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Abstract 

We analyze the impact of policyholder behavior on pricing, hedging and hedge efficiency of 

variable annuities with guaranteed lifetime withdrawal benefits. We consider different 

product designs, market models and approaches for modeling policyholder behavior in our 

analyses, covering deterministic behavior, behavior depending on the ‘moneyness’ of the 

guarantee, and optimal (value maximizing) behavior. First, we assess the risk of mispricing 

the guarantee due to inaccurate assumptions regarding future policyholder behavior. 

Comparing products with different ratchet mechanisms, we find that this potential for 

mispricing is the smallest for the product design with the most valuable ratchet mechanism. 

We further quantify the impact of different behavior models on the efficiency of the insurer’s 

hedging strategy and the risk that results if the insurer's assumption for policyholder behavior 

deviates from actual behavior. Our analyses indicate significant differences between the 

considered products in terms of hedgeability and the sensitivity of the guarantee’s value 

towards policyholder behavior and towards changes in the underlying asset’s volatility. Also, 

we show that a simple path-dependent behavior model may not be suitable to fully assess the 

risk arising from policyholder behavior.  
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1 Introduction  

Variable annuities are fund-linked annuities where the policyholder typically pays a single 

premium into the policy and the money is then invested in one or several mutual funds. 

Variable annuities usually offer a wide range of investment options for the policyholder to 

choose from. On top of this basic structure, certain guarantee riders are offered by the insurer, 

adding different types of financial protection to the contract. There are several types of 

guarantee riders that come with variable annuities, including guaranteed minimum death 

benefits (GMDB) as well as guaranteed minimum living benefits, which can be categorized 

into three main subcategories: guaranteed minimum accumulation benefits (GMAB), 

guaranteed minimum income benefits (GMIB) and guaranteed minimum withdrawal benefits 

(GMWB). A GMAB guarantee provides the policyholder with some guaranteed value at one 

or several future points in time, while the GMIB guarantee provides a guaranteed annuity 

benefit, starting after a certain deferment period. With the GMWB rider, if certain conditions 

are met, the policyholders may continue to withdraw money from their account, even after the 

value of the account has dropped to zero. Such withdrawals are guaranteed as long as both, 

the amount that is withdrawn within each policy year and the total amount that is withdrawn 

over the term of the policy, stay within certain limits. 

Insurers also started to include additional features in GMWB products. The most prominent is 

called “GMWB for Life” (also known as guaranteed lifetime withdrawal benefits, GLWB). 

With this type of guarantee, the total amount of withdrawals is unlimited. However, the 

annual amount that may be withdrawn while the insured is still alive may not exceed some 

maximum value; otherwise the guarantee will be affected. The withdrawals made by the 

policyholder are deducted from their account value as long as this value is positive. 

Afterwards, the insurer has to provide the guaranteed withdrawals for the rest of the insured’s 

life. In return for this guarantee, the insurer receives guarantee charges, which are deducted 

from the policyholder’s account value (as long as this value is positive). These charges are 

typically calculated as a fixed annual percentage of the so-called withdrawal benefit base 

(explained below) or of the account value. In a few products, annual guarantee charges are 

calculated as a fixed percentage of the single premium. In contrast to a conventional annuity, 

where the assets covering the liabilities are owned by the pool of insured, in a GLWB policy, 

the fund units of the contract are owned by the individual policyholder and remain accessible 

to the policyholder even in the payout phase. The policyholder may access the remaining fund 

assets at any time by (partially) surrendering the contract. In case of death of the insured, any 

remaining fund value (or a guaranteed minimum death benefit if such a rider is included and 

the corresponding value exceeds the fund value) is paid out to the beneficiary. 

From an insurer’s point of view, such products contain an interesting and challenging 

combination of several risks, resulting from policyholder behavior (with regard to surrender 

and withdrawal), financial markets, and longevity, alongside a variety of additional risks that 

come with most insurance contracts (e.g. operational and reputational risk). This combination 

of risks makes these guarantees challenging to hedge and has been in the focus of both, 

academics and practitioners.  

Policyholder behavior risk stems from the fact that variable annuities usually offer the 

policyholder many choices, e.g. surrender, partial surrender, the decision whether or not and 

when to annuitize (in GMIB products) or the decision whether or not and how much to 

withdraw each year (in GMWB products). Several authors (cf. e.g. Milevsky and Salisbury, 



 

 

2006, or Bauer et al., 2008) come to the conclusion that insurers assume what they call 

"suboptimal" policyholder behavior when pricing the guarantees. This means that (at least 

some) policyholders are assumed to not behave in a way that would maximize the value of the 

insurer’s liabilities arising from the financial guarantees embedded in the products. From an 

insurer’s risk management perspective, “optimal” policyholder behavior in this sense would 

constitute a worst-case scenario with respect to policyholder behavior. Bauer et al. (2008) 

state in particular that the value of certain guarantees under optimal policyholder behavior 

significantly exceeds typical prices charged in many insurance markets, whereas the value of 

the same guarantees assuming suboptimal behavior (using e.g. typical surrender probabilities 

and independence between surrender behavior and financial markets) are in line with 

observed prices. This appears to bear significant risks for the insurers. There are several 

examples where insurance companies had to update their policyholder behavior assumptions 

leading to significant increases in liabilities, see e.g. ING (2011), Manulife Financial (2011), 

and Sun Life Financial (2011). Other insurers even completely stopped their variable annuity 

business in certain markets, cf. for instance The Hartford (2009). 

The effect of policyholder behavior not only on pricing but also – and much more importantly 

– on hedging and hedge efficiency of variable annuity guarantees should therefore be of 

interest to academics, product providers and regulators. The impact of policyholder behavior 

on the pricing of guarantees embedded in insurance contracts has been analyzed by several 

authors, e.g. by Grosen and Jørgensen (2000), Steffensen (2002), Bacinello et al. (2003, 2005, 

2011) and Gao and Ulm (2012) and with focus on the optimal stopping time within the 

context of GMWB guarantees for example by Chen et al. (2008) and Yang and Dai (2013). 

Bernard et al. (2014) analyze optimal policyholder behavior for variable annuities with a 

GMAB. De Giovanni (2010) uses a ‘Rational Expectation’ model describing the 

policyholder’s behavior in surrendering the contract, which also allows for irrational 

policyholder behavior. Knoller et al. (2013) analyze individual policy data from a Japanese 

variable annuity product and find evidence that confirms their “moneyness hypothesis”: In 

their statistical analysis the fund performance and hence the value of the financial options and 

guarantees has the largest explanatory power for the surrender rate. They find that surrender 

rates increase with decreasing value of the guarantee and that policyholders’ apparent 

rationality increases with increasing contract volume. 

To our knowledge, there exists no simultaneous analysis of the impact of policyholder 

behavior on the pricing, hedging and hedge efficiency of GLWB riders with particular 

emphasis on different product designs. The present paper fills this gap: We extend the model 

presented in Kling et al. (2011) to incorporate non-deterministic policyholder behavior and – 

for different product designs – analyze the impact policyholder behavior has on pricing, 

hedging and hedge efficiency, and how results change if the capital market model 

incorporates stochastic instead of deterministic equity volatility. 

The remainder of this paper is organized as follows. In Section 2, we describe our model 

framework that consists of three parts: the financial model, where for the sake of comparison 

we use both, the classic Black-Scholes model (with deterministic equity volatility) and the 

Heston model for the evolution of an underlying with stochastic equity volatility; the liability 

model that describes the different considered variable-annuity contracts with different GLWB 

options; and the valuation framework including the policyholder-behavior model, which 

allows for different policyholder strategies with regard to surrendering the contract. We 

particularly consider “optimal” policyholder behavior, as well as several “suboptimal” 

strategies, where, in both cases, “optimal” as explained above denotes the behavior that 



 

 

maximizes the value of the insurer’s liabilities. In Section 3, we present the results of our 

analyses regarding the pricing of the guarantee. In particular, we analyze the differences in the 

option value for different product designs and how the option value depends on assumed 

policyholder behavior. This is a first indication for an insurer’s potential loss arising from an 

inaccurate assessment of policyholder behavior. Section 4 deals with hedging strategies and 

hedge efficiency. Here, we particularly analyze how the insurer’s expected profit and risk 

change if actual policyholder behavior deviates from the behavior assumed within the hedging 

strategy. Finally, Section 5 concludes. 

2 Model Framework 

In Bauer et al. (2008), a general framework for modeling and valuation of variable annuity 

contracts was introduced. Within this framework, any contract with one or several living 

benefit guarantees and/or a guaranteed minimum death benefit can be represented. In their 

numerical analysis however, only contracts with a rather short finite time horizon were 

considered. Holz et al. (2012) describe how GLWB products can be included in this model. In 

what follows, we apply the general framework of Bauer et al. (2008). However, in our 

concrete specification, additionally to the simple Black-Scholes model used in Bauer et al. 

(2008), we also consider a model which allows for stochastic equity volatility (Section 2.1). In 

Section 2.2, we introduce and define the specific product designs considered within our 

numerical analyses. Different models for policyholder behavior are introduced in Section 2.3, 

where also our valuation approach is summarized. 

2.1 Financial Market 

The valuation framework in this section follows in some parts the one used in Bacinello et al. 

