

it is reasonable to forecast a further shrinkage of the gender gap in Europe in the short- to mid-term

future. Since assuming a long-term gender gap of only one year seems rather bold from our point of

view, we apply a gap value which lies in the middle of the current difference and this one year, i.e. 3

years. Obviously, this choice is somewhat subjective, and other choicesmay also be reasonable.

In order to obtain a constant gender gap in the long run, a common trend forthe long-term life expectancy

increase for both genders is required. This trend should reasonably extrapolate historical trends, and we

therefore fix the slopes of this trend according to the average of the slopes of the long-term historical
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Figure 10: Differences in life expectancies between males and females in Europe

trends for males and females. In Figure 4, we see that, for males, a linear trend seems to start off in

1969, with a slope of 0.2473; for females, we observe a rather linear trend for the whole data set, with a

slope of 0.2296. This implies a slope for the common long-term trend ofs = 0.2385.

This slope is as consistent as possible with the slopes Oeppen and Vaupel (2002) find for worldwide max-

imum life expectancies for males (0.222) and females (0.243) between 1840 and 2000. Even though,

under our assumptions, male life expectancies in some European countries will surpass the supposed

long-term maximum sometime in the far future, we regard our forecast as plausible. Since our assump-

tion of a convergence between genders contrasts somewhat with the long-term divergence observed by

Oeppen and Vaupel (2002), a simultaneous full coherence with their extrapolations for both genders is

unachievable per se.

Instead of explicitly specifying a long-term gender difference, we havealso considered the rather simple

case of life expectancy extrapolations for both genders according to theslopes in their respective histor-

ical data. Since life expectancies have increased stronger for males thanfor females, this approach also

implies some (slight) convergence between genders. However, this approach does not yield plausible

results. The blue line in Figure 10 shows the resulting gender differences, and we observe that the actual

life expectancy gap at the end of the historical data set, i.e. in 2008, would already be misestimated by

about 0.7 years.

We also see in that figure that the historical life expectancy differences have fluctuated only very little

but started to shrink significantly in the mid-1990’s. Thus, the life expectancy trends for males and/or

females must have also changed at that time. In order to guarantee a smooth transition from historical

to projected life expectancies, in the short run, we extrapolate the trends inthe historical data starting in

1995. The corresponding slopes are 0.3052 for males (in comparison to 0.2473 in the long-term trend)

and 0.2099 for females (in comparison to 0.2296).

Finally, we reconcile the short and long-term assumptions by assuming that the extrapolated life ex-

pectancies for each gender can be written as a straight line (the long-termasymptote) plus/minus a

difference term which decreases to zero exponentially with time, i.e.

lem(t) = dm + s(t− 2008)− exp {gm(t− 2008) + hm}

and

lef (t) = (dm +∆) + s(t− 2008) + exp {gf (t− 2008) + hf} ,
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Parameters dm ∆ s gm = gf hm hf
79.6221 3.0 0.2363 -0.0388 -0.4606 0.5350

Table 5: Parameter values for coherent life expectancy extrapolations for European males and females

where·m indicates male and·f female. The asymptote for females differs from that for males only by

the fixed value∆, and time is shifted simply for convenience. Moreover, as we want both life expectancy

curves to converge to their asymptotes equally fast, we require the slope parameters in the exponential

terms,gm and gf , to coincide. These specifications and constraints leave us with a set of uniquely

identifiable parameters whose values are summarized in Table 5.

C Benchmark Models

For the back test in Section 5, we consider two alternative projection models,i.e. the Lee-Carter exten-

sion of Renshaw and Haberman (2006) and the P-spline model of Currie et al. (2004). In the Renshaw-

Haberman model, one year log mortality rates are modeled as

logmx,t = αx + β(1)
x · κt + β(2)

x · γt−x + ǫx,t,

whereαx, β(1)
x , andβ(2)

x are age dependent parameters,κt describes the mortality evolution over time,

γt−x accounts for cohort effects, andǫx,t is random noise with mean zero. This model is typically

estimated via maximum likelihood; given population sizes as exposures, the numbers of deaths for each

age and calender year are assumed to be independently Poisson distributed. For further details on model

estimation, we refer to, e.g., Cairns et al. (2009). The time trendκt is typically projected as random walk

with drift, and we follow the same approach. However, since we are only interested in a best estimate

projection, we only consider the central trajectory of this random walk with drift. The question which

process is applicable for projectingγt−x strongly depends on the data set under consideration. Often, a

mean reverting AR(1) process is applied. For simplicity, we set the parameters for new cohorts equal to

the parameter of the last cohort in the historical data. Since we only projectthe central trajectory for just

18 years, the effect of new cohorts in our back test is negligible anyway.

In the model of Currie et al. (2004), B-splines are fitted to the surface oflog mortality rates via maximum

likelihood. In order to eliminate random fluctuations, these splines are penalized by subtracting a penalty

function from the likelihood function. Thus, the better the fit of the splines to the noisy data, i.e. the larger

the likelihood function, the larger the penalty. The trade-off between goodness of fit and smoothness is

typically solved by optimizing some information criterion. We use the Bayesian Information Criterion

here, as proposed by Currie et al. (2004). Future mortality rates are then projected by treating them as

missing data points. In that case, the likelihood function is zero, and the splinesare calibrated such that

the penalty is minimized. For further details on model estimation and projection, we refer to Currie et

al. (2004). In our back test, we use standard model parameters, i.e. cubic splines, a distance of five data

points between the knots of adjacent splines, and a quadratic penalty function which implies a linear
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forecast of the most recent historical mortality trend.
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