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Abstract

The projection of future mortality experience constitugeshallenge for both actuaries and de-
mographers. As we show, some of the currently used standartlity projections have several
shortcomings which might pose a serious threat to insuperssion funds, and social security sys-
tems.

In this paper, we propose a new projection methodology wbigrcomes these shortcomings.
We introduce a model which allows mortality improvementslépend on age, period, and cohort,
and we explain how the model can be estimated and appliedartitplar, we show how coherent
projections for several populations, i.e. males and fesnafi¢he same country and populations from
closely related countries, can be derived. The basis f@etpeojections are coherent extrapolations
of historical life expectancies. As aggregated mortaligtistics, life expectancies typically exhibit
steady patterns which often makes forecasting rather abvidVe observe that the incorporation
of information on the mortality experience of other popigas can have a significant impact on
the projection for a given population. A comparison withesteommonly used projection models
shows that our methodology provides stable and highly giaiprojections. Finally, we discuss
uncertainties in our projection approach and explain hosy ttean be accounted for. In order to
illustrate our methodology, we derive fully specified patjens for German males and females as
members of a large reference set of European populations.
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1 Introduction

Longevity risk, i.e. the risk of insured/pensioners living longer than etquk is one of the most promi-
nent insurance risks. It is most relevant for pension funds, annuityigqers, and social security sys-
tems. In the past, gains in life expectancy or, equivalently, improvements italibohave been un-
derestimated consistently in most industrialized countries. The revision of mogaljgctions, i.e. the
realization of longevity risk, has then led to the requirement of additionalsfua support increasing
liabilities. The potential need for additional funds poses a serious threatytdfinancial) institution
concerned with the provision of survival benefits.

Longevity risk has always been present but its significance has gaim@thously in recent decades.
Riskless yields in the financial markets have fallen considerably in manytréesiteaving only little
funds for the provision of additional reserves. At the same time, the siomgévity risk in the private
sector has increased. Benefits from social security systems havedoieeed in many countries which
in turn has increased the demand for private annuities and occupatersbps. This demand is often
supported by tax incentives, either for products with mandatory annuitizatito make annuitization
more attractive to the policyholder than taking the lump sum payment.

For the assessment of longevity risk, e.g. for risk management or sglpenmoses, stochastic mortality
modeling or a scenario analysis is required. However, the resulting fétateharges are only credible
if best estimate mortality is projected adequately. If best estimate liabilities arensgtally underes-
timated, e.g., by an inappropriate mortality projection the risk capital chargegeviélr guarantee the
desired safety level.

Thus, mortality projections do not help in quantifying longevity risk, but asca@te mortality projec-
tion can significantly reduce longevity risk. Therefore, mortality projectamesextremely important for
practical actuarial work, and insurers, pension funds, and saalisy institutions should consistently
look to improve their projections. However, graphical analyses revaalsttime of the currently used
projections still seem questionable. As an example, in Figure 1, we plot theabmortality improve-
ments embedded in the standard mortality table for reserving for privatétabaginess in Germany,
i.e. the table DAV 2004 R. In the left panel, we see historical mortality improvésrfenWest German
males up to 2008 and projected best estimate improvements thete@fterplot reveals several issues
which can also be identified for many other projections, and it indicatestivbdiocus in the derivation
of new projections should be on:

e We observe a structural break between historical and forecast moimatitpvements. In reality,
the transition will almost certainly be smooth.

e The projection assumes a rapid slowdown in mortality improvements over the/easg which

1The historical improvements are derived from data from the Humarialligr Database (2012) (see Appendix A for de-
tails), and we apply P-splines to smooth the mortality rates before compugrnighgrovements. To support interpretability
and comparability of different heat charts, here and throughout #psmpwe sometimes cap rather extreme values. We use
data for West Germany only as the projection in the table DAV 2004 R wagedeirom data for that population, too. The
trend parameters in the projection are sefto= 10 and7> = 15, and margins for possibly stronger mortality improve-
ments in insured mortality have been deducted. For more details on thistmojand its parameters, we refer to Deutsche
Aktuarvereinigung (2004, DAV).
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Figure 1: Standard mortality projection for German annuity business

cannot be motivated from the historical data.

e The historical data contains significant diagonal structures, i.e. ceffedts, which are not ex-
trapolated into the future.

The right panel of Figure 1 shows the projection of the table DAV 2004 Ridtieg margins. The struc-
ture of the projected mortality improvements still looks inadequate, and even witfineamortality
improvements seem to be underestimated for some ages at least for theeaesxt ne may argue
that the projection might be sufficient for a portfolio of contracts with a widglsead age distribution.
However, regulatory requirements can prohibit the balancing of prafdd@sses from different prod-
ucts or product tranches. Thus, a spread of risk over a wide rdrages is not always possible which
underlines the need for an adequate projection for each age and cwlividually. We have made sim-
ilar observations for the corresponding projection for German femaleglaas standard projections in
other countries.

Our observations clearly show that there is still need and space for iegpwjection methodologies.
The derivation of such a methodology is the goal of this paper. We peopasodel structure which
allows mortality improvements to depend on age, period, and cohort — in sbtdranany existing
projection methods which account for only one or two dependeRdieszertheless, the proposed model
structure is fairly simple which facilitates a clear understanding of historicalawgment patterns. We
also provide a framework for estimating the model and explain how cohprejgctions for several
populations as well as different improvement scenarios can be dehivéte past, projections for males
and females and/or different populations have typically been constrinctedendently from each other
which often lead to inconsistent long-term forecasts. As we show, takiogatount data from several
populations can improve the reliability of projections for each single population

It is important to note that we do not propose a fully fixed and data driggimation and forecast-
ing procedure as it is typically applied for statistical projection models. Ildstwa only establish a

2Note that, in many projection models for mortality rates which account fer pgriod, and cohort dependencies, the
projected mortality improvements often depend on period and cohort Ddyage parameters then only describe the level of
mortality with age and not changes in this level over time.



AGE, PERIOD, AND COHORT DEPENDENTMORTALITY IMPROVEMENTS 4

framework by outlining the necessary steps for estimation and forecastthgravide examples how
each of these steps can be implemented in practice. Thus, only the gemeedyre is fixed, while
the concrete design of each step is to be customized to the population unditecation and the data
available. Such a customized approach obviously requires some exgmarigat which is often seen as
a disadvantage compared to fully data driven extrapolation models due to thedihogs in objectivity.
However, we believe that this approach also offers several adwemthgparticular, it allows the user to
directly implement what he regards as consistent with the historical dataohrdent between different
populations. When using statistical extrapolation models, this implementation igatbee indirectly.
One would typically choose the one model from the bunch of available modethappears to yield
the most plausible results given one’s own understanding of historicdblitppatterns and expecta-
tion of the future mortality evolution. In fact, statistical models are often modifretth® data set is
determined such that model outcomes are in line with the user’s intuition. Theambpproposed in
this paper avoids this indirect implementation as well as being limited to the projecgoarsos which
available statistical extrapolation models can provide. At the same time, the fataedviiork for model
estimation and forecasting reduces the necessary user input to a minimurafoféewe believe that
the proposed methodology provides a useful alternative to fully datardapproaches, in particular
with respect to Solvency Il requirements. Once Solvency Il comes ineztefinsurers will have to
explain in detail how they derived their mortality assumptions and why they thedetassumptions are
valid. When using the framework of this paper, the reasoning comes withethation of a projection
automatically.

Most existing projection models consider mortality rates from which mortality imgr@nts can then
be deduced. We directly forecast improvements as we see two main adaintalis approach: First,
we do not have to model the (current) level of mortality rates but only th@ingés over time. This re-
duces the number of required parameters and improves the interpretabilityreimaining parameters.
Secondly, some features in the underlying mortality data become more obvi@msclianges in mor-
tality rates are considered instead of the mortality rates themselves. Appepdixides an example of
such a feature. A case for modeling mortality rates is often seen in the stabifitgrtdlity rates com-

pared to the improvements which can be interpreted as the rates’ firshtdess However, from our
point of view, this is more a question of specifying an adequate model steudis mentioned above,
the number of parameters should be smaller in case of a model for improvetheisteompensating
for the larger fluctuations in the data.

