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Abstract

Expected Utility Theory (EUT) and Cumulative Prospect Theory (CPT) face

problems explaining preferences of long-term investors. Previous research motivates

that the subjective utility of a long-term investment also depends on interim value

changes. Therefore we propose an approach that we call Multi Cumulative Prospect

Theory. It is based on CPT and considers annual changes in the contract values. As

a first application we can show that in contrast to EUT and CPT, this approach is
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this framework generate a higher subjective utility than products without or with

simpler guarantees.

Keywords: Behavioral Insurance, Prospect Theory, Guaranteed Products, Myopic Loss

Aversion

∗Institut für Finanz- und Aktuarwissenschaften and Ulm University, Lise-Meitner-Str. 14, 89081 Ulm,
Germany; Email: j.russ@ifa-ulm.de
†Department of Mathematics and Economics, Ulm University, Helmholtzstr. 20, 89081 Ulm, Germany;

Email: stefan.schelling@uni-ulm.de (contact author)



1 INTRODUCTION 1

1 Introduction

Cumulative Prospect Theory (CPT), introduced by Tversky & Kahneman (1992), has be-

come one of the most prominent behavioral theories in finance, especially as a behavioral

counterpart to Expected Utility Theory (EUT). This is due to the fact that CPT can

explain behavior that can not be explained by EUT, but is still frequently observed in

real life. While complex financial products and long-term investments are well studied

under EUT, an analysis of such products under CPT has only recently been in the focus

of academic literature. Døskeland & Nordahl (2008) consider different participating life

insurance contracts under CPT to explain the demand for guaranteed products. In an em-

pirical work, Dierkes et al. (2010) investigate the preferences of a CPT investor considering

different investment strategies and time horizons. Historical and Monte Carlo simulations

were used by Dichtl & Drobetz (2011) to analyze portfolio insurance strategies based on

simple CPPI (Constant Proportional Portfolio Insurance) strategies. Ebert et al. (2012)

determine the “optimal” specification of different guarantee types, where optimality is de-

fined as creating the maximum subjective utility for a CPT investor. A main result of

these papers is that, in contrast to EUT, CPT can explain the demand for guarantees.1

Nevertheless, even CPT is not able to explain the popularity of more complex guaranteed

products, such as ratchet or cliquet guarantees, since a CPT investor should prefer a simple

guarantee at maturity over more complex guarantees with lock-in features.

In both, EUT and CPT, the preferences of the investor only depend on the distribution

of the terminal value. In reality, however, investors tend to re-evaluate a financial prod-

uct regularly, e.g. annually when they receive a financial statement. Information about

a good performance in the past year might increase the investors reference point against

1It is worth noting that certain results can also be achieved under EUT if the underlying assumptions
are more realistic. E.g. Chen et al. (2015) recently showed, that the consideration of mortality can explain
the preferences for simple guarantees at maturity also in a EUT-framework.
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which losses are evaluated. A subsequent drop of in the product’s value might then be

perceived as a loss, even if the overall performance since the start of the product is still

positive. This is related to the concept of mental accounting introduced by Thaler (1985).

This concept describes how investors categorize investments in order to monitor the future

performance. In a later work, Thaler & Johnson (1990) studied how prior gains and losses

affect decision makers and how they frame such problems under Prospect Theory. Arkes

et al. (2008) provide additional evidence that investors mentally account for previous price

changes and therefore regularly adapt their reference point. Benartzi & Thaler (1995)

propose the theory of myopic loss aversion, a combination of loss aversion and frequent

investment evaluation, and show that an annual evaluation can solve the equity premium

puzzle. They argue that mental accounting implies that investors tend to evaluate their

investment decision on short evaluation periods and therefore prefer to invest only small

fractions of their wealth in risky assets. Benartzi & Thaler (1999) give evidence that in-

vestors make less risky choices if they are shown one-year rather than long-term rates of

return. Barberis et al. (2001) propose a model in terms of asset pricing, in which investors

derive utility from annual changes of the value of their financial wealth and Barberis &

Xiong (2012) are able to shed light on the disposition effect and other puzzles by intro-

ducing the realization utility, which suggest that investors derive utility from interim gains

and losses.

If interim changes of the value influence the utility of investors during the investment hori-

zon, it seems only natural that when making the investment decision investors are also

affected by potential future interim changes of the value.

Based on these insights, we propose a modification of CPT, which assumes that long-term

investors tend to take into account the subjective utility of interim changes of the value
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of the contract when making an investment decision. We denote this approach “Multi

Cumulative Prospect Theory” (MCPT).

As a first application example of MCPT, we investigate the demand for different guaran-

teed products. For the sake of comparability, we apply this approach to the guaranteed

contracts presented by Ebert et al. (2012), i.e. we consider three different types of guaran-

tees (roll-up, ratch-up and cliquet) and a product without guarantee. The roll-up guarantee

provides a minimal terminal payoff, which is based on some guaranteed rate of interest.

The ratch-up guarantee additionally includes a lock-in feature: The guaranteed benefit is

the higher of a fixed guaranteed amount (calculated as in the roll-up case) and the highest

investment account value at any pre-specified lock-in date. Finally, the cliquet guarantee

credits in each period the higher of a guaranteed rate and the performance of the underlying

investment. We analyze these products in a Black-Scholes framework without considering

mortality or default risk. In this setting we can derive closed-form solutions for the arbi-

trage free prices of all three products at any valuation date. We use these prices as the

basis for the annual changes of the value. We then use Monte Carlo simulations to evaluate

these products under EUT, CPT and MCPT. We are able to replicate the results of Ebert

et al. (2012) under EUT and CPT, particularly the fact that CPT can explain the demand

for guarantees but not for the more complex forms of guarantees. However, under our

new MCPT approach, the complex products typically dominate the simple products: For

investors who evaluate utility considering possible future interim changes, the subjective

utility is higher for the complex than for the simple guaranteed products. Also, if only

products without guarantee are considered, under MCPT, an equity ratio of 0% is often

optimal. This result is in line with the findings of Benartzi & Thaler (1995) and explains

the demand for very safe assets even for long term investments that can be observed in

many countries. Finally, we present a combined CPT and MCPT approach, where both,
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annual changes and the distribution of the terminal wealth are evaluated by the investor.

Our analysis under this combined model shows that the demand for complex guaranteed

products can be explained, even if the annual price changes only partially influence the

total subjective utility.