(2010) and in others Bauer et al. (2008). We take as given a filtered probability space 

 PF ,,,  in which P is the real-world (or physical) probability measure and  
0


ttFF   is a 

filtration with   ,0F  and 0 tFt . We assume that trading takes place 

continuously over time and without any transaction costs or spreads. Furthermore, we assume 

that the price processes of the traded assets in the market are adapted and of bounded 

variation. For our analyses we assume two primary tradable assets: the underlying fund (or 

basket of funds), whose spot price at time t will be denoted by St, and the money-market 

account, whose value at time t will be denoted by Bt. We assume the money-market account 

to evolve at a constant risk-free rate of interest r: 

)exp(0 rtBB

dtrBdB

t

tt




 (1) 

For the dynamics of St, we use two different models. First, we assume the equity volatility to 

be deterministic and constant over time, and hence use the Black-Scholes model for our 

simulations. To allow for a more realistic equity volatility model, we also use the Heston 

model, in which both, the underlying and its (instantaneous) variance, are stochastic 

processes. These two models will be explained in the following two subsections. 

2.1.1 Black-Scholes Model 

In the Black-Scholes (1973) model, the underlying’s spot price St follows a geometric 

Brownian motion whose dynamics under the real-world measure P are given by 
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where µ is the (constant) drift of the underlying, σBS its constant volatility and Wt denotes a P-

Brownian motion. By Itō's lemma, St has the solution  

0,
2
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









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






 SWtSS tBS

BS
t 


  . (3) 

2.1.2 Heston Model 

There are various extensions to the Black-Scholes model that allow for a more realistic 

modeling of the underlying's volatility. We use the Heston (1993) model in our analyses 

where the instantaneous (or local) volatility of the asset is stochastic. Under the Heston 

model, the market is assumed to be driven by two stochastic processes: the underlying’s price 

St, and its instantaneous variance Vt, which is assumed to follow a one-factor square-root 

process identical to the one used in the Cox-Ingersoll-Ross interest rate model (Cox et al., 

1985). The dynamics of the two processes under the real-world measure P are given by the 

following system of stochastic differential equations: 

  ,0,

0,

0

2

0

1





VdWVdtVdV

SdWSVdtSdS

ttvtt

ttttt




 

 (4) 

 (5) 

where µ again is the drift of the underlying, Vt is the local variance at time t, κ is the speed of 

mean reversion, θ is the long-term variance, σv is the so-called “volatility of volatility”, and 
2/1

tW are correlated P-Brownian motion processes (with correlation parameter ρ). The 

condition 22 v   ensures that the variance process will remain strictly positive almost 

surely (see Cox et al., 1985). 

2.1.3 Equivalent Martingale Measure 

Assuming the absence of arbitrage opportunities in the financial market, there exists a 

probability measure Q that is equivalent to P and under which the gain from holding a traded 

asset is a Q-martingale after discounting with the chosen numéraire process, in our case the 

money-market account. Q is called equivalent martingale measure. While – under the usual 

assumptions – the transformation to such a measure is unique under the Black-Scholes model 

(cf. e.g. Bingham and Kiesel, 2004), it is not under the Heston model. Within the Heston 

model, since there are two sources of risk, there are also two market-price-of-risk processes, 

denoted by 
1

t  and 
2

t  (corresponding to 1

tW  and 2

tW ). Heston (1993) proposed the following 

restriction on the market price of volatility risk process, assuming it to be linear in volatility,  

tt V 1
  . (6) 

Provided both measures, P and Q, exist, the Q-dynamics of St and Vt, again under the 

assumption that no dividends are paid, are then given by 
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where 1,Q

tW  and 2,Q

tW are two correlated Q-Brownian motion processes (with correlation 

parameter ρ) and where  

 
 v

v






  ,  (9) 

are the risk-neutral counterparts to κ and θ (cf., for instance, Wong and Heyde, 2006). 

2.2 Model of the Liabilities 

With variable annuities, the single premium P is invested in one or several mutual funds. We 

call the value of the policyholder’s individual portfolio the account value and denote its value 

at time t by AVt. All charges are taken from the account value by cancellation of fund units. 

Furthermore, the policyholder has the possibility to surrender the contract or to withdraw a 

portion of the account value.  

Products with a GMWB option give the policyholder the possibility to perform guaranteed 

withdrawals. In this paper, we focus on the case where such withdrawals are guaranteed 

lifelong (“GMWB for Life” or guaranteed lifetime withdrawal benefits, GLWB). The initially 

guaranteed withdrawal amount is usually a certain percentage xWL of the single premium P. In 

most products, xWL depends on the age when withdrawals start. Any remaining account value 

at the time of death is paid to the beneficiary as death benefit. If, however, the account value 

of the policy drops to zero while the insured is still alive, the policyholder can still continue to 

withdraw the guaranteed amount until death of the insured. The insurer charges a fee for this 

guarantee, which is usually a pre-specified annual percentage of the withdrawal benefit base, 

the account value or the single premium. In what follows, we will assume that the guarantee 

charge is a percentage of the account value and that withdrawals may only occur on the 

policy’s anniversary dates. 

Often, GLWB products contain certain features that lead to an increase of the guaranteed 

withdrawal amount if the underlying funds perform well. Typically, on every policy 

anniversary, the current account value is compared to a certain reference value, which we 

refer to as ‘withdrawal benefit base’. Whenever the account value exceeds the withdrawal 

benefit base, the guaranteed annual withdrawal amount is increased (step-up or ratchet). In 

our numerical analyses in Sections 3 and 4, we consider three different product designs that 

can be observed in the market: 

 No Ratchet (Product I): The first and simplest alternative is one where no ratchets exist 

at all. In this case, the guaranteed annual withdrawal amount is constant and does not 

depend on market movements.  

 Lookback Ratchet (Product II): The second alternative is a ratchet mechanism where 

the withdrawal benefit base at outset is given by the single premium paid. During the 

contract term, on each policy anniversary date, the withdrawal benefit base is 



 

 

increased to the account value, if the account value exceeds the previous withdrawal 

benefit base. The guaranteed annual withdrawal amount is increased accordingly to 

xWL multiplied by the new withdrawal benefit base. This effectively means that the 

fund performance needs to compensate for charges and annual withdrawals in order to 

increase future guaranteed withdrawals. Increases in the guaranteed withdrawal 

amount are permanent, i.e. over time, the guaranteed withdrawal amount may only 

increase, never decrease. 

 Remaining WBB Ratchet (Product III): The basic idea of the third product is to 

provide a ratchet mechanism where, in order to increase guaranteed annual 

withdrawals, the fund performance needs to compensate only for charges, but not for 

annual withdrawals. In this product, the withdrawal benefit base at outset is also given 

by the single premium paid. However, at each withdrawal date, the withdrawal benefit 

base is reduced by the withdrawn amount (if this amount does not exceed the 

guaranteed withdrawal amount). If on a policy anniversary the current account value 

exceeds this reduced withdrawal benefit base by a certain amount , the guaranteed 

annual withdrawal is increased by xWL  After such an increase, the withdrawal 

benefit base is reset to the account value. This ratchet mechanism is therefore c.p. 

somewhat “richer” than the Lookback Ratchet. As a consequence, the initially 

guaranteed withdrawal amount should c.p. be lower than with a product offering a 

Lookback Ratchet. As with the Lookback Ratchet design, increases in the guaranteed 

amount are permanent. 

Throughout the paper, we assume that administration charges and guarantee charges are 

deducted at the end of each policy year as a percentage φ
adm

 and φ
guar

 of the account value. 

Additionally, we allow for upfront acquisition charges φ
acq

 as a percentage of the single 

premium P. This leads to  acqPAV  10
.  

We denote the guaranteed withdrawal amount at time t by guar

tW  and the corresponding 

withdrawal benefit base by WBBt. At inception, for each of the considered products, the initial 

withdrawal benefit base is set to P and hence the guaranteed withdrawal amount for the initial 

withdrawal is given by PxWBBxW W LW L

guar 

00 . The amount actually withdrawn by the 

client is denoted by Wt.
1
 

Since we restrict our analyses to single premium contracts, policyholder actions during the 

life of the contract are limited to withdrawals and (partial) surrender.  

During the year, all processes are subject to capital market movements. As mentioned above, 

we allow for withdrawals at policy anniversaries only. Also, we assume that death benefits are 

paid out at policy anniversaries if the insured person has died during the previous year. Thus, 

at each policy anniversary Tt ,...,2,1 , we have to distinguish between the value of a variable 
 t)(  immediately before and the value  t)(  after withdrawals, (partial) surrender, and death 

                                                 

1
 Note that the client can choose to withdraw less than the guaranteed amount, thereby increasing the probability 

of future ratchets. If the client wants to withdraw more than the guaranteed amount, any exceeding withdrawal 

would be considered a partial surrender. 



 

 

benefit payments. For the latter, we assume that no additional guaranteed minimum death 

benefit rider is included in the policy, i.e. in case of death the remaining fund value is paid 

out. 

In what follows, in the spirit of Bauer et al. (2008), we describe the development between two 

policy anniversaries and the transition at policy anniversaries for the considered contract 

designs. From these, we are finally able to determine all benefits for any given policyholder 

strategy and any capital market path. This allows for an analysis of such contracts in a Monte-

Carlo framework. 

2.2.1 Development between two Policy Anniversaries 

We assume that the annual fees φ
adm

 and φ
guar

 are deducted from the policyholder’s account 

value at the end of each policy year. Thus, the development of the account value between two 

policy anniversaries is given by 

 guaradm

t

t

tt
S

S
AVAV   

 exp1

1
. (10) 

At the end of each year, the different ratchet mechanisms are applied after deduction of 

charges and before any other actions are taken. Thus guar

tW  develops as follows: 

 No Ratchet: PWBBWBB tt  

1
 and PxWW W L

guar

t

guar

t  

1
.  

 Lookback Ratchet:  





  11 ,max ttt AVWBBWBB  

and  









  111 ,max tW L

guar

ttW L

guar

t AVxWWBBxW .  