The increasing demand for assessing and managing longevity risk ha&@daconsiderable academic
research in this field, with a focus on stochastic mortality modeling. Starting witlwdhle of Lee and
Carter (1992), a variety of such mortality models has been proposethevast two decades, and some
of them have also been extended to yield coherent forecasts foakpupulations (see, e.g.pByer et
al. (2014), Cairns et al. (2011), Li and Hardy (2011), and Li aee (2005)). Obviously, the central
trajectories of these models can be interpreted as best estimate projectoredr stochastic models
are usually specified as parsimonious as possible in order to speed uptisinsulgor this reason, they
often cover the most important period and age effects only, thus ignooingrceffects in particular
(see, e.g., the very popular models of Lee and Carter (1992) and @a&hg2006)), and the stochastic
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processes usually allow for very little flexibility in the best estimate projection:. ifsiance, most
stochastic models assume a linear trend (e.g. as part of a random walk ft)tindhe log mortality
rates/intensities which is fixed for the entire projection period.

Mortality models which are particularly designed to describe the best estimatalityavolution have
been proposed by, amongst others, Richards et al. (2013). Theailsd survival models however focus
more on mortality differentials between subgroups of a population ratheathast estimate projection,
and the authors also assume a fixed linear trend in the log mortality intensities. eShedtimate
model of Hunt and Blake (2014) is extremely powerful in detecting patierhistorical mortality data
but, unfortunately, it does not allow for projections. A very populart l@ssimate projection model
is the P-spline model of Currie et al. (2004). It is very flexible in that it aaoount for age, period,
and cohort dependent effects, and we will see later that it discoasisaily the same patterns in the
historical data as our model. However, the P-spline model does not alloeoferent projections
for different populations. A model for coherent projections has h@eposed by Jarner and Kryger
(2011), even though the model structure is rather rigid. It only considee projection for the total
population and random fluctuations around this projection for the indiVigopulations. Thus, the
central projections for all populations under consideration are equhgitong run which is often not
a plausible assumption. Ahcan et al. (2014) and Hyndman at al. (20&2yawe this issue of equal
long-term projections. The former project mortality for a population of irgieas a credibility weighted
average of mortality rates/improvements for this population and a large meéepwpulation. Hyndman
at al. (2012) assume constant differences between log mortality ratédferent populations in the
long run. However, the models of Jarner and Kryger (2011), Ahtah ¢2014), and Hyndman at al.
(2012) do not account for cohort effects.

All the aforecited models consider mortality rates, mortality intensities, or pilitisof deaths, but not
mortality improvements (with the exception of the improvement model variant cailet al. (2014)).
Explicit models for mortality improvements have been proposed by Plat (20itilHaberman and Ren-
shaw (2012, 2013). The authors come to the conclusion that stochastidimgoaf mortality improve-
ments can be a valuable alternative to modeling mortality rates. However, tloepeals on stochastic
modeling and not the derivation of most plausible best estimate projectionsoM, the models of
Haberman and Renshaw are single population models. A best estimate mortaliblyémpnt model
has been proposed by the Continuous Mortality Investigation (2010, ,GMY the structure of this
model is in fact rather similar to the structure of our model. However, weigecw framework for the
full calibration of our model, whereas the CMI leaves the derivation of someial parameter values
to the user. In particular, we show how long-term mortality improvements caybtaéned from life
expectancy forecasts. This also automatically determines changes in mortalibyé@mgnts over time.
The user of the CMI model has to decide over which time horizon age amattaddpendent mortality
improvements move from their current level to the expected long-term levels, Tour methodology
provides additional insights which can be informative for the calibration@fiil model as well.

The remainder of this text is structured as follows: In the next sectionnakyze historical mortality
improvement patterns and deduce the specification of our projection mod8kction 3, we then es-
tablish the estimation framework, present several approaches for fiténgdtel to historical data, and
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discuss the advantages and the applicability of each of those approdtbesso show how random
noise in the model parameters can be eliminated and how the applicability of Ilpassilel simpli-
fications can be checked. The derivation of mortality projections is themghisd in Section 4. In
particular, we explain how coherent forecasts for several poputatian be obtained. In the subsequent
section, we perform a back test and compare our model to other projeatidals which are often used
in practice. We then analyze uncertainties inherent in our projection medtdgydand describe ways to
assess and account for these uncertainties. Finally, Section 7 canclude

2 Model Specification

The mortality improvements in Figure 1 are computet] as

o Q(xat_l)_Q(mvt) _ CI(xvt)
STy w1 .

The historical parts in the heat charts clearly show vertical and diagtneitures, i.e. mortality im-
provements depending on period and cohort. Moreover, we canveltbat improvements for younger
ages tend to be larger on average than for older ages. Thus, theseaiss to be a dependency on age.
Clearly, for other data sets, only one or two of these dependencies nagktdvant, but a generally
applicable projection model should allow for all three. In Subsection 3.&xp&in how the relevancy
of each dependency can be tested. In order to keep the model as sipp$sidrde and to ensure a robust
estimation of its parameters, we propose modeling mortality improvements accturdiegwell-known
Age-Period-Cohort (APC) model:

v(x,t) = ay + pr + cr—g + €(x, 1),

wherea,. is the age dependent componentthe calender year component, . the cohort component,
ande(x, t) is an error term with mean zero. Obviously, other model structures whitid@ege, period,
and cohort components could also be applied. However, as we will $egjdbt simple model structure
works very well. More sophisticated structures, as in the model of Renahd Haberman (2006),
might provide a slightly better fit but the significantly larger number of pararmetakes the model
estimation more difficult. In fact, we have experienced numerical problenas Wiing to estimate the
Renshaw-Haberman model and, therefore, do not consider this nodekasonable alternative to the
APC model. The cohort variant of the Cairns-Blake-Dowd model (seesiid@ in Cairns et al. (2009))
possesses less parameters than the APC model but assumes a linearttreraygn component which
is not a reasonable a priori assumption in any case.

In the following sections, we explain the general methodology for estimatingntieel parameters and
deriving future mortality improvements. We first present three appradondtting the model to histor-
ical data. This provides us with age and cohort parameters which wefadppojecting, i.e. we assume

Obviously, this definition of mortality improvements is only valid as long;és t — 1) > 0. For populations as large
as the German one, this is always the case, but for smaller populatiens,ntfight be raw mortality rates of zero. A few
undefined mortality improvements would be uncritical for the estimation ofrmdel though.
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that, in the future, mortality improvements will depend on age and cohort agditiey the past. For
the projection of future period parameters, we rely on life expectanegésts. Period life expectancies
at birth or any other age exhibit rather steady and often almost linearmtigice they are aggregate
mortality statistics. This makes forecasting rather obvious in many cases.vEigway assumption on
the future life expectancy evolution can be incorporated in our framewookerence between projec-
tions for several populations is also to be achieved at the aggregateféifelexpectancies. Here, one
needs to provide reasonable long-term relationships between life erpiestéor the populations under
consideration. For instance, life expectancy forecasts for femalegdshe larger than those for males
until infinity in general. Once life expectancies are extrapolated, the ppamameters can be deduced
such that the assumed life expectancy for each respective year iseabtdinis approach implies that
the historical period parameters from the model estimation are not reqoirdidef projection. Never-
theless, we think that they are an integral part of the model as, in the fittingttribal data, they take
up a significant amount of the random year by year fluctuations an@yyeémprove the estimation of
the age and cohort parameters.

In order to illustrate our methodology, we derive projections for Germansaadd females as part of a
larger reference set of European populations. We show exemplavilygaoh step in our rather general
framework for model estimation and projection can be carried out sucthit thest fits the population
under consideration and the available data. Note though that the projectibadokgy is not derived
specifically for the case of Germany. It can be applied to basically anylaiopn with a sufficient data
history.

For our example projections, we use historical data for West Germany fihe Human Mortality
Database (2012). We exclude data from East Germany as there seesns tofisensus that the reuni-
fication in 1990 has led to the East German mortality experience moving towaitds #est Germany
(see, e.g., Kunde and Ortmann (2011)). Thus, a combined data set rokyriee by this one-off effect.
However, for simplicity, we refer to the West German population as the Gepmaulation only in the
following. For reasons outlined in Appendix A, we do not use the mortalitysradeich are tabulated
in the Human Mortality Database but derive mortality rates from the also priwddaths counts and
population sizes. This yields mortality rates for years 1956 to 2008 andlaiges09. However, since
mortality rates fluctuate extremely for very old ages or are not even defiretb nobody being alive at
those ages anymore, we cap the data set at age 100.

3 Projection of Age and Cohort Parameters

As outlined above, age and cohort parameters for the projection aretidiaed from fitting the model
to historical data. For this, we propose a four step approach:
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Step 1: Estimation of all model parameters based on mortality improvements in théchigtoor-
tality data.