The remainder of this paper is organized as follows. Section 2 gives a short introduction

to CPT. Moreover, we motivate and present our MCPT approach. In Section 3, we apply

MCPT to explain the demand for cliquet type guarantees. We specify the considered

products and the model for the financial market and present numerical results, as well

as sensitivity analyses. Section 4 summarizes and gives an outlook for future research.

Finally, the closed-form arbitrage free prices for the considered contracts are given in the

Appendix.

2 Prospect Theory and Extensions

Prospect Theory (PT) introduced by Kahneman & Tversky (1979) has been developed as

one possible way of explaining behavior that can be observed in real life but can not be

explained by Expected Utility Theory (EUT). In particular its well-known modification,

Cumulative Prospect Theory (CPT) has become very popular.

2.1 Cumulative Prospect Theory

Cumulative Prospect Theory is based on the idea, that the subjective utility of an invest-

ment A with final outcomes given by a random variable E is described by an S-shaped PT

value function2 v for the gains and losses X corresponding to the outcomes with respect

2A continuous function v : R → I (I ⊂ R an interval containing 0) is called PT value function, if v is
strictly monotonically increasing, v(0) = 0 (reference-point), v(x) is strictly convex for x < 0 (decreasing
loss sensitivity), v(x) is strictly concave for x > 0 (decreasing gain sensitivity) and |v(−x)| > v(x) (loss
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to a given reference point χ. The gains and losses are described by the random vari-

able X := E − χ, and modified by a probability weighting function3 w, that overweights

(particularly extreme) events with small probabilities and underweights events with high

probabilities. A natural and the most prominent choice for an investor’s reference point is

the initial price of the investment, cf. Kahneman & Tversky (1979), which is also called a

Status Quo reference point (SQ), i.e. χ = A0 and hence X = E − A0, where A0 denotes

the fair value of the investment A at t = 0. Now let µX be the probability measure given

by the random variable X. Then the CPT utility is defined as

CPT (X) :=

∫ 0

−∞
v(x)d (w (F (x))) +

∫ ∞
0

v(x)d (−w (1− F (x))) , (1)

with F (s) = P(X ≤ s) =
∫ s
−∞ dµX . This is a natural generalization (cf. Hens & Rieger

(2010)) of the discrete case introduced by Tversky & Kahneman (1992).

2.2 Multi Cumulative Prospect Theory

Especially for long term investments, e.g retirement savings, studies show that investors

regularly evaluate their investment. E.g. Benartzi & Thaler (1995) find that the size of the

equity premium is consistent with loss averse investors with annual portfolio evaluation

(myopic loss aversion) causing even long term investors to choose their strategies based on

short evaluation periods. Arkes et al. (2008) provide evidence that investors adjust their

reference point over the investment horizon. Also, a long term investor usually receives an

annual report with current information about the investment. Bellemare et al. (2005) find

evidence that such interim information alone affects perceived utility (ex post). Mental

accounting implies that investors tend to take into account the potential future fluctuation

aversion).
3A continuous function w : [0, 1] → [0, 1] is called probability weighting function, if w is strictly

monotonically increasing, w(0) = 0 and w(1) = 1 and w(p) > p for 0 < p� 1 and w(p) < p for 0� p < 1.



2 PROSPECT THEORY AND EXTENSIONS 6

of the contract’s value when making an investment decision (ex ante). This motivates that

for long term investors, the initial subjective utility of an investment is not only dependent

on the distribution of the terminal wealth, but also on the possible future interim changes.

We therefore propose an extension of CPT, which uses CPT utility with multiple reference

points and evaluation periods to measure the subjective utility of the potential interim

value changes. We refer to this as Multi Cumulative Prospect Theory (MCPT).

We consider an investor and an investment A with time horizon [0, T ], T ∈ N, at time

t0 = 0. Moreover, to simplify notation, we assume future interim evaluations take place

annually. Therefore, we have to introduce a measure for the future annual changes of the

value of the investment A. Since in many countries for fund-linked products the market

value of the product has to be communicated to the client on a regular basis, we consider

for all t ∈ {1, · · · , T} the annual gain or loss Xt := At−χt, where At is the fair value of the

investment A at time t and χt is the reference point for time t. In this setting, the natural

SQ reference point choice for each period is given by χt = At−1. Hence Xt = At − At−1

represents the annual value change with respect to the SQ. Note that this setting implies

that investors use different reference points for different points in time. Based on equation

(1) we can evaluate the CPT utility at t0 = 0 of each annual value change Xt by

CPT (Xt) =

∫ 0

−∞
v(x)d (w (Ft(x))) +

∫ ∞
0

v(x)d (−w (1− Ft(x))),

where Ft(x) = P(Xt ≤ x) and v is the investor’s value-function.
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The MCPT utility at time t0 = 0 of an investor with investment A is then given by

MCPT (A) :=
T∑
t=1

ρtCPT (Xt) (2)

with a discounting parameter ρ ∈ R+.

2.3 Discussion and Choice of the Functions

2.3.1 MCPT Preferences

Consider two investments A and B with the same time horizon [0, T ], T ∈ N. We assume

an investor who considers the same future interim evaluation periods (e.g. annually) for

both investments. Moreover, the investor makes the investment decision at t = 0 under

the assumption that the contract will be held until maturity.4 Recall that in contrast to

dynamic choice models, where typically interim evaluation and decision making go hand in

hand, the MCPT evaluation periods are not connected with decisions.5 An MCPT investor

with a given value and probability weighting function prefers A over B at time t0 = 0 if

MCPT (A) > MCPT (B).

A desired and natural consequence of the MCPT definition is that stochastic dominance

in the traditional sense is violated i.e. if the terminal value of investment A stochastically

dominates6 investment B, investment A does not necessarily have a higher MCPT utility

4Many long-term investors spend a lot of time before they make a decision for a certain product. But
then they stay with it, i.e. the investor does not question the contract after making the decision. Possible
explanations are long-term investors are not willing to regularly spend much time on comparing different
investment contracts, and that rather high surrender fees in the “old” contract and new commission
payments in the new contract make a change less attractive, etc.

5Note that allowing for interim decisions would require a consideration of path-dependent decision
rules and a detailed execution of dynamic consistency issues leading to further restrictive assumptions or
model adjustments. A discussion of dynamic choices for non-expected utility models is done by Sarin &
Wakker (1998) and with focus on changing reference points by Barkan & Busemeyer (1999) and Barkan
& Busemeyer (2003).