 Remaining WBB Ratchet: Since withdrawals are only possible on policy anniversaries, 

the withdrawal benefit base during the year develops like in the Lookback Ratchet 

case. Thus, we have  





  11 ,max ttt AVWBBWBB  and 

 0,max 11







  ttW L

guar

t

guar

t WBBAVxWW .  

2.2.2 Transition at a Policy Anniversary t 

At the policy anniversaries, we have to distinguish the following four cases: 

a) The insured has died within the previous year (t-1,t]  

If the insured has died within the previous policy year, the account value is paid out as death 

benefit. With the payment of the death benefit, the insurance contract matures. Thus, 

0

tAV , 0

tWBB , 0tW , and 0guar

tW . 

b) The insured has survived the previous policy year and does not withdraw any money 

from the account at time t 

If no death benefit is paid out to the policyholder and no withdrawals are made from the 

contract, i.e. 0tW , we get   tt AVAV ,   tt WBBWBB , and   guar

t

guar

t WW . 



 

 

c) The insured has survived the previous policy year and at the policy anniversary 

withdraws an amount within the limits of the withdrawal guarantee 

If the insured has survived the past year, no death benefits are paid. Any withdrawal tW  up to 

the guaranteed annual withdrawal amount guar

tW  reduces the account value by the withdrawn 

amount. Of course, we do not allow for negative policyholder account values and thus get 

 ttt WAVAV   ;0max .  

For the alternatives “No Ratchet” and “Lookback Ratchet”, the withdrawal benefit base and 

the guaranteed annual withdrawal amount remain unchanged, i.e.   tt WBBWBB , and 

  guar

t

guar

t WW . For the alternative “Remaining WBB Ratchet”, the withdrawal benefit base 

is reduced by the withdrawal taken, i.e.  ttt WWBBWBB   ;0max  and the guaranteed 

annual withdrawal amount remains unchanged, i.e.   guar

t

guar

t WW . 

d) The insured has survived the previous policy year and at the policy anniversary 

withdraws an amount exceeding the limits of the withdrawal guarantee 

In this case again, no death benefits are paid. For the sake of brevity, we only give the 

formulas for the case of full surrender, since partial surrender is not analyzed in what 

follows.
2
 In case of full surrender, the complete account value is withdrawn. We then set 

0

tAV , 0

tWBB ,  tt AVW , and 0guar

tW  and the contract terminates. However, the 

policyholder does not receive the full asset value as surrender benefit, since surrender fees 
surr

t  are deducted from the cash amount exceeding the guaranteed withdrawal amount. 

2.3 Valuation 

Let Q be an equivalent martingale measure of the financial market (cf. section 2.1.3). 

Assuming independence between financial markets and mortality as well as risk-neutrality of 

the insurer with respect to mortality and behavioral risk, we are able to use the product 

measure of Q and the mortality measure. In what follows, we denote this measure by Q̂ . 

As mentioned earlier, for the contracts considered within our analyses, policyholder actions 

are limited to withdrawals and (partial) surrender. In our numerical analyses in Sections 3 and 

4, we only consider two possible policyholder actions: withdrawal of the guaranteed 

withdrawal amount, i.e.  guar

tt WW , or full surrender, i.e.  tt AVW . This also means that 

we assume that withdrawals begin at the earliest anniversary possible and, hence, that there is 

no initial waiting period before the first withdrawal. To keep notation simple, we only give 

formulas for the considered cases (cf. Bauer et al. (2008) for formulas for the other cases).  

We denote by 0x  the insured’s age at the start of the contract, 
0xt p  the probability under Q̂  

for a 0x -year old to survive the next t years, txq 0
 the probability under Q̂  for a )( 0 tx  -year 

                                                 

2
 For details on partial surrender, we refer the reader to Bauer et al. (2008). 



 

 

old to die within the next year, and let ω be the limiting age of the mortality table, i.e. the age 

beyond which survival is deemed impossible. The probability under Q̂  that an insured aged x0 

at inception passes away in the year (t,t+1] is thus given by 
txxt qp 

00
. The limiting age ω 

allows for a finite time horizon 10  xT  .  

For pricing purposes, we consider a pool of policyholders who hold identical contracts and in 

which each insured has the same age, same gender and same mortality probability. We 

assume the number of policyholders to be large enough such that the assumption that deaths 

occur exactly according to the probabilities 
txq 0
 is justified. The policyholders in the pool 

may however differ in their (surrender) behavior. 

We model the (surrender) behavior of the policyholders in the pool as a F̂ -adapted family of 

random variables  
Ttt ,...,1

  , where Ttt ,...,1,10  , represents the fraction of the 

remaining policyholders at time t who surrender their contract at time t. After the guarantee 

has been triggered, i.e.   t

guar

t AVW  for some t=1,…,T, there is no rational reason for a 

policyholder to surrender their contract, hence we set Gt t   ,0 , where G  represents a 

F̂ -stopping time indicating the policy anniversary at which the guarantee of the GLWB rider 

triggers, i.e. the smallest t=1,…,T for which   t

guar

t AVW  holds. If the guarantee does not 

trigger during the contract’s lifetime, we set TG  . 

For a given behavior assumption  
Ttt ,...,1

  , all contractual cash flows of the pool of 

policies are specified for any given capital market scenario. Thus both, the guarantee 

payments (i.e. payments made by the insurer after the account value has dropped to zero) at 

times  Ti ,...,2,1 , denoted by )(P

iG , and the guarantee fee payments )(F

iG  made by the 

policyholder (including surrender fee payments), again at times  Ti ,...,2,1 , are known. For 

any given  , the time-t value )(G

tV  of the GLWB rider is then given by the expected present 

value of all future guarantee payments )(P

iG ,  Ti ,...,2,1 , minus future guarantee fees 

)(F

iG ,  Ti ,...,2,1 , 

  







 





t

T

ti

F

i

P

i

tir

Q

G

t FGGeEV ˆ)()()(
1

)(
ˆ  . (11) 

In the following numerical section, this value is calculated using (nested) Monte-Carlo 

simulations. 

Within our numerical analyses, we consider five different assumptions regarding policyholder 

behavior: 



 

 

a) No surrender 

Under this assumption, policyholders never surrender their contract, i.e. 

 
.,...,1,0

,

0

,...,1

00

Ttt

Ttt









 

b) Deterministic surrender 

Surrender under this assumption occurs according to pre-specified deterministic (time-

dependent) percentages   Ttss tTtt ,...,1,10,
,...,1




, as long as the guarantee has not 

been triggered. In formulas, 

 



 






else

ts Gtd

t

Tt
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t
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,0
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

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c) Longstaff-Schwartz approximation to optimal surrender  

In order to compute the fair value of an American option using Monte-Carlo techniques, 

Longstaff and Schwartz (2001) introduced a method in which optimal behavior is 

approximated via least-squares regression of the conditional expectation of the option's 

payoff, given some path- and time-dependent variables. Essentially, when applied to pricing 

of the GLWB rider, their algorithm works as follows: 

1. Define a set of base functions that take some state variables of the contract and 

the scenario as argument and return a real number. 

2. Create a set of N scenarios under Q̂ . 

3. Starting at T-1, at each policy anniversary t, compute the present value of the 

cash flow between t and T for each scenario in which the guarantee has not 

been triggered at time t. Fit the linear least-squares regression with these 

present values as dependent variables and the base functions with the 

corresponding state variables of the contract and the scenario as input 

variables. 

4. Evaluate the resulting approximation of the GLWB rider's continuation value 

for each scenario and decide whether the policyholder should surrender or not. 

If they surrender, the cash flow following t is set to zero and the cash flow at t 

to minus the surrender fee paid. 

5. Repeat steps 3-5 for t-1 until t=0 is reached. 

 

As base functions we use weighted Hermite polynomials up to a degree of three for each state 

variable and cross products hereof, again up to a degree of three, as well as a constant. Before 

simulation and/or pricing, we first execute the Longstaff-Schwartz algorithm with a separate 

set of scenarios in order to avoid an upward bias. 

The surrender behavior of the policyholder can be considered optimal – in the sense that it 

maximizes the option value G

tV  of the GLWB rider – if the policyholder decides to surrender 



 

 

the contract whenever the benefit from discontinuing the contract (i.e. the negative of the 

continuation value) exceeds the surrender fees. 

With G

tV̂  denoting the approximated continuation value of the GLWB rider at time t, the 

policyholder behavior is modeled as follows: 
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In what follows, we refer to surrender behavior according to this algorithm as being 

“optimal”, although we have to keep in mind that it is only an approximation for the value 

maximizing strategy defined as )(maxarg 0

* 


GV


 , where   denotes the set of all 

admissible strategies. 

d) Function of moneyness 

Within this approach, we model the fraction of the policyholders who surrender their contract 

as a function of time and the “in-the-moneyness” of the guarantee (as, for example, described 

in American Academy of Actuaries, 2005). 

We define the moneyness t  of the guarantee at time t as the ratio of the surrender value 

(account value less surrender fees) and the ‘strike price’ of the guarantee, for which we use 

the net present value of an immediate annuity paying the current guaranteed withdrawal 

amount annually until the insured’s death. Because this annuity’s net present value is a lower 

limit for the sum of asset value and option value of the GLWB rider, t  will be upward biased 

and not reside around 1 ("at-the-money") as desired. To correct for this, we use 0 , the 

moneyness at inception of the contract, as benchmark and use the relative deviation of t  

hereof as measure.  