Step 2: Modification of the parameters to account for the fact that the AR&Insonot uniquely
determined. Constraints are imposed on the model parameters ex postable fraram-
eters have a clear interpretation and that the parameters of differentafops become
comparable.

Step 3:  Smoothing of the raw parameters to eliminate remaining noise, and pasgitificance
tests of the model components.

Step 4: If applicable, another modification of the age parameters to obtagnertiiprojections for
the populations under consideration. Since the age parameters prévaifimity, differing
age parameters for two populations imply that — assuming rather equal paraaeters —
mortality rates will diverge in the long run.

These four steps are discussed in detail in the following subsectiong wigeexplain rather generally
how each step could be carried out and where we provide concrete imybdiors for the example
case of Germany.

3.1 Step 1: Model Estimation

There are several ways to calibrate the model parameters to historicalitpamarovements, and we
present three possible approaches here. The most important diffebeiween them is the assumed
distribution for the improvements.

Least squares estimation

The most intuitive approach is weighted least squares estimation of the navdelgters. The general
need for weighting becomes obvious from Figure 9. The variability in the titgritaprovements differs
significantly between different age groups and periods. For youeg agd old ages in the earlier years
of the data set, the raw mortality improvements fluctuate much stronger becaumsgrthers of observed
deaths are much lower there than elsewhere. Unfortunately, the mostushohoice of weights, i.e.
the improvements’ variances, are unknown. Therefore, we sugpgpstx@amating the variances from
the residuals and applying these sample variances as weights. To thisnenthudd assume that the
variances are rather constant for adjacent ages and calendgryeafor each improvement, compute
the sample variance from a set of surrounding data points. The agiepumber of data points clearly
depends on the data set under considerdti@mce the sample variances can only be computed from
the residuals once the model has been estimated, an iterative procedegeitied. In a first run, the

“For the case of German males and females, we have found that egteatfdata points with length 5 in the age direction
and length 15 in the time direction is a good choice. Thus, for age 30 in I87Mstance, the residuals for ages 28 to 32
in the years 1963 to 1977 are considered. For ages and calenderciese to the boundaries of the data set, this rectangle
shrinks obviously. The dimensions of the rectangles are chosen dsasrpassible to accommodate the assumption of equal
variances for all data points in a rectangle, and as large as neces&iitmte any significant random fluctuations in the
variance estimates. However, in general, we have found that the naindeta points for computing the empirical variances
has a rather small impact on the model estimation results.
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model has to be estimated without weights (or with weights all equal to 1); tistgtueds and sample
variances can be derived and applied in a second weighted estimatiomhigrprocedure of deriving
weights and re-estimating model parameters should be repeated until the tidatien converges,
i.e. until the model parameters hardly change from one run to the next.

By estimating in least squares, one implicitly assumes normally distributed residde¥gever, this
is not always an adequate assumption; in particular, the light tails of the hdrsti@bution may be
inappropriate in many cases. Given initial exposure, the number of deattize assumed as binomially
distributed, and thus, for a sufficiently large population, mortality rates easekn as approximately
normal. This means that, according to Equation (1), the improvements folloviréodli®n of the ratio
of two normally distributed random variables. Such a ratio distribution cartdiedsexplicitly (see
Hinkley (1969)), but its tails are so heavy that moments are not definedertiieless, least squares
estimation can still be a valid approach for populations with rather steady mogatigrns.

Maximum Likelihood Estimation based on Non-standardized Student t-Distribution

In order to account for possibly heavy tails, it seems reasonable tmaghe ratio distribution of normal
random variables for the improvements. However, in order to fully spéi$ydistribution, means and
variances of the two normal variables, i.e. the mortality rates in our casesguied which we do not
know in general and which we cannot express in terms of our modengaess. As an alternative, we
can assume a non-standardized student’s t-distribution for the improveareetsduals, respectively,
which — depending on the chosen degrees of freedom — has signifibaatlyer tails than the normal
distribution. The model parameters can then be estimated via the method of maxirelinodll. As
for the least squares case, estimation should be carried out iterativiglyther scale parameter in the
student’s t-distribution updated after each run according to the samplasesial he degrees of freedom
of the student’s t-distribution can be derived from distributional tests; tl&tittoution should be as close
as possible to the empirical distribution of the residuals in the final estimation run.

Least squares Estimation based on the Logarithm of Mortality Redetion Factors

An alternative approach for estimating the model parameters is to assumeoanhagdjdistribution for
the mortality reduction factors

q(z,t)

r(z,t) =1—wv(z,t) = dwi—1)

This assumption can be motivated by the fact that mortality improvements lie in theainterc, 1] by
definition. Thus, reduction factors range from zero to infinity, with meaicéfly somewhere slightly
below 1. This indicates that a skewed distribution with the positive axis a®sgupmht be a reasonable
choice. Moreover, the binomial distribution for the number of deaths arglalse the distribution for
the mortality rates might sometimes be better approximated by the lognormal distribotigared to
the normal distribution. This is particularly the case when the number of disathther small and the
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Figure 2: Estimated parameter values for German males

binomial distribution becomes significantly skewed. We then obtain

q(z,t) | _
q(x,t—l)} = log {q(x, 1)} —log{q(z,t — 1)} ~ N,

i.e. the log reduction factors are normally distributed, and the model cantioeated via iteratively
re-weighted least squares or, equivalently, maximum likelihood on thesegaThis approach appears
particularly suited for small populations with rather small numbers of deaths.

log {r(x,t)} = log {

Estimation Results for German Males and Females

Figure 2 shows the three parameter sets for the three estimation apprfthehdsgrees of freedom in
the student’s t-distribution are set to 30) and German males. The parametificatiotis which are
described in the following subsection have already been applied to the ghaiteicheter values, but this
does not affect the conclusions we draw here. We observe that tioel gad the cohort parameters
are almost equal for all three approaches. Moreover, the periadnggers fluctuate considerably which
shows the year by year random noise. In the age parameters, weebggrificant differences between
the estimation approaches only for young ages. There, the volatility in thenoatality improvements
is rather large, and the distributional assumptions thus have a significarttiompe estimation results.
The most applicable estimation approach for a given data set can be det@tmgidistributional tests.
Figure 3 shows a combined QQ-plot of the residuals in the case of Germas. rikdee, it seems that
the lognormal assumption is least applicable which is confirmed by the smafestatistic. Table 1
contains p-values of Kolmogorov-Smirnov (KS) tests and Chi-squarelfedoth males and females.
For females, test results are fairly conclusive; the assumption of a $tdlelstribution cannot be
rejected in both tests, whereas the normal and the lognormal distributiomlgrslightly significant
in the Chi-squared test. For males, the Chi-squared test clearly rejectsstimagtion of a lognormal
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Figure 3: QQ-plot for standardized residuals in the three model estimatoaghes

Females Males
Distribution || KS test | Chi-squared test | KS test | Chi-squared test
Normal 0.059 0.028 0.336 0.028
Student's t 0.108 0.114 0.402 0.030
Lognormal 0.017 0.020 0.044 0.003

Table 1: P-values for Kolmogorov-Smirnov (KS) and Chi-squared digiohal tests

distribution which confirms our observation from the QQ-plot. The p-vaioethe other two candidate
distributions are very similar in both tests, with the Kolmogorov-Smirnov testlgleacepting both
distributions. In conclusion, a student’s t-distribution appears mostmaaofor both genders, and we
therefore proceed by using the parameter values from that estimatiareappn our example.

3.2 Step 2: Parameter Modifications for Model Identifiability

The parameters in the APC model cannot be uniquely determined withoutaiots For instance,
increasing all age parameters and decreasing all period parameteesshyrtt amount would not change
the model’s responses, i.e. the estimated mortality improvements. Therefostratats are typically
imposed before the model parameters are estimated. In our estimation framewato not explicitly
state such constraints but constrain the model implicitly such that all pararoaieog easily interpreted
and that coherent projections of the age parameters for differentgiams are intuitive (details on this
issue follow in Subsection 3.4). Due to the linear structure in the APC modebfsatsimal parameter
estimates only differ by linear trends in age and time (cf. Carstensen (20®&40)ang et al. (2008a)).
Thus, a switch from one set of constraints to another is equivalent tactieg a linear trend from one
parameter set and adding it to the other parameters sets. The shifting oflarets does not affect the
estimated mortality improvements; in fact, such shifts do not even affect pedjgnprovements in the
APC model as long as linear trends in the period and cohort parametexstiagolated into the future
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(cf. Kuang et al. (2008b)). In line with these findings, we accept ahgfs'optimal” parameter estimates
in Step 1 instead of constraining the parameters before estimation and thery thedé estimates as
follows: We determine a possible linear trend - (t — =) + d. in the cohort parameters and subtract
this trend from the original cohort parametér§he modified cohort parameters then all lie around zero
as can be seen in Figure 2. To compensate for the change in the cafaoniepers, the age component
and the constant of the estimated trend,+#1. - = + d.., are added to the age parameters and the period
componentn,. - t to the period parameters. Moreover, we modify the period parameterdbpsiing
their mean and adding this mean to the age parameters.