6An investment A is stochastically dominant over an investment B, if for every value x, the probability
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than investment B. This results from MCTP utility being based on the distributions of

all annual changes rather than on the distribution of the final outcome only. Nevertheless,

since CPT fulfills the stochastic dominance (cf. Levy (2006)) we can conclude that if the

annual changes XA
t stochastically dominate XB

t for all t ∈ {1, · · · , T}, then MCPT (A) >

MCPT (B).

2.3.2 Reference Point

The choice of the reference point is very important when applying PT or CPT. There are

several studies which provide evidence that the SQ plays an outstanding role, cf. Shefrin

& Statman (1985) or Spranca et al. (1991). Other reasonable static reference points are

given by static guaranteed amounts, which describe a minimum requirement, the payoff

of a risk free investment or some other static comparison values which indicate e.g. the

investor’s goal, cf. Heath et al. (1999), or an expectation about future outcomes, cf. e.g.

Kőszegi & Rabin (2006). Non static variants include the idea that investors adjust their

reference point over the investment horizon depending on the evolution, cf. Arkes et al.

(2008) or Khuman et al. (2012), which includes the idea that investors wants to retain past

gains, or other path dependent outcomes of some benchmark. Other studies suggest the

use of multiple reference points, cf. Koop & Johnson (2012) or Wang & Johnson (2012),

which include a minimum requirement, SQ, and the investor’s goal captured by a dou-

ble S-shaped value function. Moreover, studies suggest that investors can simultaneously

consider multiple reference points without combining them, cf. e.g. Ordóñez et al. (2000).

Knoller (2016) shows that adding a goal that serves as cushion can partially explain the

high demand for guarantees in annuity products.

With increasing regulation, more and more countries require that investors receive regular

to obtain more than x is larger or equal for A than for B and there exists at least some value x, such that
this probability is strictly larger. Cf. Hens & Rieger (2010).
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information about the value of their contract. Therefore, one might expect that moving

and multiple reference points become more important particularly for long term contracts

e.g. in old age provision or retirement planning. MCPT takes this into account by using

different reference points for different future points in time. But in contrast to a reference

point adaptation or the use of multiple reference points only, MCPT investors anticipate

already in the investment decision their future annual evaluations (based on potential

future reference points and outcomes).

2.3.3 Value and Probability Weighting Function

There is a variety of literature on the choice of the value function in PT, e.g. Stott (2006).

For the purpose of this paper we focus on the most common PT value function in finance,

the power value function, which is defined as

v(x) :=


xa, x ≥ 0

−λ|x|b, x < 0

, (3)

where λ > 0 is the loss aversion parameter (in PT typically λ ≈ 2) and a ∈ R+ and

b ∈ R+ effect the different sensitivity to losses and gains. In PT, typically a, b ≤ 1 and

it is very common to set a = b, such that λ becomes the only parameter that affects the

difference between the treatment of gains and losses. This assumption is based on several

experimental and empirical results e.g. in Tversky & Kahneman (1992), Camerer & Ho

(1994) or Tversky & Fox (1995).

As probability weighting function we use the Tversky Kahneman version:

w(p) :=
pγ

(pγ + (1− p)γ)
1
γ

with γ ∈ (0.28, 1], (4)
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where the lower boundary for γ is chosen, such that w(p) is strictly monotonically increasing

for p ∈ [0, 1]. Similar as for the value function we refrain from a different treatment of

gains and losses with respect to the probability weighting. Note that γ = 1 represents the

case without probability weighting.

2.4 Combining CPT and MCPT

The MCPT utility reflects the subjective utility created by potential interim changes.

Nevertheless, the terminal value plays an outstanding role. Therefore, we propose a

combination of CPT and MCPT, where investors consider both, interim value changes

Xt = At −At−1 and the terminal value change X = AT −A0. We define this combination

by

CPT com(A) := sMCPT (A) + (1− s)CPT (X) (5)

with s ∈ [0, 1] controlling the influence of the interim value changes on the total subjective

utility.

3 Application of MCPT: Explaining the Demand for

Cliquet-Type Guarantees

In this Section, we apply MCPT to three guaranteed products (roll-up, ratch-up and cli-

quet) and a product without guarantee. If not stated otherwise, we follow Ebert et al.

(2012) in this section.
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3.1 Financial Market

We assume a Black-Scholes financial market model (Black & Scholes (1973)). We consider

a filtered probability space (Ω,F ,F,P) with a finite time horizon T ∈ (0,∞) and a real

world measure P satisfying the usual assumptions. F = (Ft)0≤t≤T and the σ-algebra Ft

contains the available information at time t. The risky asset S is given by

dSt = St (µ dt+ σ dWt) , S0 = 1,

where W is a standard Brownian motion with respect to P. The risk free asset B is given

by dBt = Btr dt. We assume µ > r ≥ 0 and σ > 0. Moreover, we define θ ∈ [0, 1] to be the

fraction of wealth invested in the risky asset S, and 1− θ the fraction invested in the risk

free asset B. We assume continuous rebalancing to keep these ratios stable. The portfolio

value process V is then given by the P-dynamic

dVt(θ) = Vt(θ)

(
θ
dSt
St

+ (1− θ) dBt

Bt

)
, V0(θ) = 1,

which has the solution: Vt(θ) = V0(θ)e(r+θ(µ−r)−
1
2
θ2σ2)t+θσWt .

3.2 Contract Types

We study four investment (or insurance) contracts with different guarantee features and

benefits at a fixed future (retirement) date 0 < T <∞ and inception t0 = 0. The premium

P paid at t0 = 0 is assumed to be 1. The investment premium α describes the fraction of

the premium allocated to the investment account V , while the remaining part 1−α is used

to finance the guarantee. Moreover, we define lock-in dates t1, . . . , tn = T as the endpoints

of n equidistant subintervals of [0, T ] with length ∆t = T
n

.
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The first considered guarantee feature is the roll-up. Its payoff at maturity T is given by

ArolT := max
(
egT , αVT

)
= αVT +

[
egT − αVT

]+
.

The roll-up essentially provides a guaranteed rate g on the original premium. It is a fre-

quently offered guarantee feature, e.g. in the context of variable annuities (cf. e.g. Bauer

et al. (2008)).