The basis for the surrender function is a set of given pre-specified deterministic percentages 

  Ttss tTtt ,...,1,10,
,...,1




 (as in the deterministic surrender scenario). However, we 

now model the fraction of the surrendering policyholders at time t as ts  multiplied by a factor 

that depends on the moneyness-variable t . In detail, we model the behavior according to the 

following formulas: 
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e) Function of option value 

Here, we use a similar approach as for the ‘function of moneyness’, except that we now use 

the sum of the rider’s (approximated) continuation value and the surrender charge as decision 

variable. Within the Longstaff-Schwartz algorithm, it is optimal for the policyholder to 

discontinue the contract whenever this value becomes negative. Using again pre-specified 

probabilities   Ttss tTtt ,...,1,10,
,...,1




, this modeling approach is defined as follows: 
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Note that the last two models for policyholder behavior, d) and e), allow for the following 

interpretation which appears to be the motivation for the use of such models in practice: If a 

certain percentage of the policyholders follow a more or less optimal strategy (in the sense 

that they intuitively or with the help of professional advisors aim at maximizing the value G

tV  

of the embedded guarantee) and the rest of the policyholders are assumed to follow a 

suboptimal strategy with deterministic surrender rates, then a pool would show patterns 

similar to models d) and e).  

3 Contract Analysis  

3.1 Assumptions 

For all of the analyses we use the fee structure given in Table 1. 

Acquisition charges 4.00 % of single premium 

Management charges 1.50 % p.a. of AV 

Guarantee charges 1.50 % p.a. of AV 

Table 1: Fee structure for the considered contracts. 

We further assume the policyholder to be a 65 year old male. For pricing purposes, we use 

best-estimate annuitant mortality probabilities given in the DAV 2004R table published by the 

German Actuarial Society (DAV). 

As described in Section 2.3, we use different assumptions for the policyholder behavior. In 

the case where surrender is assumed to be deterministic, we use the surrender pattern given in 

Table 2. As observed for many products in many markets, we assume higher surrender rates 

in earlier years and some base surrender in later years. 



 

 

Year Surrender rate pt
S
 

1 6 % 

2 5 % 

3 4 % 

4 3 % 

5 2 % 

≥ 6 1 % 

Table 2: Assumed deterministic surrender rates. 

Besides deterministic surrender (in what follows denoted by DS), we also analyze the other 

types of policyholder behavior introduced in Section 2.3, i.e. Longstaff-Schwartz-optimal 

surrender behavior (optimal), surrender behavior depending on the option value (OV), and 

surrender behavior depending on the “in-the-moneyness” of the option (ITM). We also 

consider the case without any surrender (NS). 

3.2 Determination of the Fair Guaranteed Withdrawal Rate 

For the pricing of the contract, i.e. for the determination of the guaranteed withdrawal rate xWL 

that makes the contract fair at inception in the sense that 00 GV  holds, we perform a root 

search with xWL as argument and the value of the option GV0
 as function value, cf. e.g. Bauer 

et al. (2008) or Kling et al. (2011). In this process, GV0
 is computed via Monte-Carlo 

simulation, where 100,000 paths are used per valuation. 

3.2.1 Results for the Black-Scholes model 

In Table 3, we show the fair guaranteed withdrawal rates xWL for different ratchet 

mechanisms, volatilities, rates of interest, surrender fees and policyholder-behavior 

assumptions. Note that we here analyze the impact of the policyholder behavior assumptions 

used for pricing the contract. Effects resulting from a potential deviation between actual 

policyholder behavior and behavior assumed in pricing and hedging will be analyzed in 

Sections 3.3 and 4.  



 

 

    Ratchet mechanism 

Product I 

(No Ratchet) 

Product II 

(Lookback) 

Product III 

(Remaining WBB) 

σBS, r Behavior 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 

σBS = 15%, 

r = 4% 

Optimal 4.75 4.95 4.69 4.77 4.45 4.45 

OV 5.13 5.23 4.86 4.90 4.51 4.53 

ITM 5.14 5.24 4.87 4.91 4.52 4.54 

NS 5.27 5.27 4.82 4.82 4.45 4.45 

DS 5.48 5.54 5.04 5.09 4.65 4.70 

σBS = 20%, 

r = 4% 

Optimal 4.23 4.49 4.17 4.26 4.02 4.02 

OV 4.75 4.87 4.36 4.40 4.09 4.10 

ITM 4.75 4.87 4.37 4.42 4.09 4.12 

NS 5.00 5.00 4.34 4.34 4.03 4.03 

DS 5.20 5.25 4.54 4.59 4.22 4.26 

σBS = 22%, 

r = 4% 

Optimal 4.03 4.31 3.96 4.06 3.84 3.86 

OV 4.59 4.72 4.17 4.21 3.92 3.93 

ITM 4.60 4.72 4.17 4.22 3.92 3.95 

NS 4.89 4.89 4.14 4.14 3.86 3.86 

DS 5.08 5.13 4.34 4.39 4.05 4.09 

σBS = 25%, 

r = 4% 

Optimal 3.74 4.04 3.67 3.78 3.59 3.61 

OV 4.37 4.51 3.88 3.92 3.67 3.69 

ITM 4.37 4.50 3.88 3.94 3.68 3.70 

NS 4.72 4.72 3.87 3.87 3.62 3.62 

DS 4.90 4.95 4.05 4.10 3.80 3.84 

σBS = 22%, 

r = 2% 

Optimal 3.11 3.33 3.08 3.18 3.06 3.10 

OV 3.56 3.67 3.28 3.32 3.16 3.18 

ITM 3.57 3.67 3.28 3.33 3.16 3.19 

NS 3.78 3.78 3.27 3.27 3.12 3.12 

DS 3.96 4.00 3.44 3.48 3.28 3.32 

σBS = 22%, 

r = 3% 

Optimal 3.55 3.80 3.51 3.61 3.45 3.48 

OV 4.06 4.17 3.71 3.75 3.53 3.55 

ITM 4.07 4.18 3.71 3.76 3.54 3.56 

NS 4.32 4.32 3.70 3.70 3.48 3.48 

DS 4.50 4.55 3.88 3.93 3.66 3.70 

σBS = 22%, 

r = 5% 

Optimal 4.53 4.85 4.44 4.55 4.24 4.25 

OV 5.16 5.30 4.65 4.69 4.31 4.32 

ITM 5.17 5.31 4.65 4.70 4.32 4.34 

NS 5.49 5.49 4.62 4.62 4.25 4.25 

DS 5.69 5.75 4.83 4.88 4.45 4.49 

Table 3: Fair guaranteed withdrawal rates xWL in percent under the Black-Scholes model for different 

ratchet mechanisms, policyholder behavior assumptions, volatilities, rates of interest and surrender fees.  

Obviously, the product design without any ratchet allows for the highest withdrawal rates 

throughout, while the remaining WBB ratchet (which constitutes the ‘richest’ type of ratchet) 

allows for the lowest. It is also obvious that fair withdrawal rates are decreasing with 

increasing volatility and/or decreasing interest rates, since the corresponding guarantees 



 

 

increase in value with increasing volatility or decreasing interest rates. Our main focus, 

however, is on the analysis of different assumptions about policyholder behavior: 

As defined in Section 2.3, optimal surrender behavior maximizes the value G

tV  of the 

contract. Thus, the fair withdrawal rates are the lowest in this case. For all considered 

parameter combinations, the assumption of deterministic surrender rates leads to the highest 

fair withdrawal rate. The difference between the fair withdrawal rates in these two cases can 

exceed a full percentage point. For a volatility of 25%, for example, and in the product 

without ratchet, the fair withdrawal rate assuming deterministic surrender amounts to 4.90% 

in the case of a surrender fee of 1% (and 4.95% for a surrender fee of 3%) while for optimal 

policyholder behavior, the fair withdrawal rate is only 3.74% (4.04%). Hence, an insurer 

assuming deterministic behavior would be willing to provide policyholders lifelong 

guaranteed withdrawal amounts that are (c.p.) more than 30% higher than the rates offered by 

a more conservative insurer assuming optimal policyholder behavior. 

For the product design with no ratchet, this difference in withdrawal rates is increasing with 

increasing volatility and with increasing interest rates. Thus, the potential for mispricing 

resulting from too aggressive assumptions for policyholder behavior is also increasing. For 

the product designs with ratchet, the difference of the fair withdrawal rate assuming 

deterministic policyholder behavior and optimal policyholder behavior, respectively, is 

significantly smaller and much less sensitive to changes in volatility or interest rates. For the 

lookback ratchet, the difference is about 30 to 40 basis points, in the case of the remaining 

WBB ratchet, the difference amounts to 20 to 25 basis points. Thus, the potential for 

mispricing by assuming incorrect policyholder behavior is the smallest for the product design 

with the most valuable ratchet mechanism. 

One reason for this can be seen by comparing the fair withdrawal rate assuming no surrender 

and optimal surrender. If the ratchet mechanism is quite valuable (i.e. remaining WBB 

ratchet), there is very little or even no difference in the corresponding fair withdrawal rates. 

Thus, no surrender seems to be very close to an optimal policyholder behavior. Hence, by 

assuming some deterministic (and fairly low) surrender rate, the assumption basically is that 

almost all policyholders behave optimally (by not surrendering) and only very few behave 

suboptimally. For a product design without any ratchet on the other hand, surrender can 

become optimal if funds perform well. In all these scenarios, deterministic surrender rates 

imply the assumption of a high portion of customers behaving suboptimally by not 

surrendering and only a low portion of customers displaying optimal behavior. 

The two path-dependent assumptions about policyholder behavior (OV and ITM) show a 

rather similar pattern. For the product design without ratchet, both show a significant potential 

for mispricing. Even if volatility is only 15%, the difference in the fair withdrawal rates 

between path-dependent assumptions and optimal behavior is around 40 basis points (roughly 

30 basis points for a surrender fee of 3%). Again, with increasing volatility or interest rates, 

this difference also increases. However, for this product design, the considered path-

dependent assumptions lead to lower guaranteed withdrawal rates than assuming no 

surrender. Thus, in this case the potential for mispricing is lower if path-dependent 

assumptions are made. This changes if ratchets are included into the product. Then again, the 

differences in withdrawal rates decrease. At the same time, the fair withdrawal rates assuming 

no surrender are lower than the fair withdrawal rates assuming path-dependent surrender. 