These parameter modifications should be carried out for any populatibonly in our example case of
Germany, since they provide all parameters with clear interpretations: dfftetqparameters describe
the differences in mortality improvements between cohorts; a cohort paragnester than zero means
that the respective cohort experiences larger than average impnoigméiereas a negative cohort
parameter indicates below average improvement. The period parametees@a average, and we
can thus identify years and/or decades with above- or below-averageviempents. In Figure 2, we
observe a generally increasing tendency in the period parameters whagls that improvements have
been increasing for German males over the last half-century. The ag®et@rs can be interpreted as
the average mortality improvement for each respective age over the wdridel pinder consideration.
The elimination of a possible trend in the cohort parameters supports the isompaf improvements
for different cohorts. Furthermore, parameters for future cohaistben be plausibly forecast in a
very simple manner, i.e. by setting them equal to zero. Since one hardlynjidghawledge about
the mortality improvements of cohorts still to be born, the most obvious forecastassume average
improvements which, after the elimination of a trend, are zero improvements.dfilobserved a trend
in the historical cohort parameters, a reasonable projection for this, tndrich would to some extent
indicate increasing or decreasing improvements with time, would have to lvedleri

Since the first and last cohort parameters are fitted to only a few data,gbaytsan assume rather large
values which are most likely due to random noise rather than actual ceffexts. In order to account
for this, the cohort parameters should be “standardized” by multiplying ltbyeq)/% wheren is the
number of data points available for estimating the parameter under considenati@. is the maximum
number of data points available for estimating any of the cohort parameteitbei.maximum of ages
and periods under considerati®his standardization reduces the volatility in the first and last cohort
parameters in particular and makes volatility comparable for the whole datehsxt is necessary for
the parameter smoothing in Step 3.

Finally, one needs to extrapolate the age parameters up to the desired limitiog thgeprojection.
Here, different approaches can be applicable, depending on theetatmder consideration. In our
example, simple extrapolations equal to zero appear plausible for botkrgefdhis is in line with the

5This trend should be obtained via weighted regression to account fordteasing volatility in the first and last cohort
parameters. We suggest applying weightsvheren is the number of data points available for the parameter under consider-
ation andm is the maximum number of data points available for estimating any of the pdw@meters, i.e. the maximum of
ages and periods under consideration. These weights can be motiydtezifact that, in general, the variance of a parameter
estimate decreases linearly with the number of data points available for gstima

5These weights can be motivated by the fact that, in general, the varihageaoameter estimate decreases linearly with
the number of data points available for estimation.
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finding of Gampe (2010) that mortality rates for the oldest old in Europe hatv@mproved in recent

decades. Moreover, we set all negative age parameters to zerd@iecasting mortality deterioration
for some ages does not seem plausible in the long run when positive mortalityvienpents are assumed
in general.

3.3 Step 3: Parameter Smoothing and Significance Tests

The estimated parameter values typically still contain some random noise whiddstabe seen in
Figure 2. Thus, smoothing is required. In principle, any smoothing methodeapplied; we have
decided to use the method of Whittaker and Henderson (see Whittaker) @9@3enderson (1924,
1925)) in our example as it is well known and widely applied in actuarial seieiThe method of
Whittaker and Henderson requires provision of a smoothing parametehn doiermines how strongly
the data is smoothed or — put differently — how close the smoothed data still isdoigheal data. We
suggest using a smoothing parameter which minimizes generalized crosstigalidThe idea behind
the concept of generalized cross-validation is that the error in predatipgne data point based on all
other data points is minimized (see, e.g., Craven and Wahba (1978)). Thimmutoincides with our
goal of determining the “true” parameters from the noisy estimates, andtkieusimoothing parameter
which minimizes generalized cross-validation seems a natural choice.

Once the model parameters are smoothed, they can be used for projettiegriortality improvements.
However, in order to have a model as parsimonious as possible, the sigodiof the age and cohort
parameters may be check&do this end, likelihood ratio tests can be carried out for restricted models
without age or cohort parameters. These tests should be performed smtiothed parameters since
those are the parameters used for projection. A test on the raw param@étse misleading. For
instance, if the raw cohort parameters fluctuated considerably duedomanoise, a likelihood ratio
test might indicate high significance since, without the cohort componenghis@ute values of the
residuals would increase significantly. The smoothed cohort parametehns$ afligpe (close to) zero
though which means that the cohort component is not relevant for thecton at all.

Smoothing of the parameter estimates reduces the effective number of parsaorethe degrees of
freedom in our model. If, for instance, the smoothed parameters followamlstrline, the effective
number of parameters is reduced to 2. Consequently, the likelihood ratistagistic follows a chi-
squared distribution with degrees of freedom equal to the differenweeba the effective numbers of
parameters in the full model and the restricted model. In both cases, théveffeumber of parameters
can be determined as the trace of the so called hat matrix in the Whittaker+idendenoothing (see,
e.g., Garcia (2010) for details). Exemplarily, Table 2 contains the effeatimbers of parameters for
different model variants and p-values for according likelihood ratio fest&erman males and females.
We observe that smoothing significantly reduces the number of parametteesiti model, from 305 to

"The concept of minimizing generalized cross-validation for smoothinganameters of a mortality model is not new. It
has already been applied by Delwarde et al. (2007) for smoothingythdependent parameters in the Lee-Carter model.

8The concept of generalized cross-validation assumes normally disdliearors in the noisy data which implies a slight
inconsistency if the mortality improvements are not assumed normal,dtegard this issue as negligible.

°Obviously, also the period parameters could be checked for significatmvever, since they are not used for projection
in our framework, but just included for improving the estimation of theag cohort parameters, this is counterintuitive.



AGE, PERIOD, AND COHORT DEPENDENTMORTALITY IMPROVEMENTS 14

Model Females Males

variant #parameters \ p-value #parameters \ p-value
APC model 48.9 51.5
AP model 21.2 [ 221077 24.0 | 8.0-10~12
PC model 31.8 | 75-10710 18.8 | 4.4-1072

Table 2: Effective numbers of parameters for model variants and gwalikelihood ratio tests

about 50 for both genders. Moreover, the age and cohort comfsa@rsignificant — the age component
for males only slightly though. Thus, the projection model cannot be restiiicteur example.

3.4 Step 4: Parameter Modifications for Coherent Projections

With the age and cohort parameters smoothed and checked for sigrefigangections for individual
populations could be derived. However, another adjustment may besaggedn order to guarantee
coherent projections between closely related populations in the long tum.ade parameters prevail
until infinity, and thus, differences in the age dependencies for twolptpns yield steadily diverging
mortality rates (assuming similar period parameter values for both populatiomg)ticular for the case
of males and females in the same country who are exposed to the same sditiied,,gnd economic
environment, such a scenario seems highly implausible as a best estimat@ésddodality rates may
be significantly different also in the long run, but they should not dizengtil infinity. This issue can
be overcome by requiring coherent long-term age parameters for boters.

Due to the parameter modifications in Step 2, coherence can be obtainesbibyirag equal age param-
eters in the long run. The shifting of the linear trend from the cohort paes the other parameters
and the resulting projection of the cohort parameters as zero imply thatisheveage dependent trend
in the cohort parameters anymore. If there were such trends in thet garameters for two popula-
tions and if these trends were different, equal age parameters wolldpigtcoherence. The different
age-dependent trends in the cohort parameters would yield divergiriglityarates until infinity. Thus,
the parameter modifications in Step 2 do not only provide all model paramedtaramintuitive inter-
pretation but also prevent long-term divergence in projected mortality feteelated populations.
Equal long-term age parameters, e.g., for males and females in the santey cowid be obtained
by introducing a functional structure in the age parameters which interpdieteveen the estimated
parameters for each gender and some kind of “average long-termasgmeters”. However, such a
functional structure would significantly increase model complexity. Altevehti one could fit the APC
model to a combined set of historical data, allowing for possibly differehbd and period parameters
for both genders but demanding equal age parameters. The simplesi@ppertainly is to average the
individually fitted age parameters for males and females and to assume thi@ggsarameter averages
for both genders in the future. This approach is only valid if the structurélse age parameters for
both genders are rather similar which is typically the case. Otherwise, ome wbserve a significant
structural break between historical and projected mortality improvementsirlaxample, we can and
do proceed by using this simple approach.