Estep & Kritzman (1988) argue that investors are not only interested in the protection of a

pre-specified fixed level, but also in the protection of interim gains. Guarantees like ratchet

or cliquet features are able to incorporate this effect. Therefore, as a second product, we

consider the so-called ratch-up, which is a combination of a roll-up and a ratchet feature

with the following payoff:

AratT := max
(
egT , αVt1 , . . . , αVT

)
= αVT +

[
max

(
egT , αVt1 , . . . , αVtn−1

)
− αVT

]+
This product essentially pays the highest portfolio value at any lock-in date or a roll-up

with rate g, whichever is higher.

The third and final guaranteed product will be referred to as cliquet product with payoff:

AcliT :=
n∏
i=1

max

(
eg∆t, α

1
n
Vti
Vti−1

)
=

n∏
i=1

(
α

1
n
Vti
Vti−1

+

[
eg∆t − α

1
n
Vti
Vti−1

]+
)

In each period, this product locks in the higher of a guaranteed rate g and the performance

of the underlying portfolio V (the latter only with respect to a portion α
1
n of the investment

premium). This representation of a cliquet product from Ebert et al. (2012) is rather

unusual. However, for g̃ = g− log(α), this representation coincides with the more common
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representation

Ac̃liT := α
n∏
i=1

max

(
eg̃∆t,

Vti
Vti−1

)
= α

n∏
i=1

(
Vti
Vti−1

+

[
eg̃∆t − Vti

Vti−1

]+
)
.

In the more common representation, the contract in each period simply earns the greater

of the guaranteed rate and the performance of the underlying portfolio.

Besides the contracts with guarantee feature, we consider a contract without guarantee

investing in the underlying V , which we refer to as constant mix (cm) contract. Note that

here α = P = 1 and therefore obviously AcmT = VT .

We will only consider fair contracts with an identical initial arbitrage free price of 1, i.e.

we consider contracts c ∈ {rol, rat, cli} with Ac0 (g, α, θ) = 1, where (g, α, θ) ∈ [−∞, r] ×

(0, 1]× [0, 1]. Closed form solutions for the arbitrage free prices of the different products at

t = 0 and at each lock-in date t1, . . . , tn−1 are given in Appendix A. In the analysis, we use

the approach of Ebert et al. (2012), i.e. we fix (α, θ) and determine for each contract the

value of g ∈ [−∞, r], that makes the contract fair.7 This represents a more intuitive choice

in a behavioral context than fixing g, since 1− α denotes the fair value of each guarantee

and θ is a measure of the upside potential of the underlying.

3.3 Results

In this Section, we present numerical results for the following financial market parameters:

µ = 0.06, σ = 0.3, r = 0.03 and T = n = 5, i.e. the lock-in dates are at t = 1, . . . , 5 and the

periods are one year. We will perform sensitivity analyses in Section 3.4 including longer

7If such a g exists, then it is unique. Moreover, within this setting for the roll-up and the cliquet
features such a g exists for all combinations of α and θ. But for large θ and small α no solution exists for
the ratch-up feature.
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time horizons. For the Monte Carlo sample size we use l = 20, 000 and the lower bound

for α is chosen to be 0.6.

3.3.1 Guarantee Levels and Terminal Distributions

Before analyzing the utility of the different contracts and the question, which guarantee

type is preferred by which investor, we take a closer look at the features of the different

contracts to point out the differences and similarities.
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(b) α = 0.9

Figure 1: Fair guarantee levels, i.e. egT , for α = 0.6 (left panel) and α = 0.9 (right panel)
as a function of θ.

Figure 1 displays the different guarantee levels (egT ) of the contracts for different fractions

θ invested in the risky asset. When compared to the roll-up, the ratch-up also locks in

past peaks, which is more expensive. The cliquet guarantee is even more expensive since

each period’s performance is maximized with the guaranteed return. Therefore for given

(α, θ) we have grol ≥ grat ≥ gcli. Moreover, for very small values of θ, the guarantee level

increases slightly in θ. This effect, which results from diversification, is stronger for longer

time horizons. After reaching a peak, the guarantee level decreases for increasing θ.
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(a) Constant Mix (Pure Stock)
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(b) Roll-up with gfair = 0.0142, guarantee level

1.0735 and guarantee level frequency 77.29%.
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(c) Ratch-up with gfair = 0.0066, guarantee level

1.0337 and guarantee level frequency 66.77%.
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(d) Cliquet with gfair = −0.0938, guarantee level

0.6257 and guarantee level frequency 2.78%.

Figure 2: Payoff distribution of the different contracts for α = 0.6 and θ = 1.

To get an impression of the risk-return-characteristics of the terminal payoffs of the differ-

ent contracts, Figure 2 displays the payoff distributions for α = 0.6 and θ = 1.The upper

left panel shows the payoff distribution of the pure stock investment, while the other three

panels display the different guaranteed products.
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The guarantee levels are reflected in the terminal payoff distributions. All distributions

are right-skewed. The roll-up contract has the highest guarantee level (1.0735), and also

the highest guarantee level frequency (77.29%), which is the probability that the terminal

value coincides with the guarantee. It is followed by the ratch-up contract (1.0337 resp.

66.77%). The lower guarantee frequency for the ratch-up contract is a consequence of its

design, which locks in past peaks, if they exceed the guarantee level. As a consequence

of the lower guarantee level, the right tail of the ratch-up is heavier than the right tail

of the roll-up, which indicates higher upside potential. The guarantee level of the cliquet

contract amounts to 0.6257 and is by far the lowest. In turn, the guarantee level frequency

is very low (2.78%). The cliquet contract protects only against rather high losses, but does

so in each year, whereas the other two guaranteed contracts guarantee even a small gain

compared to the initial premium. For smaller values of θ, the guarantee level of the cliquet

is higher, inducing also a higher guarantee level frequency, e.g. for θ = 0.5 the guarantee

level of the cliquet contract is 1.0014 and the guarantee level frequency is 14.27%. Note

that the guarantee level frequency is significantly lower for the cliquet contract, even for

similar guarantee levels. This is due to the fact, that for the cliquet contract one period

with a good performance is sufficient for a terminal value exceeding the guarantee.