Thus, within this modeling framework, even though an insurer assumes surrender behavior 



 

 

that is somehow linked to the option value or the in-the-moneyness of the option, the potential 

for mispricing is higher than when assuming no surrender. 

Fair withdrawal rates obviously increase with increasing surrender fees. It is, however, worth 

noting that for product I the difference in fair withdrawal rates between a surrender fee of 3% 

and 1% increases with increasing “optimality” of the policyholders’ behavior. If a strong 

ratchet mechanism is included (e.g. product III), however, there is almost no difference if 

policyholders behavior optimally. This again is due to the fact that for this product design, not 

surrendering is close to optimal, even for the lower surrender fee.   

3.2.2 Results for the Heston model 

For the Heston model, we use the model parameters given in Table 4, that were derived by 

Eraker (2004), and stated in annualized form for instance by Ewald et al. (2007). 

Parameter Numerical value 

r 0.04 

θ  (0.22)
2 

κ 4.75 

σv 0.55 

ρ -0.569 

V(0) θ 

Table 4: Parameters for the Heston model. 

One of the key parameters in the Heston model is the market price of volatility risk . Since 

absolute -values are hard to interpret, in the following table we show the values of the long-

term variance and the speed of mean reversion for different values of   

Market price of 

volatility risk 

Speed of mean 

reversion κ
* 

Long-term 

variance θ
* 

λ = 3 6.40 (0.190)
2
 

λ = 2 5.85 (0.198)
2
 

λ = 1 5.30 (0.208)
2
 

λ = 0 4.75 (0.220)
2
 

λ = -1 4.20 (0.234)
2
 

λ = -2 3.65 (0.251)
2
 

λ = -3 3.10 (0.272)
2
 

Table 5: Q-parameters for different values of the market price of volatility risk. 

Higher values of  correspond to a lower volatility and a higher mean-reversion speed, while 

lower (and negative) values of  correspond to high volatilities and a lower speed of mean 

reversion. E.g.,  = 2 implies a long-term volatility of 19.8% and  = -2 implies a long-term 

volatility of 25.1%. 

In the following table, we show the fair annual guaranteed withdrawal rates under the Heston 

model for all different product designs using the same assumptions regarding policyholder 

behavior and interest rates as for the Black-Scholes model, and values of  between -2 and 2. 



 

 

λ, r 

 
Ratchet mechanism 

Product I 

(No Ratchet) 

Product II 

(Lookback) 

Product III 

(Remaining WBB) 

Behavior 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 
surr

t = 1% 
surr

t = 3% 

λ = 2, 

r = 4% 

Optimal 4.26 4.54 4.20 4.32 4.04 4.04 

OV 4.77 4.90 4.41 4.45 4.11 4.12 

ITM 4.78 4.91 4.42 4.47 4.11 4.14 

NS 5.02 5.02 4.39 4.39 4.05 4.05 

DS 5.21 5.27 4.59 4.64 4.24 4.28 

λ = 1, 

r = 4% 

Optimal 4.17 4.46 4.10 4.22 3.96 3.96 

OV 4.70 4.83 4.32 4.36 4.02 4.04 

ITM 4.71 4.83 4.32 4.37 4.03 4.06 

NS 4.96 4.96 4.30 4.30 3.97 3.97 

DS 5.16 5.21 4.50 4.55 4.15 4.20 

λ = 0, 

r = 4% 

Optimal 4.06 4.36 3.99 4.11 3.86 3.87 

OV 4.61 4.75 4.21 4.25 3.93 3.95 

ITM 4.62 4.75 4.21 4.27 3.94 3.97 

NS 4.90 4.90 4.19 4.19 3.87 3.87 

DS 5.09 5.14 4.39 4.44 4.06 4.10 

λ = -1, 

r = 4% 

Optimal 3.95 4.24 3.86 3.98 3.75 3.76 

OV 4.52 4.66 4.08 4.13 3.82 3.84 

ITM 4.52 4.66 4.09 4.14 3.83 3.86 

NS 4.82 4.82 4.07 4.07 3.77 3.77 

DS 5.01 5.07 4.26 4.31 3.95 3.99 

λ = -2, 

r = 4% 

Optimal 3.78 4.10 3.71 3.83 3.61 3.64 

OV 4.40 4.55 3.93 3.98 3.69 3.71 

ITM 4.40 4.54 3.94 3.99 3.70 3.73 

NS 4.73 4.73 3.92 3.92 3.64 3.64 

DS 4.91 4.97 4.11 4.16 3.82 3.86 

λ = 0, 

r = 2% 

Optimal 3.14 3.38 3.12 3.23 3.09 3.13 

OV 3.58 3.69 3.32 3.37 3.19 3.20 

ITM 3.59 3.69 3.32 3.37 3.19 3.22 

NS 3.79 3.79 3.32 3.32 3.14 3.14 

DS 3.97 4.01 3.49 3.53 3.31 3.34 

λ = 0, 

r = 3% 

Optimal 3.59 3.85 3.54 3.66 3.48 3.50 

OV 4.08 4.20 3.75 3.80 3.56 3.57 

ITM 4.09 4.21 3.76 3.81 3.56 3.59 

NS 4.33 4.33 3.74 3.74 3.50 3.50 

DS 4.51 4.56 3.93 3.97 3.68 3.72 

λ = 0, 

r = 5% 

Optimal 4.56 4.90 4.47 4.59 4.24 4.25 

OV 5.18 5.33 4.69 4.73 4.31 4.33 

ITM 5.19 5.34 4.69 4.75 4.32 4.35 

NS 5.51 5.51 4.66 4.66 4.25 4.25 

DS 5.71 5.77 4.87 4.93 4.45 4.50 

Table 6: Fair guaranteed withdrawal rates xWL in percent under the Heston model for different ratchet 

mechanisms, policyholder behavior assumptions, market price of volatility risk parameters λ, rates of 

interest and surrender fees. 



 

 

The results under the Heston model are very similar to those observed within the Black-

Scholes model: Fair withdrawal rates are higher for the product design without ratchet and for 

lower long-term volatility assumptions. The potential for mispricing is also higher for the 

product design without any ratchet. 

Comparing the results of the Heston model with the corresponding results using the Black-

Scholes model shows that the assumption of stochastic equity volatility seems to have only 

little influence on pricing results for GLWB riders (which is consistent to findings in Kling et 

al., 2011). 

3.3 Quantifying the Risk resulting from Behavioral Assumptions 

In a next step, we analyze the loss potential an insurer faces if pricing assumptions for 

policyholder behavior deviate from actual policyholder behavior. 

3.3.1 Results for the Black-Scholes model 

Table 7 shows the GLWB rider’s value at inception from the insurance company’s 

perspective as a percentage of the single premium if the actual future policyholder behavior as 

well as equity volatility or interest rates differ from the pricing assumptions. Negative values 

therefore represent the equivalent of an immediate loss for the insurance company if the 

insurer charges a certain price for the guarantee that was calculated using assumptions that 

differ from actual behavior and/or market parameters in a negative way. The results in this 

table are given for a surrender fee of 3%. We assume that the products are priced assuming an 

equity volatility in the Black-Scholes model of 22% alongside an interest rate of 4%, and that 

the actual parameters are either 22% or 25% for the volatility and either 4% or 3% for the rate 

of interest. 



 

 

Behavior 

 Pricing: 

σBS = 22%, r = 4% 

Actual: 

σBS = 22%, r = 4% 

 Pricing: 

σBS = 22%, r = 4% 

Actual: 

σBS = 25%, r = 4% 

 Pricing: 

σBS = 22%, r = 4% 

Actual: 

σBS = 22%, r = 3% 

Pricing Actual I II III I II III I II III 

Optimal 

Optimal 0.0 0.0 0.0 -1.3 -2.2 -2.5 -3.1 -4.0 -4.2 

OV 2.2 1.1 0.7 1.1 -1.2 -1.6 -0.9 -2.8 -3.2 

ITM 2.3 1.1 0.8 1.1 -1.0 -1.4 -0.8 -2.6 -2.9 

NS 4.3 0.7 0.0 3.1 -1.8 -2.5 0.1 -3.7 -4.2 

DS 4.9 2.2 1.8 3.9 0.3 -0.1 1.7 -1.1 -1.4 

OV 

Optimal -2.2 -1.1 -0.7 -3.7 -3.5 -3.3 -6.1 -5.4 -5.1 

OV 0.0 0.0 0.0 -1.2 -2.3 -2.3 -3.9 -4.2 -4.0 

ITM 0.0 0.1 0.1 -1.2 -2.1 -2.1 -3.6 -3.8 -3.7 

NS 1.3 -0.6 -0.7 0.0 -3.2 -3.3 -3.6 -5.2 -5.1 

DS 2.5 1.3 1.2 1.5 -0.8 -0.8 -1.2 -2.3 -2.1 

ITM 

Optimal -2.2 -1.2 -0.9 -3.7 -3.6 -3.5 -6.1 -5.6 -5.3 

OV 0.0 -0.1 -0.2 -1.3 -2.5 -2.5 -3.9 -4.3 -4.2 

ITM 0.0 0.0 0.0 -1.3 -2.2 -2.2 -3.6 -3.9 -3.8 

NS 1.3 -0.7 -0.9 0.0 -3.3 -3.5 -3.6 -5.4 -5.3 

DS 2.5 1.2 1.1 1.4 -0.9 -0.9 -1.2 -2.4 -2.2 

NS 

Optimal -3.2 -0.6 0.0 -4.7 -2.9 -2.5 -7.4 -4.8 -4.3 

OV -1.0 0.5 0.7 -2.3 -1.8 -1.6 -5.2 -3.6 -3.2 

ITM -0.9 0.6 0.8 -2.2 -1.6 -1.4 -4.8 -3.2 -2.9 

NS 0.0 0.0 0.0 -1.3 -2.6 -2.5 -5.2 -4.5 -4.3 

DS 1.5 1.7 1.8 0.4 -0.3 -0.2 -2.4 -1.7 -1.4 

DS 

Optimal -4.7 -2.5 -2.4 -6.3 -5.1 -5.0 -9.5 -7.3 -7.0 

OV -2.6 -1.5 -1.5 -3.9 -3.9 -3.9 -7.2 -6.0 -5.8 

ITM -2.4 -1.3 -1.3 -3.7 -3.5 -3.6 -6.6 -5.4 -5.3 

NS -2.0 -2.2 -2.3 -3.3 -4.9 -5.0 -7.6 -7.2 -7.0 

DS 0.0 0.0 0.0 -1.1 -2.1 -2.1 -4.3 -3.8 -3.5 

Table 7: GLWB rider value at inception as percentage of the single premium if actual policyholder 

behavior and/or parameters in the Black-Scholes model differ from pricing assumptions. 