For populations from different countries, it is not obvious whether@arameters should be adjusted.
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This depends on the social, political, and economic differences betweemtinries as well as the
significance of differences in the individually estimated age parametewsarid and Tuljapurkar (2005)
show that the distributions of deaths often differ between countries. Others also detect differences
in the variances of life spans — in the level as well as in the trend of the eaganThus, (slightly)
different age parameters seem generally acceptable even for popsiiatiosely related countries. We
therefore refrain from adjusting the age parameters based on @ossycinformation in our example.
The cohort parameters describe only temporary effects. Even if thigy dignificantly for two pop-
ulations, mortality rates will not automatically diverge in the long run. MacMind Weber (2011)
also show that cohort effects do not necessarily appear for malefearades simultaneously and find
no convincing evidence of correlated cohort effects in differentht@es. Nevertheless, there might be
reason for adjusting the cohort parameters in some cases, but foxamplke, we stick to the cohort
parameters which we estimated for each population individually.

With the age and cohort parameters fully specified for the projection, weddorecasting future period
parameters in the following section.

4 Projection of Period Parameters

The future period parameters are most difficult to forecast. They detetimroverall level of mortality
improvements in the future and are thus the most crucial set of paramegges.ddr projection method-
ology benefits from large flexibility in forecasting these parameters. Simge #Hre no constraints on
these parameters a priori, they could follow any pattern derived froinddgsany forecasting approach.
In particular, this flexibility allows for coherent forecasting of the periadgmeters for several popula-
tions.

The most obvious projection approach is an extrapolation of the histogcaldpparameters. However,
these parameters fluctuate quite strongly in general which makes trend @eiatifidifficult. Moreover,

it is not clear how to handle trends in the historical period parameters at aleahly visible and long
lasting trend as in Figure 2 must be taken into account somehow when prgjbatiit is questionable
whether such a trend can persist in the long run; mortality rates wouldadecneore and more rapidly
every year without any limit on the mortality improvements. If one wanted to inteduch a limit for
the long-term improvements, it would not be clear when and at which levdintitsshould come into
effect.

For our projection framework, we therefore propose an alternatipeaph that is based on period life
expectancy extrapolations. Once such an extrapolation is providedetioel parameter for each year
in the future can be determined such that the forecast period life expgdtathat particular year is
attained!® This approach has the following advantages:

e Life expectancies typically exhibit stable patterns since they are aggdegeteality statistics.

ONote that this approach does not imply that the parameter modificationsse&ion 3.2 impact the forecast mortality
improvements. If one did not modify the parameters and projected thereéme in the original cohort parameters instead, the
period parameters derived from the life expectancy extrapolation vimuttifferent, but the projected mortality improvements
would be the same.
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Often, they also follow clear trends which makes forecasting rather ohviddoreover, it is

typically easier to assess the plausibility and prudence of a certain life taxpgdorecast than
to judge whether a mortality improvement of, say, 2% for some age and yeag ifutilre is

adequate.

e The forecast life expectancies can be the period life expectanciethedbat any other age. Thus,
period parameters can be derived with a focus on certain age grogpgetgement ages in case
the period life expectancy at, say, age 65 is forecast.

e Coherent mortality projections for several populations can be deriasiflyebased on coherent
life expectancy forecasts. We will provide an example for this later in thisoseand show how
taking into account information from other countries can impact the projefdioan individual
population.

e The derivation of different projection scenarios is straightforwarady different life expectancy
extrapolations need to be provided. This can be particularly helpful vidadding mortality
projections with and without margins or when specifying a mortality/longevitysstegenario,
e.g., for a (partial) internal model under Solvency Il. Larger life expaecy gains imply larger
period parameters, and thus, mortality improvements for all ages are iedreas

Obviously, there cannot be a purely data driven standard procéatiuderiving life expectancy extrapo-
lations. Several issues need to be taken into account, e.g. the numbeutHtfmns under consideration
and observable patterns in the historical mortality evolution. Thus, a clusgalinput is required here
which certainly involves some amount of expert judgment. However, atighbranalysis of historical
life expectancies and relationships between closely related populatiosigniitantly limit the implied
subjectivity. In order to illustrate this, we continue our example and showftitmwre period parameters
can be derived coherently for German males and females. Most of teetleproposed methods for
coherently projecting life expectancies follow the idea of forecasting thidwiae maximum life ex-
pectancy and a life expectancy gap for each population under coaisitherThe worldwide maximum
life expectancy has exhibited a surprisingly linear pattern for more thayd#@® (see Oeppen and Vau-
pel (2002)) which makes extrapolation straightforward and this appreery tempting:! Models for
the gaps between worldwide maximum life expectancy and life expectancpestafular populations
have been proposed by, amongst others, Andreev and Vaupé)(2@@ (2006), and Torri and Vaupel
(2012), and, in principle, any of these models could be applied here.e¥sywve do not follow the
approach of forecasting the worldwide maximum life expectancy since it imgtiésconsistency with
the historical life expectancy evolution in Europe. Worldwide maximum life etqpecies for males and
females have diverged over the last two centuries which implies forecadtmgvidening gender gap
also for the future (see, e.g., Torri and Vaupel (2012)). In Eurbpeever, this gender gap has narrowed
continuously and increasingly fast, from 6.8 years in 1980 to 5.3 year8(08 gsee also Figure 10 in
Appendix B). Therefore, assuming a sudden increase of the geagdén ¢he future is counterintuitive.

HThere is an extensive literature on the question whether life expectarciésarease infinitely or whether there is some
biological limit. From an actuarial perspective, we think it is dangeroussurae a limit. History tells us that previously
assumed limits have been surpassed rather quickly (cf. Oeppen apdl\2002)).
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Figure 4: Historical life expectancies at birth in Europe

As can be seen in Figure 4, life expectancies in European countriestwawerged for both genders over
the last decades. Moreover, we observe a common trend betweenesuantd clearly, life expectancy
forecasts for any country should relate to this common trend. It can bsilplato assume above- or
below-average life expectancies for one or both genders in a certairtrgobut the gaps between the
country’s life expectancies and the European average life expedaiaald stay in a reasonable range.
Therefore, we proceed by extrapolating the European life expectesray — coherently for males and
females — and then analyze and forecast the life expectancy gap foa@gand some other countries.
Figure 5 shows life expectancy forecasts for the male and female totalgbiops in Europe which
we regard as coherent between genders. The assumptions undérisegforecasts are explained in
Appendix B. In brief, we assume that the gender gap will continue to slwimthe next decades and
then level off in the long run. The long-term increase in life expectancyésifaccording to the trend
in the historical data.

With life expectancy forecasts for the European populations at hantlirwéo possible deviations from
these forecasts for some selected countries. In Figure 4, we obsarmeergence in life expectan-
cies for males and females across Europe which indicates that best estimatgéttancies might be



AGE, PERIOD, AND COHORT DEPENDENTMORTALITY IMPROVEMENTS 18

95 4
90 A
85 A
Q? 80 1 H+++++++H’F“"‘Y+*TT =

75 4 hﬂ‘#‘rﬁ‘f‘r ‘ Hﬁjq:ﬂ"*ﬁ"‘" . . - .

T et Historical life expectancies  +
70 4+ m“*w Historical long term trend

Py Long term asymptote———

65 | Life expectancy forecast———

1960 1980 2000 2020 2040 2060

Time

Figure 5: Coherent extrapolations of life expectancies for female (satid)male (dashed) total popu-
lations in Europe

equal for all countries in the long run (see also Jarner and Krygerl{j2é@nd references therein for
this assumption). In that case, only transitions from current life expeiesito the common long-term
life expectancies would have to be specified for each population. Howawa/ergence seems to stop
around 1980. Therefore, it is not directly clear whether the remainirighifity in life expectancies is
simply due to random fluctuations or whether some populations have cotlgisbgmerienced longer
life spans than others.