3.3.2 Annual Price Changes

Since MCPT utility is driven by annual price changes, we first illustrate the differences

between the contracts in this respect. Percentiles of the distribution of the annual price

changes Xt = Act − Act−1 with t ∈ {1, . . . , T} and c ∈ {cm, rol, rat, cli} are displayed

exemplarily for the year t = 3 in Figure 3 for different choices of α and θ. In the case

α = 0.6 and θ = 0.5 (upper left panel), the guarantee levels are rather similar: 1.1460 for

the roll-up, 1.1431 for the ratch-up and 0.9673 for the cliquet contract. The Figure shows

that the annual price changes for the guaranteed contracts are subject to less fluctuations
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(a) α = 0.6, θ = 0.5 (b) α = 0.6, θ = 1

(c) α = 0.9, θ = 0.5 (d) α = 0.9, θ = 1

Figure 3: Percentiles of the distribution of annual changes in the 3rd year (X3) of the
fair prices of the different contracts for different parameters α and θ. The bars
indicate the 1%−5%, 5%−10%, 10%−25%, 25%−75%, 75%−90%, 90%−95%
and 95%− 99% percentiles and the black lines indicate the mean.

than for the contract without guarantee (constant mix). While in the case α = 0.6 and

θ = 0.5 negative price changes are very unlikely, the upper right panel shows that even for

this value of α the probability of negative price changes increases if θ is increased.

The cliquet contract shows a different structure in the annual changes than the other two

guaranteed contracts. It significantly reduces the probability for strong negative price
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changes, while the probability of medium negative price changes and the potential for

large positive price changes is higher than with the other two guaranteed contracts, i.e.

the distribution of the annual price changes is more right-skewed. This is an important

difference, since CPT investors tend to prefer right skewed distributions (cf. Barberis &

Huang (2008) and Ebert & Strack (2015)). In the case α = 0.9 (lower panels), there exists

no solution for the ratch-up contract for both, θ = 0.5 and θ = 1. The distributions of the

annual price changes of the roll-up and the cliquet contract spread more widely than for the

previous cases due to the higher investment into the underlying investment account. Also,

the distribution of the annual price changes of the cliquet contract is not as right-skewed

as in the previous cases because of the significantly lower guarantee level.

3.3.3 Expected Utility Theory Analysis

Ebert et al. (2012) show that for a CRRA EUT investor with reasonable risk aversion

parameter, all guaranteed contracts create disutility when compared to a constant mix

contract. This is also consistent to the fact that for a CRRA EUT investor any deviation

from the optimal Merton strategy leads to disutility (cf. also Merton (1971) or Tepla

(2001)). These findings can be replicated in our model and hold for all pairs (α, θ) and all

reasonable financial market parameters.

3.3.4 Cumulative Prospect Theory Analysis

We were able to replicate the CPT findings from Ebert et al. (2012). Additionally, we

performed analyses in a model with reference point adaptation. The results that we have

replicated are: A CPT investor prefers either the constant mix or the roll-up contract,

i.e. if a guaranteed contract is preferred over the constant mix contract, then the roll-up

always dominates the other guarantees even if each contract is specified with its optimal

(i.e. CPT utility maximizing) guarantee level. In particular for high values of θ the roll-
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up outperforms the constant mix contract. Furthermore, the results show that in these

cases either a guarantee level equal to the reference point or an insurance against large

losses only is optimal for the CPT investor. The main results did not change under differ-

ent static reference point choices, different CPT parameters or financial market parameters.

In addition, we have considered a model with reference point adaptation as proposed

by Khuman et al. (2012), i.e. χ = smax (Ac0, · · · , AcT ) + (1 − s)Ac0 and s ∈ [0, 1] for

c ∈ {cm, rol, rat, cli}. The first part of the reference point includes the idea of retaining

past peaks, whereas the second part is again the SQ. Our simulations under this model

indicate, that this reference point adaptation is also not able to explain the demand for

the more complex guaranteed products. Although the more complex guarantees do better

than the roll-up contract for most of the combinations, for these combinations the constant

mix contract outperforms all guaranteed contracts.

3.3.5 Multi Cumulative Prospect Theory Analysis

This Section presents the main results of our paper. We use MCPT as described in Section

2.2 to analyze the influence of the annual price changes on the subjective utility. We use

the same CPT parameters as in the pure CPT case, i.e. we fix a = 0.88, as suggested

by Tversky & Kahneman (1992) and perform analyses for different values of λ and γ.

Moreover, we consider the case without discounting, i.e. ρ = 1. As explained in Section

2.2, for each period we use the annual price change Xt = Act − Act−1 based on the SQ

reference point for time t and c ∈ {cm, rol, rat, cli}. We will derive certainty equivalent

contracts (CEM) with a fixed annual return rCE, i.e. rCE describes the fixed annual return

that an investor would regard equally desirable as the considered contract c. Therefore
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XCE
t = ACEt−1(er

CE − 1) and
∑T

t=1 ρ
tCPT

(
XCE
t

)
= MCPT (Ac), which leads to:

MCPT (Ac) =


T∑
t=1

ρt
(
XCE

1 er
CE(t−1)

)a
, MCPT (Ac) ≥ 0

−λ
T∑
t=1

ρt
∣∣∣XCE

1 er
CE(t−1)

∣∣∣a, MCPT (Ac) < 0

We solve the equation numerically for each contract to obtain the corresponding fixed an-

nual return rCE.

Figure 4 illustrates the influence of the different CPT features on the MCPT value for

α = 0.9. The upper left panel shows the MCPT without loss aversion and probability

weighting, such that the only considered CPT feature is the S-shaped value function. Sim-

ilar to the EUT and CPT case, for all contracts the certainty equivalent return increases

with increasing θ, the optimal value of θ is 1 and the constant mix strategy dominates the

other contracts.

The upper right panel additionally includes loss aversion with λ = 2.25. In this setting,

the constant mix contract is dominated by the guaranteed contracts, because they reduce

the probability of negative annual price changes (cf. Section 3.3.2). This is also the reason

why the roll-up and the ratch-up dominate the cliquet contract in this case. Especially for

higher values of θ, the probability of annual losses is higher for the cliquet contract than

for the other two guaranteed contracts, since (as explained in Section 3.3.2) the cliquet

product has a significantly lower minimum guarantee level and hence a higher potential

for a price drop. As for the CPT case, the certainty equivalent return increases slightly

for low values of θ and decreases for high values of θ, where the value of θ at the peak is

higher, if the guarantee level is higher.
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(a) λ = 1, γ = 1
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(b) λ = 2.25, γ = 1
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(c) λ = 1, γ = 0.65
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(d) λ = 2.25, γ = 0.65

Figure 4: rCE for the constant mix and the three guaranteed products as a function of θ
for α = 0.9.

The lower left panel shows the influence of the probability weighting without loss aversion,

i.e. γ = 0.65 and λ = 1. Here, the cliquet contract dominates the other contracts for

all values of θ. This can again be explained by the annual price change distributions (cf.