Pricing assumption DS 

We first look at the case where deterministic surrender probabilities are assumed in the 

pricing of the contract. Clearly, the potential loss is the highest if policyholders behave 

optimally. In particular, if assumptions about equity volatility and interest rates are correct, 

the insurance company’s loss is 4.7% of the single premium paid if no ratchet is included, 

2.5% of the single premium paid in the case of the lookback ratchet and 2.4% of the single 

premium paid for the remaining WBB ratchet. In line with the results from Section 3.2, the 

loss potential if only the assumption about policyholder behavior is incorrect is significantly 

lower if ratchets are included into the product and is the lowest for the product design with the 

most valuable ratchet mechanism. If policyholders in reality do not behave optimally but 

either surrender according to one of the path-dependent rules (OV or ITM) or do not surrender 

at all (NS), then the potential loss roughly lies between 1% and 3% of the single premium paid 

if the assumptions regarding the market parameters are correct. Again, the riskiest product 



 

 

design is the one without ratchet. However, the product designs with ratchets are more 

sensitive to changes in volatility: 

If (additionally to policyholder behavior assumptions) volatility assumptions are also wrong 

(i.e. σBS = 25%), the insurance company’s loss increases by at least 2% for the products with 

ratchet, while for the product without ratchet, the increase is between 1.1% and 1.6% of the 

single premium paid.  

If (additionally to policyholder behavior assumptions) interest rate assumptions are also 

wrong (i.e. r = 3%), the insurance company’s loss increases by at least 3.5% of the single 

premium paid. This increase is rather similar across the three product designs. Losses can now 

go up to almost 10% of the premium paid if deterministic policyholder behavior is assumed 

and actual behavior is optimal. 

If policyholders in reality do not surrender at all (NS), independent of volatility and interest 

rates, the loss potential is higher than with any path-dependent behavior (OV and ITM) for the 

product designs with ratchets and lower for the product design without ratchet. At the same 

time, not surrendering seems to be very close to the optimal strategy for product III, which 

has a rich ratchet mechanism. Also, the interest rate sensitivity is the highest if policyholders 

do not surrender.  

Pricing assumption NS 

We now look at the case where no surrender is assumed in pricing. In this case (if assumed 

and actual market parameters coincide), for the products with ratchet, the insurer would 

realize a gain if any of the other non-optimal policyholder behavior patterns occurs, i.e. OV, 

ITM or DS. Thus, the insurance company can reduce the risk resulting from policyholder 

behavior by including a strong ratchet mechanism into the product and at the same time 

assuming no surrender in pricing the contract. A rich ratchet mechanism can prevent high 

values of the option to surrender under almost all circumstances. This can be a very effective 

means to manage policyholder behavior risk. 

The effect of wrong volatility assumptions on the insurance company’s loss is similar to the 

one observed when deterministic surrender is assumed: The loss increases by at least 2% for 

the products with ratchet, while for the product without ratchet the increase is between 1.1% 

and 1.5% of the single premium paid. Similar increases can also be observed for all other 

pricing assumptions. 

The absolute increase caused by wrong interest rate assumptions, however, is less pronounced 

than if deterministic surrender is assumed in pricing. The increase is still similar for the 

different product designs.  

Pricing assumptions OV and ITM 

A common path-dependent assumption about policyholder behavior suggests that surrender 

rates are influenced by the in-the-moneyness (as e.g. described in American Academy of 

Actuaries, 2005) or (more directly) the value of the guarantee. Although more conservative 

than assuming purely deterministic behavior, these assumptions can still be quite dangerous: 

If, for instance, a remaining WBB ratchet is in place and policyholders do not surrender at all, 

the potential loss amounts to almost 1% of the single premium paid even if assumed market 

parameters are correct. A slightly smaller loss occurs in case of a lookback ratchet, whereas if 



 

 

no ratchet is in place, there even is a profit. However, if policyholders behave optimally, the 

potential loss, again, is the highest for the product design without ratchet and amounts to 2.2% 

of the single premium paid. 

If additionally actual market parameters deviate from assumed market parameters, potential 

losses increase up to over 5% of the single premium paid. The structure of the increase is 

similar to the effects observed previously, only the differences between the different product 

designs with respect to their interest rate sensitivity are now slightly higher. This also holds 

for the following optimal behavior assumption. 

Pricing assumption Optimal 

The most conservative assumption about the policyholders’ behavior is of course to assume 

that they follow an optimal surrender strategy. As a result, losses due to mispricing only occur 

if additionally to policyholder behavior also market parameters are different than assumed. In 

this case, the profit from the potentially over-conservative behavior assumption is reduced by 

these losses. Of course, the losses are the highest if actual behavior is either optimal or, in the 

case of the remaining WBB ratchet, where not surrendering yields very similar results to 

optimal behavior, if policyholders do not surrender at all. 

Summarizing, we find that the product design without ratchet shows the highest sensitivity to 

deviations from assumed policyholder behavior. On the other hand, it is the design with the 

least sensitivity to deviations from assumed volatility, while the negative effect of an 

overestimated level of interest rates is roughly the same for all three product designs. 



 

 

3.3.2 Results for the Heston model 

Table 8 shows similar results to those presented in the previous section but now using the 

Heston model. For all results in this table, the surrender fee was set to 3% and, for pricing, the 

market-price-of-risk factor was set to λ=0 and a rate of interest of 4% was assumed. 

Behavior 

 Pricing: 

λ=0, r = 4% 

Actual: 

λ=0, r = 4% 

 Pricing: 

λ=0, r = 4% 

Actual: 

λ=-2, r = 4% 

 Pricing: 

λ=0, r = 4% 

Actual: 

λ=0, r = 3% 

Pricing Actual I II III I II III I II III 

Optimal 

Optimal 0.0 0.0 0.0 -1.2 -2.1 -2.4 -3.1 -3.9 -4.1 

OV 2.0 1.0 0.7 1.0 -1.1 -1.5 -1.0 -2.8 -3.1 

ITM 2.1 1.1 0.8 1.0 -0.9 -1.3 -1.0 -2.5 -2.8 

NS 4.0 0.6 0.0 2.8 -1.7 -2.4 -0.3 -3.7 -4.1 

DS 4.6 2.2 1.8 3.6 0.3 -0.1 1.4 -1.1 -1.3 

OV 

Optimal -2.0 -1.0 -0.7 -3.4 -3.3 -3.1 -5.9 -5.3 -5.0 

OV 0.0 0.0 0.0 -1.2 -2.2 -2.2 -3.8 -4.1 -3.9 

ITM 0.0 0.1 0.2 -1.1 -1.9 -1.9 -3.5 -3.7 -3.5 

NS 1.1 -0.5 -0.7 -0.1 -3.0 -3.1 -3.8 -5.1 -5.0 

DS 2.4 1.2 1.2 1.3 -0.7 -0.7 -1.3 -2.2 -2.0 

ITM 

Optimal -2.0 -1.1 -0.9 -3.4 -3.4 -3.3 -5.9 -5.4 -5.2 

OV 0.0 -0.1 -0.2 -1.2 -2.3 -2.4 -3.9 -4.2 -4.1 

ITM 0.0 0.0 0.0 -1.2 -2.0 -2.1 -3.6 -3.8 -3.7 

NS 1.1 -0.7 -0.9 -0.2 -3.1 -3.3 -3.8 -5.2 -5.2 

DS 2.3 1.1 1.1 1.3 -0.8 -0.8 -1.4 -2.3 -2.2 

NS 

Optimal -2.8 -0.5 0.0 -4.3 -2.7 -2.4 -7.1 -4.7 -4.1 

OV -0.9 0.5 0.7 -2.1 -1.7 -1.5 -5.0 -3.5 -3.1 

ITM -0.8 0.5 0.8 -2.0 -1.4 -1.3 -4.6 -3.1 -2.8 

NS 0.0 0.0 0.0 -1.3 -2.4 -2.4 -5.1 -4.4 -4.1 

DS 1.5 1.7 1.8 0.4 -0.2 -0.1 -2.4 -1.7 -1.3 

DS 

Optimal -4.4 -2.5 -2.3 -5.9 -4.8 -4.8 -9.1 -7.1 -6.8 

OV -2.4 -1.4 -1.5 -3.6 -3.7 -3.8 -7.0 -5.8 -5.6 

ITM -2.2 -1.2 -1.2 -3.4 -3.3 -3.4 -6.3 -5.2 -5.1 

NS -1.9 -2.1 -2.3 -3.2 -4.6 -4.8 -7.5 -7.0 -6.8 

DS 0.0 0.0 0.0 -1.1 -2.0 -2.0 -4.2 -3.7 -3.4 

Table 8: GLWB rider value at inception as percentage of the single premium if actual policyholder 

behavior and/or parameters in the Heston model differ from pricing assumptions. 