Figure 6 shows how life expectancies in selected countries have deviatedtose of the total pop-
ulations in the past. We have chosen these countries as we can obsaifieasity different patterns
in their deviations which are somewhat exemplary. Regarding the questionatoove, the deviations
for Switzerland are fairly conclusive. For both genders, they ardfgigntly positive over the whole
data period. The reason for this may be above average socio-ecormditians in Switzerland. Thus,
Swiss actuaries should feel rather uncomfortable with projecting localXfecancies as being equal
to the European average, even in the long run. Instead, the data tsugggmaning a sustainable differ-
ence of about 1.5 years and introducing a smooth transition to that lewetheveext decade or so. An
analogous conclusion can be drawn for Finish males where averagpdaur life expectancies seem
overly prudent for a best estimate projection.

Opposing trends can be observed for Italy and Denmark. Italian lifectxipeies were below average at
the beginning of the data period but have risen significantly above towaednd. In Denmark, on the
other hand, the life expectancy increase has been 5 to 6 years lowéh¢hanropean average increase.
Here, we see how valuable coherent projections can be. Forecastiifigg @éxpectancies according
to individual historical trends would almost certainly yield implausible long-tprojections for both
countries. We would move away from the European average rapidly @amthaously. Instead, it is
more reasonable to assume a leveling-off in the deviations from the Euwrgpesage at the current
level or somewhat closer to zero.

For the Netherlands, we observe a fairly linear downward trend for afdise data period. Over the last
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Figure 6: Differences between life expectancies of the total populatiotigapulations in selected
countries

years, this trend seems to have bottomed out though — slightly above theeBnraperage for males
and about one year below average for females. Thus, assuming abktaiifferences at these levels,
a long-term gender gap of three years in Europe would imply a long-tepnofgslightly less than two
years between Dutch males and females. This can well be possible but mag@lsre additional
demographic justification.

Finally, we have a closer look at the deviations for Germany as this is the fept®s completing our
example. We see in Figure 6 that, from about 1985, fluctuations beconss satfall around a fixed
level of about -0.3 for males and -0.5 for females. Therefore, the nvsbas forecast for German life
expectancies is to assume the forecast for the total populations, slightgdstidfwnward according to
the observed deviations. We therefore fit the future period paramettdragshifted life expectancies
and obtain coherent projections as plotted in Figuté The historical data is smoothed using either
P-splines or our methodology. In the latter case, the charts also contaibegmd 100.

We observe that our methodology smoothes the data more strongly thanphieePagethod does. This
then obviously leads to a slight break between the historical and the pobpettiz in the P-spline case.

2Note that coherence is only achieved at an aggregate level; foreddstividual mortality rates might not be fully
coherent between genders. However, full coherence is hardlgvatite in general, and slight incoherences for individual
mortality rates should average out between different ages and/odperio
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Figure 7: Coherent mortality projections for German males and females

In general, it is difficult to tell which level of smoothing is most appropriatg, Wwe have provided

reasoning for our smoothing in Subsection 3.3. More importantly, howthegeneral structure in the
historical data is the same for both smoothing methods, and our projectiopaates this structure
nicely. Therefore, we think our projection looks highly plausible for bothesmiand females. In partic-
ular, all cohort dependent structures are carried forward apptefy. The very slight breaks in 2009 in
the graphs on the right hand side are due to the use of average agefmsin the projections.

5 Comparison with other Projection Models and Back Test

In the Introduction, we referred to the current standard projectioprigate annuities in Germany. In
order to compare that projection to the projection which we exemplarily aknvéhis paper, Table 3
provides life annuity present values for males and different agesefedwent periods. For the annuity
present values based on the DAV 2004 R mortality table, also percenteig¢iales from the annuity
present values according to the new projection are provigl@dhe most striking observation is that the
new projection consistently yields the largest annuity present values.obblervation does not only
hold for a comparison with the DAV 2004 R best estimate projection but alsa tmmparison with

13The present values are computed based on a time constant intere$tlr&&% which is the maximum admissible interest
rate for annuity reserving in Germany at the time or writing. The base titpmates to which the projections are applied are
equal in all cases, i.e. observed mortality rates in 2008.
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Deferment | Age at first New DAV 2004 R DAV 2004 R
period payment || projection || bestestimate || incl. margins
65 16.84|| 15.88| -5.7% | 16.45| -2.3%
0 years 75 10.61 || 10.16| -4.2% || 10.42| -1.8%
85 569| 561| -14%| 5.68| -0.1%
65 12.83|| 10.81| -15.8% || 11.97| -6.7%
20 years 75 7.14| 6.03| -15.5%| 6.87| -3.9%
85 2.73| 2.03| -25.7%| 2.44| -10.6%
65 11.01|| 8.23|-25.2% | 9.61| -12.7%
40 years 75 7.02| 4.73]-325%| 5.90| -15.9%
85 293| 1.64| -44.1%| 2.35|-19.9%

Table 3: Annuity present values and percentage deviations for maleslaggrto the newly constructed
projection and the projection in the mortality table DAV 2004 R

the projection with margins. The differences in the annuity present valaesaise with the deferment
period, i.e. with the time period over which the projection is applied. A discussithre appropriateness
of existing tables is not within the scope of this paper though since we fatweweloping a new
projection methodology here and have derived the new projection onijustrative purposes.

In order to further illustrate the applicability of our projection methodologypeorm a back test and
benchmark it to other commonly used projection models. In the back test, weismlyata up to 1990
for model estimation and then project mortality improvements up to 2008, i.e. thgelastor which
data is available.

The age and cohort parameters in our model are derived as in the examitie full data set. The
life expectancy extrapolations have to be adjusted slightly according to ttugitéd life expectancy
evolution up to 1990. Since the gender gap in European life expectamsesrnained rather constant in
the 1980’s (see also Figure 10 in Appendix B), a parallel extrapolatitimediistorical life expectancies
would have been a plausible and coherent forecast. The slope ofekiegpolations is chosen as the
average of the slopes in the historical trends for males and females. Tlegpéetancy forecasts for
Germany are derived by a downward shift of the forecasts for thedean populations. Between 1985
and 1990, the gap between European and German life expectancyemastier constant at about 0.5
for males and 0.3 for females (see Figure 6).

As alternative projection models, we consider the Lee-Carter model witbriceffects as proposed
by Renshaw and Haberman (2006) and the P-spline model by Currie(@084). We have chosen
these models because they are widely accepted and applied in practmesdoéirey project mortality
improvements dependent on age, period, and cohort, and becaus®vtikeyhe full age range. These
are requirements which only few of the existing mortality models comply with. Fdr bwdels, we
apply standard estimation and projection techniques and refer to Apperidixd@tails. However, we
apply two variants of each model: In case of the Renshaw-Haberman madehce use the parameter
values as fitted to the historical data, and we smooth them using the Whittakdetden method. In
case of the P-spline model, we consider two different fits, one to data §odnd one to data up to
1985 only. The reason for using two different data periods becomasfoben Figure 8.
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The figure shows actual and projected cumulative mortality improvements 18896 to 2008, i.e.
1 — ¢z 2008/ 4=,1990, for ages up to 100, both genders, and the three projection methods iredpective
variants. The most striking observation is that the P-spline model fitted to datal®90 yields highly
implausible projections for both genders. For most ages, (significant) lihodeterioration is assumed
which contradicts the general historical trend of decreasing mortality with firhis. implausible pro-
jection is due to the P-spline model being very sensitive to the mortality trend indhfevadata points.
In Figure 1, we see that, at the end of the 1980’s, mortality improvements fesmare negative for
many ages, in particular for those around age 30, and this is carriedmveehe projection. When
these last data points are omitted, i.e. when the model is fitted to data up to 198thergyojections
look more plausible, but generally overestimate mortality improvements. Théiggnso only very
few data points and the resulting instability of the projections question theajemplicability of the
P-spline model.

The Renshaw-Haberman model and our methodology provide more staietigms for both gen-
ders which, at the same time, match the actual mortality improvements significantlyibegeneral.
However, the Renshaw-Haberman variant with raw model parameteysatdmuestionable patterns at
times, e.g. the rather extreme dent around age 30 for males.