Section 3.3.2) and the fact that CPT particularly overweights extreme events that occur

with low probability. The annual price changes of the cliquet contract are extremely right-

skewed, i.e. they include some relatively high gains with low probabilities. These outcomes

get overweighted and generate a higher certainty equivalent return. The constant mix con-
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tract also contains high gains that happen with low probabilities, but also high losses that

happen with low probabilities, which reduce the certainty equivalent return. The certainty

equivalent return of all contracts increases with increasing θ and the optimal value of θ is 1.

Finally, the lower right panel includes all CPT features. Here, the MCPT certainty equiv-

alent return of the more complex guaranteed products (ratch-up and cliquet) exceeds the

roll-up and the constant mix contract. Due to the loss aversion, the constant mix performs

worst. The overall optimal certainty equivalent return is reached by the cliquet contract,

which also performs best for most values of θ. However, the optimal value of θ, i.e. the

fraction invested in the risky asset, is lower than in the CPT case. This is due to the fact,

that CPT investors with a longer evaluation period prefer more risky assets (cf. Benartzi

& Thaler (1995) or Berkelaar et al. (2004)) than in our setting with an annual evaluation.

Figure 5 illustrates the same effects for α = 0.6, i.e. for higher guarantee levels. It is worth

noting that especially for high values of θ, the guaranteed contracts perform much better,

than in the case α = 0.9. The upper right plot shows that the higher guarantee levels

reduce the losses in the annual price changes, that caused disutility in the α = 0.9 case.

Therefore, the MCPT certainty equivalent return difference between the constant mix and

the guaranteed contracts is even larger in this case.

In a next step we look at different levels of α and θ simultaneously. Figure 6 displays

the values of the MCPT certainty equivalent return for the four different contracts as a

function of α and θ. Note, that the lower bound for α is chosen to be 0.6.

For each fixed level of α, the cliquet contract generates the highest certainty equivalent

return. The overall maximum certainty equivalent return for the cliquet and therefore for
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(a) λ = 1, γ = 1
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(b) λ = 2.25, γ = 1

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

0.06

0.08

rC
E

θ
 

 

CM
Rol
Cli
Rat

(c) λ = 1, γ = 0.65
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(d) λ = 2.25, γ = 0.65

Figure 5: rCE values for the constant mix and the three guaranteed products as a function
of θ for α = 0.6.

all contracts is 4.79% for α = 0.6 and θ ≈ 0.5.8 Moreover, the cliquet performs better

than both, the roll-up and the constant mix contract for almost all pairs (α, θ). The

maximum for the roll-up contract is 3.01% for α ≈ 0.75 and θ ≈ 0.325 and as seen before

the maximum for the constant mix contract is 3% at θ = 0. This means that for an

investor, who takes annual changes into account, the risk free asset is the most attractive

8If we allow for all levels of α, this remains true and the optimal value of the cliquet contract is at
α ≈ 0.2 and θ = 1.
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(a) Constant Mix (b) Roll-up

(c) Ratch-up (d) Cliquet

Figure 6: rCE values for the constant mix and the three guaranteed products as a function
of θ and α. CPT parameters: λ = 2.25, γ = 0.65.

underlying for a contract without guarantee. This finding might explain the demand for

very safe assets, that can be observed in many markets.

3.3.6 A Combined CPT and MCPT Analysis

As described in Section 2.4, MCPT reflects the utility created by annual price changes.

Investors might consider both, annual price changes and terminal value. Therefore, we now

analyze combinations of the CPT and the MCPT utility, i.e. we look at CPT com(Ac) :=
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sMCPT (Ac) + (1 − s)CPT (X) with s ∈ [0, 1] and X = AcT − χ.9 Again, we will derive

certainty equivalent contracts (CEcom) with a fixed annual return rCE that is determined

by:

CPT com(Ac) =


s

T∑
t=1

ρt
(
XCE

1 er
CE(t−1)

)a
+ (1− s)

(
XCE

)a
, CPT com(Ac) ≥ 0

−λ
(
s

T∑
t=1

ρt
∣∣∣XCE

1 er
CE(t−1)

∣∣∣a + (1− s)
∣∣XCE

∣∣a) , CPT com(Ac) < 0.

The upper panels in Figure 7 illustrate the certainty equivalents in the combined model

for the case α = 0.6 and lower panels for the case α = 0.9, with s = 0.3 and s = 0.5.

The lower panels in Figure 7 show for the case α = 0.9, that both, the cliquet and the

ratch-up contract outperform the constant mix contract for all values of θ in both con-

sidered combinations. Moreover, the ratch-up for s = 0.3 resp. the cliquet contract for

s = 0.5 generate the highest combined certainty equivalent return. Similar results can be

seen in the upper panels for the case α = 0.6. In this case the constant mix and even the

roll-up are outperformed for all values of θ by at least one of the more complex guaranteed

contacts. The highest combined certainty equivalent return in this case is given by the

ratch-up with θ = 1 in both considered combinations. Moreover, we have calculated the

certainty equivalent return as a function of θ and α similar to the MCPT case for s = 0.3

and s = 0.5. The results show that the described findings also hold for other parameter

combinations and the highest overall combined certainty equivalent return is generated by

the ratch-up for s = 0.3 (rCE = 4.85% for θ = 1 and α = 0.6) resp. the cliquet contract

for s = 0.5 (rCE = 4.27% for θ = 0.5 and α = 0.6).

We can conclude that in contrast to EUT and CPT (with and without reference point

9Note that in this setting χ = χ1 = 1, where χ1 represents the reference point in MCPT at time 1.
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(a) α = 0.6: rCE with s = 0.3
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(b) α = 0.6: rCE with s = 0.5

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

0.06

0.08

rC
E

θ
 

 

CM
Rol
Cli
Rat

(c) α = 0.9: rCE with s = 0.3
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(d) α = 0.9: rCE with s = 0.5

Figure 7: rCE with s = 0.3 and s = 0.5 for the constant mix and the three guaranteed
products as a function of θ and α = 0.6 (upper panels) resp. α = 0.9 (lower
panels). CPT parameters: λ = 2.25, γ = 0.65.

adaptation), MCPT can explain the demand for more complex guaranteed contracts (cli-

quet and ratch-up). This remains true even if value fluctuations only partly influence the

investor’s subjective utility.
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3.4 Sensitivity Analysis

We have performed sensitivity analyses with respect to different parameters. First, we

used different financial market parameters, i.e. µ, σ and r. Generally, under reasonable

parameter settings our main findings for the MCPT are stable. For a fixed µ, we find

that an increasing volatility makes the simple products even less attractive, since more

low probability events of large losses happen for the constant mix contract and the roll-up

includes less low probability annual gains compared to the other two guaranteed contracts.