Again, the results observed under the Heston model are very similar to those observed under 

the Black-Scholes model. Thus, the potential for mispricing arising from wrong assumptions 

about policyholder behavior or a wrong level of volatility or interest rates seems to be much 

higher than the potential loss arising from ignoring the stochasticity of equity volatility. 

However, by solely calculating the rider value of the guarantee we implicitly assume perfect 

hedge effectiveness which is not given in reality.  



 

 

Kling et al. (2011) have shown that the impact of stochastic volatility on hedge efficiency of 

such products is typically much higher than on pricing. Therefore, we now analyze how this 

result relates to different assumptions about policyholder behavior. 

4 Analysis of Hedge Efficiency 

In this section, we analyze the performance of a hedging program an insurer might apply in 

order to reduce the financial risk – and thus also the required economic capital – resulting 

from selling GLWB guarantees. We analyze this performance under different assumptions 

regarding policyholder behavior and particularly analyze the case where the policyholder 

behavior assumed by the insurer for pricing and hedging differs from the actual behavior of 

the policyholders.  

In what follows, we first describe the analyzed delta-hedging strategy; we then define the risk 

measures that we use to compare the (simulated) hedge performance, and finally, we present 

the simulation results in the last part of this section. The methodology we use is similar to the 

one used by Kling et al. (2011). 

4.1 Hedge Portfolio 

We assume that an insurer has sold a pool of policies with GLWB guarantees. We denote by 

Ψt the cumulative option value for that pool of guarantees, i.e. the sum of the option values 
G

tV  of each policy as defined in Section 2.3. We assume that the insurer cannot influence the 

value of Ψt by changing the underlying fund (e.g. changing the fund's exposure to risky assets 

or forcing the policyholder to switch to a different, e.g. less volatile, fund). We further assume 

that the insurer invests the guarantee fees as well as surrender fees in a hedge portfolio H

t

and applies some hedging strategy within this portfolio. In case the guarantee of a policy is 

triggered, the guaranteed payments due are deducted from this portfolio. Thus,   

H

ttt  :           (12) 

is the insurer’s cumulative profit/loss (in what follows sometimes just denoted as the insurer’s 

profit) at time t stemming from the guarantee and the corresponding hedging strategy. We 

assume the value of the guarantee to be marked-to-model, where the same model the insurer 

uses for hedging is used for the valuation of Ψt. 

For the simulations in the following section, we assume that the insurer uses the Black-

Scholes model for hedging purposes and applies a simple delta-hedging strategy within the 

hedge portfolio H

t : In order to immunize the portfolio against small changes in the 

underlying's spot price St (i.e. to attain delta-neutrality), the quantity of exposure to the 

underlying within the insurer’s hedge portfolio is determined as the delta of Ψt, i.e. the partial 

derivative of Ψt with respect to St. 

We assume that the hedge portfolio is rebalanced on a monthly basis, using central finite 

differences calculated via Monte-Carlo simulation as approximation for the partial derivative 

of Ψt with respect to St. 



 

 

4.2 Risk Measures 

We use the following three measures to compare the different hedging strategies. All 

measures will be normalized as a percentage of the premium volume at t=0: 

  T

rT

P eE 
, the expectation of the discounted final value of the insurer’s profit under 

the real-world measure P. This is a measure for the insurer’s expected profit and 

constitutes the “performance” measure in our context. A value of 1 means that, in 

expectation, for a single premium of 100 paid by the client, the insurance company’s 

discounted profit from selling and hedging the guarantee is 1. 

  )()(1   VaRECTE P  , the conditional tail expectation of the random 

variable  , where  Tte t

rt ,...,1,0min    is defined as the minimum of the 

discounted values of the insurer’s profit/loss at all policy calculation dates and 

)(VaR denotes the Value at Risk of the variable   at the level . This is a measure 

for the insurer’s risk resulting from a certain hedging strategy: it can be interpreted as 

the additional amount of money that would be necessary at outset such that the 

insurer’s portfolio would never become negative over the life of the contract, even if 

the market develops according to the average of the  (e.g. 10%) worst scenarios in 

the stochastic model. Thus a value of 1 means that, in expectation over the  worst 

scenarios, for a single premium of 100 paid by the client, the insurance company 

would need to hold 1 additional unit of capital upfront. 

  )()(1 T

rT

T

rT

T

rT

PT

rT eVaReeEeCTE  

  , the conditional tail 

expectation of the discounted profit/loss’ final value. This is also a risk measure 

which, however, focuses on the value of the profit/loss at time T, i.e. after all liabilities 

have been met, and does not account for negative portfolio values over time. Thus a 

value of 1 in the above table means that, in expectation over the  worst scenarios, for 

a premium of 100 paid by the client, the insurance company’s expected loss is 1. By 

definition, of course, )()( 11 T

rTeCTECTE  

   .  

4.3 Simulation Results 

In the numerical analyses below, we set =10% for both risk measures and assume a pool of 

identical policies with parameters as given in Section 3. We assume that mortality within the 

population of insured occurs according to the best-estimate probabilities given in the DAV 

2004R table. As our analysis focuses on model risk rather than parameter risk, we use the 

parameters for the capital market models presented in Section 3 for both, the hedging and the 

data-generating model. The results are calculated using 10,000 Monte-Carlo paths for the 

simulation, 1,000 paths for each of the valuations used in the calculation of the central finite 

differences and 10,000 paths for each of the valuations of Ψt used to calculate  . 

4.3.1 Results for the Black-Scholes model 

Table 9 gives the results for different combinations of behavioral assumptions made by the 

insurer and actual behavior within the pool of policies. The Black-Scholes model with 

σBS=22% and r=4% is thereby used as the hedging model of the insurer and as a model of the 

real-world progression of the capital market (with μ=7%).  



 

 

 

Behavior  Product I 

 

Product II 

 

Product III 

Pricing / 

Hedging 
Actual E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒
−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] 

Optimal 

Optimal -0.1 2.4 2.2 0.1 3.1 2.8 0.0 3.2 2.8 

OV 3.4 1.8 0.8 1.7 2.5 1.5 0.7 2.8 2.0 

ITM 3.5 1.9 0.9 1.7 2.3 1.4 0.8 2.3 1.6 

NS 8.7 2.5 1.8 1.9 3.1 2.3 0.1 3.4 2.8 

DS 7.8 1.8 0.9 2.9 2.1 0.9 1.8 2.0 0.9 

OV 

Optimal -2.7 7.5 7.5 -1.3 4.5 4.5 -0.7 3.4 3.3 

OV -0.1 1.6 1.4 0.0 2.7 2.3 0.0 2.6 2.2 

ITM 0.0 1.5 1.4 0.1 2.4 2.0 0.2 2.2 1.9 

NS 2.9 2.2 2.1 -0.3 3.2 2.9 -0.7 3.3 3.1 

DS 3.2 0.9 0.5 1.2 2.0 1.1 1.2 1.6 0.9 

ITM 

Optimal -2.8 7.5 7.5 -1.4 4.8 4.8 -0.9 3.7 3.6 

OV -0.1 1.7 1.5 -0.1 2.9 2.6 -0.2 2.9 2.5 

ITM 0.0 1.6 1.4 0.0 2.5 2.3 0.0 2.4 2.1 

NS 2.9 2.3 2.2 -0.4 3.3 3.1 -0.9 3.6 3.4 

DS 3.2 1.0 0.5 1.1 2.1 1.3 1.0 1.9 1.1 

NS 

Optimal -4.5 15.4 15.4 -1.0 5.1 5.0 -0.1 3.0 2.8 

OV -2.1 11.0 11.0 0.3 3.0 2.7 0.6 2.2 1.7 

ITM -2.0 10.8 10.8 0.3 2.6 2.3 0.8 1.9 1.4 

NS 0.0 1.3 1.2 0.0 3.0 2.6 0.0 2.7 2.4 

DS 0.8 3.9 3.8 1.4 2.1 1.3 1.7 1.4 0.7 

DS 

Optimal -5.5 13.3 13.3 -2.6 5.9 5.9 -2.3 5.1 5.1 

OV -2.9 8.0 8.0 -1.4 4.0 4.0 -1.4 3.9 3.8 

ITM -2.7 7.6 7.6 -1.1 3.6 3.6 -1.1 3.4 3.4 

NS -1.2 5.3 5.3 -1.9 5.0 5.0 -2.2 5.0 5.0 

DS 0.0 1.2 1.0 0.0 2.5 2.2 0.0 2.3 2.0 

Table 9: Hedge efficiency results using the Black-Scholes model as data-generating model. 

Pricing assumption DS 

We first look at the case where the insurer assumes deterministic surrender in pricing and 

hedging the contract. If, in reality, the pool of policyholders behaves exactly according to the 

same pattern, the insurer’s expected profit is close to zero for all different product designs. 

(Note that we assume that the insurer priced the contracts without incorporating any profit 

margin.) On average over the 10% worst scenarios, the present value of the insurer’s final loss 

averages to 1.0% of the single premium for product design I. The corresponding values are 

2.2% and 2.0% for product designs II and III, respectively. The CTE of the present value of 

the maximum loss over all policy calculation dates is slightly higher. Similar results are 

observed for other assumptions about the policyholder behavior as long as assumed 

policyholder behavior and realized policyholder behavior coincide. 