Table 4 shows some statistics which measure the projection methods’ perfasnarhe average er-
ror is the average difference between actual and projected improveniénits, a positive error means
that the projected improvements are, on average, too large, a negativeneans that the projected
improvements are too small. The root mean square (RMS) error is a meastwanf well a projec-
tion method performs in matching the actual mortality improvement for each agkowesimilar the
age structures of actual and projected improvements are. We observia ttramparison to the other
projection methods, the P-spline model variants perform poorly in termstbfdverage error and root
mean square error. Comparing the other two methods, we see that, fordethalaverage errors for the
Renshaw-Haberman model variants are smaller but that the root meae squoas are similar. Thus,
the Renshaw-Haberman projections are closer to the average of theiapievements, but the errors
in the projection for each age are about the same for both methods. For awalesethodology performs
better in terms of both average error and root mean square error. UreR8gwe see that the Renshaw-
Haberman model significantly underestimates improvements for ages 60 to 8@igular which are
the most relevant ages with respect to longevity risk. Therefore, welwa that our methodology
outperforms the alternative models in this example and that it provides a i@hltrnative to existing
projection models.

6 Modeling Uncertainties and Margins

The modeling and forecasting of mortality always involves a considerablammbuncertainty. There-
fore, often projections with margins are required for prudent calculsiddpremiums and reserves. In
this section, we highlight potential sources of uncertainty and show heertainty can be accounted
for within our methodology. Moreover, we explain how basis risk can Bessed in case a projection
is applied to a population which it has not been constructed for originally.
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Figure 8: Cumulative mortality improvements from 1990 to 2008 for differeojgation methods

The largest uncertainty arises from the fact that future mortality might ewifferently from historical
patterns. For our projection methodology, we see three main points whenesthisf changes can
materialize:

e The long-term trend in the life expectancy evolution (in our example: the terrg-trend for the
total population);

e The long-term relationship between the life expectancies of differentlatipns (in our example:
the long-term gender gap and the difference between life expectaacibg fiotal population and
the German population);

e The age pattern of mortality improvements.

All three issues can be accounted for by adjusting the life expectan@peidtions, e.g. by increasing
the slope of the long-term life expectancy trend. This implies a margin whickases with time, thus
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Females Males
Projection method Average error \ RMS error || Average error \ RMS error
New methodology 0.074 0.126 -0.043 0.099
Renshaw-Haberman (raw) -0.013 0.140 -0.081 0.150
Renshaw-Haberman (smoothed) -0.013 0.127 -0.082 0.139
P-splines (data up to 1985) 0.170 0.233 0.149 0.215
P-splines (data up to 1990) -0.485 0.660 -1.004 1.157

Table 4: Average errors and root mean square (RMS) errors ferelift projection methods

matching the structure of the uncertainty it is to account for. For the nexsyene is generally well
informed about the forthcoming mortality evolution (as long as no mortality/longefidck occurs),
but in the long run, uncertainty becomes considerable. At the same time,randadn projected life
expectancies and thus in the period parameters would imply a margin whichniy epeead over all
ages. Therefore, this approach can also account for the uncergatyling a change in the age pattern
of mortality improvement. In case one is particularly concerned about tHaterofor certain ages
or cohorts, the respective parameters could also be adjusted individidate though that the order
of adjusting those parameters and estimating the future period parameteausi@ since the period
parameters react to and, to some extent, compensate for increases irethmodmeters.

Compared to the risk of significant changes in the future mortality evolutiorpahremeter uncertainty
in the model estimation seems rather small. If one nevertheless wants to afmouertameter uncer-
tainty in the age and cohort parameters, confidence bounds for theseqtaers can either be derived
analytically (depending on the estimation approach under consideratibg)bwotstrapping. Koissi et
al. (2005) and Brouhns et al. (2004) describe a residual bootsteaparametric bootstrap, respectively,
for the Lee-Carter model which could be applied analogously in our sefimg parameter uncertainty
in the future period parameters typically stems from potential misestimation otéonglfe expectancy
trends. Here, confidence bounds for the regression parametdne danived analytically.

A risk not related to the construction of the projection but to its application is biak. Basis risk arises
from the use of a projection for a population which is different from the i@ projection has originally
been constructed for. In our example, we derived projections fon@emales and females which may
or may not be applicable to, e.g., the particular population of a pension fardost cases, however,
basis risk is limited in the long run since the mortality evolutions of some wider referpopulation,
e.g. the general population, and a subpopulation, e.g. the populatioen$@p fund, should not diverge
until infinity. Over the next years, mortality improvements might differ thou@holdata is available for
the subpopulation, itis virtually impossible to measure basis risk and to adjystijeetion accordingly.
One would have to rely on expert opinion or, possibly, information froneiotbub)populations. If some
data is available but not sufficient for the derivation of a full projectaur,setup allows to quantify basis
risk. We can carry age and cohort parameters for the referencegpiom over to the subpopulation and
fit only the period parameters to the subpopulation’s limited data. These jpeniacheters are possibly
more volatile than those for the larger reference population, but thegevéwael and possible trends
of both period parameter sets should be very similar. Significant diffesgrmn the other hand, would
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indicate the potential need for an adjustment to the projection according tbskeeved differences. If
one questions the adequacy of the age parameters or the cohort pasabetis risk in these parameters
could be measured and accounted for analogously.

The highlighted uncertainties illustrate the general difficulties in forecastitugd mortality experience
— not only in our methodology but in any modeling framework. Margins cdp hwtigating these
uncertainties, but the most effective approach certainly is to update mogadigctions on a regular
basis.

7 Conclusion

Projections of future mortality evolutions are particularly necessary foicttmeputation of reserves
and risk management in the insurance and pension business as well @sptdation forecasts for
social security systems. The derivation of reliable projections, howsvegry sophisticated, and some
projections which are currently used in practice seem questionable. [reihés, we develop a projection
methodology for mortality improvements based on the Age-Period-Coho@)Adel and present a
general framework for parameter estimation and forecasting. We mralifferent approaches for fitting
the APC model to historical mortality data and discuss their advantages ahdabpiy in certain
situations.

A feature which distinguishes our methodology from most other projectionadstis that the future
period parameters are not necessarily forecast based on the evofutierhistorical period parameters.
Instead, we propose using life expectancy extrapolations and detivingeriod parameters such that
the forecast life expectancies are obtained. Life expectancies typicallyeefairly stable since they
are aggregate mortality statistics, and they often exhibit rather obviousrsattbich can be easily ex-
trapolated. Moreover, this approach allows for high flexibility in the projectibich can be utilized to
derive coherent forecasts for several populations. As we hawerstihe simultaneous consideration of
several populations can in fact have a significant impact on the projdotieach individual population.
Therefore, a model for projecting best estimate mortality should alwaydrigk@ccount information
provided by data from other closely related populations. The apprddonezasting life expectancies
also provides an intuitive way to include margins into a projection by simply isgrgdhe slope in the
life expectancy trend. In that case, margins are spread evenly oagyed) and they increase with time
which is in line with the structure of the uncertainty about the future mortality &eoiu

The proposed projection methodology provides a valuable alternative ¢o pitbjection methods, in
particular statistical extrapolation models. The latter typically have rather rigaehsdructures which
can limit their applicability in cases where these structures do not match thedaseond/or expected
mortality patterns. In contrast, the methodology proposed in this papes affégh degree of flexibility
and a way to combine data driven extrapolations with expert judgment. Mameio comparison to
stochastic mortality models, unnecessary complexity and restrictions whicblated to the stochastic
simulation are omitted, thus offering a clear focus on the best estimate for€rathe other hand, the
application of our methodology is not straightforward in any case, andjitires some case specific
assumptions from the user. Thus, our methodology is not suitable faatezband quick re-estimation,
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Figure 9: Raw mortality improvements based on HMD data and the BeckeeZemethod

e.g. within simulations. However, this is hardly an issue when best estimate maoptaljections are
updated once in a while in practice.

In order to illustrate our methodology, we have derived projections fom@e males and females as part
of a larger European reference population. A back test and compavidocommonly used projection
models shows that our methodology provides highly plausible forecastsoafidms that it constitutes
a valuable alternative to existing projection approaches.

Appendix

A Data

Throughout this paper, we use mortality data from the Human Mortality Daga@{s2, HMD) in
order to illustrate our projection methodology. However, we do not use thtalityrates provided by
the HMD but, instead, derive mortality rates from the also provided deatihgsand population sizes
by applying a different methodology. The reason is that — at least farabe of West Germany — the
HMD methodology implies some implausible cohort features (cf. Hiester et@l2(2. The left panel
of Figure 9 shows the raw mortality improvements for West German males aedi&édm the mortality
rates of the HMD. The clear diagonal patterns are not surprisingifijist as we can see obvious cohort
effects also in Figure 1. However, the repeated switches from large lityoirigprovements (yellow) to
strong mortality deterioration (black) and vice versa from one cohort todélelook ominous and are
hardly justifiable by demographic intuition. In fact, they are probably onlgrifact of an assumption
made when deriving the mortality rates. A uniform distribution of birthdays witidioh calender year
is assumed which is typically not the case. This assumption is uncritical as $mgreessive cohorts
are rather equal in size. For West Germany, however, this is not tieef@asohorts which were born
during or shortly after the world wars. Here, cohort sizes sometimegetsgnificantly from one birth
year to the next.