Moreover, the better the market environment, i.e. higher µ and lower σ, the higher the

optimal fraction θ invested in the risky asset, while the differences between the products

remain rather stable. Moreover, we have performed simulations with longer investment

horizons T (10 and 20 years). The main findings prevail, i.e. the more complex guaranteed

contracts still outperform the simple contracts. E.g. for T = 10 the overall maximum cer-

tainty equivalent annual return rCE is 4.15% generated by the cliquet contract for α = 0.6

and θ ≈ 0.33. Contrary to the CPT, MCPT investors reduce (if possible) the fraction

invested in the risky asset θ for longer investment horizons to obtain the maximum MCPT

certainty equivalent return for a fixed α. However, the annualized guarantee rates eg are

rather similar. E.g. the annualized guarantee rate of the overall optimal cliquet contract

in the case of T = 5 is 1.0014 (α = 0.6, θ ≈ 0.5) and 1.0025 in the case of T = 10 (α = 0.6,

θ ≈ 0.33). Using different empirically reasonable value function parameters a ∈ [0.8, 1] (cf.

Tversky & Kahneman (1992), Birnbaum & Chavez (1997) or Abdellaoui (2000)) does not

change the findings significantly. We also repeated the analysis for different discounting

factors ρ. We have observed that for all reasonable values for the time discounting param-

eter ρ < 1 the influence is negligible.

Last, we have investigated the influence of the reference point adaptation, i.e. the use

of annual price changes as a basis for the annual CPT evaluation. For this, we ran the
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MCPT simulations also with reference points fixed to the initial fair price, i.e. χ1 = χ2 =

· · · = χT = 1. This means that investors still evaluate annually, but their reference point

remains equal to the initial fair price of the contract. In this setting, we find that all

guaranteed contracts outperform the constant mix contract in all cases. Without reference

point adaptation, we also find that the roll-up dominates the more complex guaranteed

contracts for all fixed levels of α. Therefore, the reference point adaptation is a necessary

feature of MCPT to explain the demand for more complex guaranteed products.

4 Conclusion and Outlook

In this paper, we have proposed an extension of CPT that we call Multi Cumulative

Prospect Theory (MCPT). It is based on the CPT utility generated by e.g. annual changes

of the contract value. This is motivated by the fact that investors tend to regularly re-

evaluate their investment and adapt their reference point based on the evolution of the

investment value. We propose that investors who are attracted by specific contract fea-

tures, like annual lock-in guarantees, might be particularly inclined to take into account

the subjective utility of potential future fluctuations of the contract value when making in-

vestment decisions. MCPT measures the subjective utility generated by potential interim

changes of the contract value. Nevertheless, the terminal value has an outstanding role

when making an investment decision. Therefore, we also propose a combination of CPT

and MCPT, which considers both, annual price changes and terminal value.

As an application we have analyzed three guaranteed products, which are common in many

markets (roll-up, ratch-up and cliquet) and a contract without guarantee (constant mix).

First, we could confirm previous results, that neither EUT nor CPT can explain the de-

mand for the more complex types of guarantees. Moreover, we have performed an analysis
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with a CPT reference point adaptation and have found that this extension is (at least in

our setting) also not able to explain the demand for the more complex guaranteed contracts.

When applying MCPT, the more complex guaranteed contracts, in particular the cliquet

contract, outperform the other contracts (roll up and constant mix) in all considered cases.

This is mainly caused by the more right-skewed distribution of the annual changes in the

value of the cliquet contract compared to the other contracts. Hence, our approach is

able to explain the demand for these contracts. Moreover, the contract without guarantee

creates the more disutility, the higher the fraction invested in the risky asset θ. If only

products without guarantee are offered, then an MCPT investor prefers an investment in

the risk free asset. Therefore, our approach can also explain the very large holdings of safe

assets that can be observed in many countries.

Additionally, we have analyzed the contracts under the combined model, which considers

both, the terminal value of the investment, and the annual value changes. Our results show

that also in this combined model investors may have a preference for the more complex

guaranteed products. This means that demand for more complex guarantees exists even if

value fluctuations only partly influence the investor’s subjective utility.

The analyses in this paper provide a first indication that MCPT has some descriptive

power in particular for long-term investments. Still, the influence of value fluctuations

on the subjective utility is not completely understood. Future research should therefore

address the following questions: For which types of contract features do investors tend to

take into account value fluctuations when making the investment decision? How strong is

the influence of the value fluctuations on the subjective utility compared to the influence of

the terminal value? Moreover, we have only analyzed the MCPT-utilty at time t = 0. An
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analysis of the MCPT-utility during the contract duration could give additional insights

on client’s surrender behavior. Also, we have only considered a restricted set of contracts

and compared them through simulations, leaving several theoretical questions like: Under

which general conditions does an optimum for a MCPT investor exist and what general

properties hold for the MCPT? Furthermore, there are several other aspects that might af-

fect the results and should therefore be considered in future research. Such aspects include

the influence of a more dynamic reference point, that depends on the complete history of

previous gains and losses (as opposed to the last value only), time dependent CPT pa-

rameters for loss aversion and probability weighting, etc. Also, experiments about suitable

models for multiple reference points and reference point adaptation and experiments to

verify that typical CPT parameters are suitable choices also for the evaluation of future

value fluctuations would be desirable.

A Pricing formulae for the considered guaranteed prod-

ucts

In this Appendix we give the arbitrage free prices for the three guaranteed products consid-

ered in Section 3 at t0 = 0 and at each lock-in date t1, . . . , tn−1. The proofs of the pricing

formulas of Proposition A.1 use similar techniques as presented by Ebert et al. (2012), who

only gives prices for t = 0. We therefore omit the details.

Proposition A.1 (Arbitrage free Pricing)

Let BPut (St, t, θ,K, T ) denote the time t-price of a European put option with underlying

S, maturity T and strike K, i.e.

BPut (St, t, θ,K, T ) = e−r(T−t)KN
(
−h(2)

(
(T − t), St

K

))
− StN

(
−h(1)

(
(T − t), St

K

))
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with

h(1)(t, z) :=
ln(z) + (r + 1

2
θ2σ2)t

θσ
√
t

and h(2)(t, z) := h(1)(t, z)− θσ
√
t.