If the insurer assumes deterministic surrender but policyholders actually behave according to 

the considered function of the in-the-moneyness (ITM) or the considered function of the 

option value (OV), the insurer’s expected loss significantly increases. The expected loss for 

the product design without ratchet is roughly 3% of the single premium paid and hence more 

than twice as high than that for the product designs with ratchet. In the case of optimal 



 

 

surrender, the expected loss further increases to 5.5% of the single premium paid in the case 

without ratchet and about half that value for the products with ratchet. With the expected loss, 

also the risk increases. Assuming deterministic surrender for product I results in a CTE of 

final losses between 7.6% and 13.3% of the single premium paid if actual policyholder 

behavior is path-dependent or even optimal. This risk is reduced by roughly 50% by including 

ratchets into the product design. If policyholders do not surrender at all (NS), the risk is 

almost the same for all product designs. Consistent with the pricing results above, for product 

design III, the results for no surrender and optimal policyholder behavior are almost identical 

since optimal surrender for this product is close to no surrender. For product design I, the risk 

if policyholders do not surrender is lower than for any path-dependent behavior. 

Pricing assumption NS 

If no surrender is assumed in pricing and hedging, the results are rather diverse. Actual 

deterministic policyholder behavior leads to a positive expected profit for all product designs 

and rather limited risk for product designs II and III. However, risk measures for product 

design I are almost 4%. If policyholders actually behave according to the considered function 

of the in-the-moneyness (ITM) or the considered function of the option value (OV), the 

insurer’s expected profit is slightly positive for product designs II and III and around -2% for 

product design I. Interestingly, while for the product designs with ratchet, the risk also is 

rather limited, the risk measures for product design I exceed 10%. Thus, if no ratchet is 

included in the product design, the assumption of no surrender is rather risky. If policyholder 

behavior is optimal, the risk for this product even increases to 15%. 

Pricing assumptions OV and ITM 

If policyholder behavior is assumed to occur according to the considered function of the in-

the-moneyness (ITM) or the considered function of the option value (OV) and ratchets are 

included into the product design (products II and III), the expected loss for the insurer (even 

in the case of optimal policyholder behavior) is below 1.5% of the single premium paid. 

Furthermore, the considered risk measures remain below 5%. Again, for product design III, 

actual policyholder behavior without surrender turns out to be almost as risky as optimal 

policyholder behavior. For product design I, however, no surrender leads to expected profits 

of 2.9% of the single premium paid and risk measures below 2.3% while optimal behavior 

leads to a risk of 7.5% and a negative expected profit. Deterministic behavior under both 

assumptions and for all product designs leads to expected profits and rather low risk. 

Pricing assumption Optimal 

Not very surprisingly, the most conservative assumption of optimal policyholder behavior 

always leads to the highest expected profit. If actual behavior is deterministic or no surrender, 

for product design I the expected profit reaches 7.8% and 8.7%, respectively. Also, risk is 

rather limited and for all product designs below 3.4%. However, it is worth noting that the 

risk if policyholders do not surrender for product design III (3.4%) is slightly higher than in 

the case of optimal surrender. We attribute this to the fact that in the case of optimal 

surrender, all policyholders surrender at the same time. Thus, hedging is needed for a 

potentially shorter period of time, resulting in a reduced hedging error. Also, for product III, 

assuming optimal surrender results in a slightly higher risk than if no surrender is assumed. 

We attribute this to a more stable hedging in the case of no surrender (as there are no 

decisions whether all of the policyholders either stay or leave) and some imperfections in the 

Longstaff-Schwartz algorithm we used. 



 

 

4.3.2 Results for the Heston model 

Table 10 shows the same results as in Table 9, but now using the Heston model as data-

generating model instead of the Black-Scholes model, with parameters as stated in Table 4 

and with μ=7%. 

Behavior  Product I 

 

Product II 

 

Product III 

Pricing / 

Hedging 
Actual E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒
−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] E𝑃[𝑒

−𝑟𝑇Π𝑇] CTE[𝜒] CTE[𝑒−𝑟𝑇Π𝑇] 

Optimal 

Optimal 0.1 3.3 2.9 0.3 4.1 3.7 0.0 4.5 4.0 

OV 3.4 2.5 1.5 1.9 3.5 2.5 0.7 3.9 3.1 

ITM 3.5 2.7 1.6 1.9 3.4 2.4 0.8 3.5 2.7 

NS 8.7 3.5 2.8 2.2 4.3 3.6 0.1 4.6 4.0 

DS 7.8 2.4 1.1 3.1 3.0 1.4 1.7 2.9 1.7 

OV 

Optimal -2.4 6.4 6.4 -1.0 5.0 4.9 -0.7 4.9 4.7 

OV 0.1 2.5 2.2 0.3 3.9 3.4 0.0 4.1 3.6 

ITM 0.1 2.4 2.2 0.3 3.6 3.2 0.2 3.7 3.3 

NS 2.9 3.4 3.3 0.0 4.7 4.4 -0.7 4.9 4.7 

DS 3.2 1.7 0.8 1.4 3.1 2.0 1.1 3.0 2.0 

ITM 

Optimal -2.5 6.4 6.4 -1.1 5.1 5.1 -0.9 5.1 4.9 

OV 0.1 2.5 2.2 0.1 4.0 3.6 -0.2 4.3 3.8 

ITM 0.1 2.5 2.2 0.2 3.7 3.3 0.0 3.8 3.4 

NS 2.9 3.5 3.3 -0.1 4.8 4.5 -0.9 5.1 4.9 

DS 3.2 1.7 0.8 1.3 3.2 2.1 1.0 3.1 2.2 

NS 

Optimal -4.2 13.4 13.4 -0.7 4.8 4.6 -0.1 4.3 3.9 

OV -1.9 9.3 9.3 0.5 3.7 3.1 0.6 3.7 2.9 

ITM -1.8 9.2 9.2 0.6 3.5 2.9 0.7 3.3 2.6 

NS 0.0 2.3 2.0 0.3 4.2 3.7 0.0 4.3 3.8 

DS 0.8 3.3 3.2 1.6 3.0 1.8 1.6 2.7 1.5 

DS 

Optimal -5.2 11.7 11.7 -2.3 6.8 6.8 -2.3 6.7 6.7 

OV -2.8 6.8 6.8 -1.1 5.4 5.3 -1.4 5.5 5.4 

ITM -2.6 6.6 6.6 -0.9 5.0 5.0 -1.1 5.0 4.9 

NS -1.1 6.4 6.4 -1.5 6.7 6.6 -2.3 6.7 6.7 

DS 0.0 2.0 1.8 0.3 3.6 3.2 0.0 3.7 3.3 

Table 10: Hedge efficiency results using the Heston model as data-generating model. 

Changing the data-generating model from Black-Scholes to Heston does not have any 

substantial impact on the expected profit, independent of the product design and the assumed 

policyholder behavior. Also, the structure of the results, i.e. the relation between the results 

for the different products and the different client behavior patterns is very similar. However, 

the absolute values of the risk measures change. While product design I appears to be less 

risky in case of path-dependent behavior under the Heston model if deterministic or no 

surrender is assumed, the risk for product designs II and III increases. The results show that 

product designs II and III display a higher sensitivity to volatility than the design without 

ratchet (I). This is in line with the results of Section 3.3. 

We can conclude that assumptions about policyholder behavior can bear significant risk for 

the insurer, especially if such assumptions are too aggressive, i.e. if policyholders’ behavior is 

closer to optimal behavior than assumed. However, this risk can be significantly reduced by 



 

 

means of product design and making appropriate behavioral assumptions. The latter, however, 

also increases the price of the product and may result in a lower competitiveness of the 

product. While the product designs with ratchet features (II and III) appear to be less sensitive 

to policyholder behavior, our results indicate that they may be harder to hedge and are more 

sensitive to changes in volatility and/or model risk, respectively. 

5 Conclusions 

In the present paper, we have analyzed the impact of policyholder behavior on pricing, 

hedging and hedge efficiency of different GLWB guarantees in variable annuities. We have 

considered several types of policyholder behavior ranging from deterministic surrender over 

path-dependent surrender to optimal strategies. We have found that the price of the guarantee 

strongly depends on the assumed policyholder behavior and there is a significant potential for 

mispricing if actual policyholder behavior deviates from assumed behavior. Comparing 

products with different ratchet mechanisms, we find that this potential for mispricing is the 

smallest for the product design with the most valuable ratchet mechanism. 

Analyses of an insurer’s hedging strategy showed that both, the insurer’s expected profit and 

the insurer’s risk (quantified by CTE measures), depend heavily on the deviation between 

assumed and actual policyholder behavior as well as the chosen product design. We find that 

the product design without ratchet shows the highest sensitivity to changes in policyholder 

behavior. On the other hand, it is the design with the least sensitivity to changes in volatility 

and the potentially easiest one to hedge. We also find that the impact of stochastic volatility 

on hedging (and the insurer’s risk) is much higher than on pricing (and the insurer’s expected 

profit). 

In future research, it would be interesting to combine the analyses of model risk performed in 

Kling et al. (2011) with the analyses of policyholder behavior risk and quantify how the 

insurer’s risk depends on a simultaneous deviation from reality of assumptions regarding 

policyholder behavior and the capital market model. It might also be worthwhile to analyze 

different types of variable annuity guarantees and see whether different types of guarantees 

(e.g. GMAB or GMIB) display higher or lower behavioral risk than the GLWB designs 

considered in this paper. 

Our analyses so far have been performed on the level of an individual policy. Since hedging 

errors are not necessarily additive over a pool of policies, it would be worthwhile to analyze 

how the results with respect to risk management and hedge efficiency change for a 

heterogeneous pool of policies. 
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