A method for deriving mortality rates which overcomes this critical assumptidmirtbfdays being uni-
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formly distributed is the method of Becker-Zeuner. While the HMD methodologgsed on the number
of deaths at a certain age in a certain calender year, the BeckersZwetteod considers the number
of deaths at a certain age for a certain cohort. For further details ondhieft mortality method”,
we refer to standard textbooks. The right panel of Figure 9 shows litpitaprovements which are
derived from Becker-Zeuner mortality rates. The rapid switches frinomg mortality improvements
to mortality deterioration have disappeared, and cohort effects aréy/héstble anymore. However,
that does not mean that cohort effects do not exist. As we see in Figjuaed 7, cohort effects are
still present and can easily be detected in the smoothed data. Howevearéheymewhat obscured by
random fluctuations in the raw data.

Finally, we should note that the methodology for deriving mortality rates ondyeheinor effect on
the results presented in this paper. When projecting mortality improvementsnaatsthe model
parameters to eliminate random fluctuations. At that stage, also the cadtarefein the HMD mortality
rates would get smoothed out, resulting in mortality projections which are iraikasto those derived
from the Becker-Zeuner mortality rates.

B Life Expectancy Forecasts for the European Total Populations

In Section 4, we project the period parameters for German males and femaddgrence with mortality
evolutions in other European countries. These projections are badiéel @pectancy forecasts for the
male and female total populations in Europe as plotted in Figure 5. In orderite dieese forecasts,
a couple of assumptions had to be made. Note that these assumptions pbrtieldts to our specific
example and are not meant to be most suitable in any case. Neverthelggseha approach described
here should be valid for most populations.

First of all, we assume a long-term difference in life expectancies betmeés and females &f = 3
years. The gender difference has been shrinking since 1980 ip&undgth a significant acceleration
starting in the mid-1990’s (cf. the red curve in Figure 10). This shrinkegeoften been explained by
convergence in lifestyles of males and females. For instance, the consanmptiddacco has increased
significantly for females but decreased for males, thus narrowing thbegjaen the genders (see, e.g.,
European Commission (2009)). The same holds for the share of women loyengmt compared to
the corresponding share of men (see OECD (2010)). The latter trempdyticular, is very likely to
continue. Luy (2002) also comes to the conclusion that the life expectagcyngst be mostly due to
differences in lifestyles. He finds that the gap between life expectantimss and monks, who live
under very similar socio-economic conditions, is only about one year ingyadult ages. Therefore,
it is reasonable to forecast a further shrinkage of the gender gaprop&in the short- to mid-term
future. Since assuming a long-term gender gap of only one year setias bbald from our point of
view, we apply a gap value which lies in the middle of the current differencktlais one year, i.e. 3
years. Obviously, this choice is somewhat subjective, and other chomgalso be reasonable.

In order to obtain a constant gender gap in the long run, a common tretiéflong-term life expectancy
increase for both genders is required. This trend should reasondtdpelate historical trends, and we
therefore fix the slope of this trend according to the average of the slopes of the long-term hatoric
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Figure 10: Differences in life expectancies between males and femalesapd=u

trends for males and females. In Figure 4, we see that, for males, a linedrseems to start off in
1969, with a slope of 0.2473; for females, we observe a rather lineat fioetthe whole data set, with a
slope of 0.2296. This implies a slope for the common long-term trerd-of).2385.

This slope is as consistent as possible with the slopes Oeppen and \204find for worldwide max-
imum life expectancies for males (0.222) and females (0.243) between h842080. Even though,
under our assumptions, male life expectancies in some European courlrigsrpass the supposed
long-term maximum sometime in the far future, we regard our forecast asilplleuSince our assump-
tion of a convergence between genders contrasts somewhat with theetomgivergence observed by
Oeppen and Vaupel (2002), a simultaneous full coherence with theapekaitions for both genders is
unachievable per se.

Instead of explicitly specifying a long-term gender difference, we lads@ considered the rather simple
case of life expectancy extrapolations for both genders according sbagpes in their respective histor-
ical data. Since life expectancies have increased stronger for malefttiamales, this approach also
implies some (slight) convergence between genders. However, thisagbpdoes not yield plausible
results. The blue line in Figure 10 shows the resulting gender differeacdsve observe that the actual
life expectancy gap at the end of the historical data set, i.e. in 2008, wivaltig be misestimated by
about 0.7 years.

We also see in that figure that the historical life expectancy differermes fluctuated only very little
but started to shrink significantly in the mid-1990’s. Thus, the life expegttrends for males and/or
females must have also changed at that time. In order to guarantee a sraasettioin from historical

to projected life expectancies, in the short run, we extrapolate the tretius fiistorical data starting in
1995. The corresponding slopes are 0.3052 for males (in compariso24630in the long-term trend)
and 0.2099 for females (in comparison to 0.2296).

Finally, we reconcile the short and long-term assumptions by assuming thakttapolated life ex-
pectancies for each gender can be written as a straight line (the longasgmmptote) plus/minus a
difference term which decreases to zero exponentially with time, i.e.

lem(t) = dp + s(t — 2008) — exp {gm (t — 2008) + h,, }

and
lef(t) = (dm + A) + s(t — 2008) + exp {g¢(t — 2008) + h¢},



AGE, PERIOD, AND COHORT DEPENDENTMORTALITY IMPROVEMENTS 29

Parameters  d,, A s 9m = gy hon hy
79.6221| 3.0 | 0.2363| -0.0388 | -0.4606| 0.5350

Table 5: Parameter values for coherent life expectancy extrapolatio&sifopean males and females

where-,, indicates male and; female. The asymptote for females differs from that for males only by
the fixed value), and time is shifted simply for convenience. Moreover, as we want both<ifeaancy
curves to converge to their asymptotes equally fast, we require the slogpmgters in the exponential
terms, g,, and gy, to coincide. These specifications and constraints leave us with a setqoielyn
identifiable parameters whose values are summarized in Table 5.

C Benchmark Models

For the back test in Section 5, we consider two alternative projection mogelse Lee-Carter exten-
sion of Renshaw and Haberman (2006) and the P-spline model of Cualig2004). In the Renshaw-
Haberman model, one year log mortality rates are modeled as

logmg = ag + Bk + By, + €ats

whereay, S), andﬁf) are age dependent parametersgdescribes the mortality evolution over time,

7t—e accounts for cohort effects, and; is random noise with mean zero. This model is typically
estimated via maximum likelihood; given population sizes as exposures, theeraioflileaths for each
age and calender year are assumed to be independently Poisson dastiouteirther details on model
estimation, we refer to, e.g., Cairns et al. (2009). The time trgnsitypically projected as random walk
with drift, and we follow the same approach. However, since we are onlsested in a best estimate
projection, we only consider the central trajectory of this random walk wifhh d"he question which
process is applicable for projecting_, strongly depends on the data set under consideration. Often, a
mean reverting AR(1) process is applied. For simplicity, we set the parasiietarew cohorts equal to
the parameter of the last cohort in the historical data. Since we only ptbgcentral trajectory for just
18 years, the effect of new cohorts in our back test is negligible anyway

In the model of Currie et al. (2004), B-splines are fitted to the surfatmgohortality rates via maximum
likelihood. In order to eliminate random fluctuations, these splines are peddlzsubtracting a penalty
function from the likelihood function. Thus, the better the fit of the splinesdmtisy data, i.e. the larger
the likelihood function, the larger the penalty. The trade-off betweenmgessiof fit and smoothness is
typically solved by optimizing some information criterion. We use the Bayesianridtion Criterion
here, as proposed by Currie et al. (2004). Future mortality rates argtbgected by treating them as
missing data points. In that case, the likelihood function is zero, and the spl@eslibrated such that
the penalty is minimized. For further details on model estimation and projectiorefaeto Currie et
al. (2004). In our back test, we use standard model parameters, iie splibes, a distance of five data
points between the knots of adjacent splines, and a quadratic penaltiofundich implies a linear
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forecast of the most recent historical mortality trend.
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