Here, N (·) denotes the one-dimensional and Nd(·) the d-dimensional cumulative standard

normal distribution. Then the arbitrage free prices for m ∈ {0, . . . , n− 1} are given by:

(i) Roll-up:

Aroltm (g, α, θ) = αVtm + BPut
(
αVtm , tm, θ, e

gT , T
)

(ii) Ratch-up:

Arattm (g, α, θ) = αVtm + 1{{
Vtj≤

egT

α

}
1≤j≤m

} (e−r(T−tm)+gTNn−m
(
v1,Σm

)
− αVtmNn−m

(
v2,Σm

) )
+

n−1∑
i=1

Im,i

where

Im,i :=1{i≤m}1{
Vti≥

egT

α
,

{
Vtj
Vti
≤1

}
1≤j≤m,j 6=i

}αNn−m (v3,Σm

) (
e−r(T−tm)Vti − Vtm

)
+

1{i>m}αVtmNi−m (v4,Σ
m
i )
(
e−r(T−ti)Nn−i

(
v5,Σi

)
−Nn−i

(
v6,Σi

))
with

v1 :=

(
−h(2)

(
tm+1 − tm,

αVtm
egT

)
, . . . ,−h(2)

(
T − tm,

αVtm
egT

))
v2 :=

(
−h(1)

(
tm+1 − tm,

αVtm
egT

)
, . . . ,−h(1)

(
T − tm,

αVtm
egT

))
v3 :=

(
−h(1)

(
tm+1 − tm,

Vtm
Vti

)
, . . . ,−h(1)

(
T − tm,

Vtm
Vti

))
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v4 :=

(
h(1)

(
ti − tm,min

(
αVtm
egT

,
Vtm
Vt1

, . . . ,
Vtm
Vtm

))
, h(1) (ti − tm+1, 1) , . . . ,

h(1) (ti − ti−1, 1)
)

v5 :=
(
−h(2) (ti+1 − ti, 1) , . . . ,−h(2) (T − ti, 1)

)
v6 :=

(
−h(1) (ti+1 − ti, 1) , . . . ,−h(1) (T − ti, 1)

)
and corresponding variance-covariance matrices: Σi,Σ

i
m,Σm.

(iii) Cliquet:

Aclitm(g, α, θ) =
(
α

1
n + BPut

(
α

1
n , 0, θ, eg∆t,∆t

))n−m m∏
i=1

max

(
α

1
n
Vti
Vti−1

, eg∆t
)
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Bellemare, Charles, Krause, Michaela, Kröger, Sabine, & Zhang, Chendi. 2005. Myopic

loss aversion: Information feedback vs. investment flexibility. Economics Letters, 87(3),

319–324.



REFERENCES 34

Benartzi, Shlomo, & Thaler, Richard H. 1995. Myopic loss aversion and the equity premium

puzzle. The Quarterly Journal of Economics, 110(1), 73–92.

Benartzi, Shlomo, & Thaler, Richard H. 1999. Risk aversion or myopia? Choices in

repeated gambles and retirement investments. Management Science, 45(3), 364–381.

Berkelaar, Arjan B, Kouwenberg, Roy, & Post, Thierry. 2004. Optimal portfolio choice

under loss aversion. Review of Economics and Statistics, 86(4), 973–987.

Birnbaum, Michael H, & Chavez, Alfredo. 1997. Tests of theories of decision making: Vio-

lations of branch independence and distribution independence. Organizational Behavior

and Human Decision Processes, 71(2), 161–194.

Black, F., & Scholes, M. 1973. The Pricing of Options and Corporate Liabilities. Journal

of Political Economy, 81(3), 637.

Camerer, Colin F, & Ho, Teck-Hua. 1994. Violations of the betweenness axiom and non-

linearity in probability. Journal of Risk and Uncertainty, 8(2), 167–196.

Chen, An, Hentschel, Felix, & Klein, Jakob K. 2015. A utility-and CPT-based comparison

of life insurance contracts with guarantees. Journal of Banking & Finance, 61, 327–339.

Dichtl, Hubert, & Drobetz, Wolfgang. 2011. Portfolio insurance and prospect theory in-

vestors: Popularity and optimal design of capital protected financial products. Journal

of Banking & Finance, 35(7), 1683–1697.

Dierkes, Maik, Erner, Carsten, & Zeisberger, Stefan. 2010. Investment horizon and the

attractiveness of investment strategies: A behavioral approach. Journal of Banking &

Finance, 34(5), 1032–1046.

Døskeland, Trond M, & Nordahl, Helge A. 2008. Optimal pension insurance design. Journal

of Banking & Finance, 32(3), 382–392.



REFERENCES 35

Ebert, Sebastian, & Strack, Philipp. 2015. Until the Bitter End: On Prospect Theory in

a Dynamic Context. American Economic Review, 105(4), 1618–33.

Ebert, Sebastian, Koos, Birgit, & Schneider, Judith C. 2012. On the optimal type and level

of guarantees for prospect theory investors. In: Paris December 2012 Finance Meeting

EUROFIDAI-AFFI Paper.

Estep, Tony, & Kritzman, Mark. 1988. TIPP: Insurance without complexity. The Journal

of Portfolio Management, 14(4), 38–42.

Heath, Chip, Larrick, Richard P, & Wu, George. 1999. Goals as reference points. Cognitive

Psychology, 38(1), 79–109.

Hens, T., & Rieger, M. 2010. Financial Economics: A Concise Introduction to Classical

and Behavioral Finance. 1st edn. Springer.

Kahneman, Daniel, & Tversky, Amos. 1979. Prospect theory: An analysis of decision

under risk. Econometrica: Journal of the Econometric Society, 263–291.

Khuman, Anil, Phelps, Steve, & Constantinou, Nick. 2012. Constant Proportion Portfolio

Insurance Strategies under Cumulative Prospect Theory with Reference Point Adapta-

tion. In: EBS Working Papers.

Knoller, Christian. 2016. Multiple Reference Points and the Demand for Principal-

Protected Life Annuities: An Experimental Analysis. Journal of Risk and Insurance,

83(1), 163–179.

Koop, Gregory J, & Johnson, Joseph G. 2012. The use of multiple reference points in risky

decision making. Journal of Behavioral Decision Making, 25(1), 49–62.
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