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Abstract

Questions related to the existence and specification of a limit to human lifespan lead to heated dis-
cussions in several scientific fields such as biology, demography, medicine, or actuarial sciences. In the
present paper, we contribute to this discussion from a statistical point of view. To this end, we use mortality
data of US females obtained from the International Database on Longevity as well as the Human Mortality
Database. The employment of data on old-age mortality typically raises two mature issues: sparse infor-
mation on the old ages and censored observations. To tackle these challenges we use enhanced methods
from extreme value theory and an adequate combination of both databases. Up to the present paper, this
censoring issue has been ignored in previous investigations on the maximum human lifespan. We address
this accordingly by combining subsampling and cross-validation techniques with recent results on censored
extreme value theory. Finally, we obtain estimates for the maximum human lifespan of US females in the
age range between 125.8 and 128.7 years.
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1 Introduction

Who among us has not yet thought about the possibility to extend the individual lifespan to ages that have
never been reached before? May it even be possible to live forever as maintained by some authors (e.g.
de Grey (2003))? Or is there any natural limit to human life which probably is just not yet in sight? Did we
actually reach this limit already? The latter claim was just recently supported by explorative data analyses in a
Nature paper by Dong et al. (2016). Therein the authors found ’evidence for a limit to human lifespan’ leading
to remarkable press review all over the world and heated discussion among scientists. They explain their claim
with ’natural constraints’ which has been asserted by many authors before (e.g. Fries (1980)). In any case,
as pointed out by Weon and Je (2009), ’the existence of maximum human lifespan remains a puzzle in aging
research’.
From a statistical point of view, however, all of these questions are related to the support of the distribution
function of the underlying age distribution at death (the so-called deaths curve) and lead to investigations about
its right endpoint. The current paper answers these questions with modern statistical methods, especially from
censored extreme value theory (EVT). Since it is ad hoc not clear whether the support is finite or not, we
also infer this presumption. Note, that we do not consider the evolution of the limit of human lifespan over
time. We admit, however, that the structure of the deaths curve probably depends on time; in particular, this
probably holds for the maximum of the human lifespan, see for example Wilmoth et al. (2000). Consequently,
the figures we present in this paper can be seen as an average of this statistic over time.
For our analysis, we use data from the International Database on Longevity (IDL) and the Human Mortality
Database (HMD). To avoid gender effects while guaranteeing an acceptable data quality and quantity we focus
on mortality data of US females. The HMD is probably one of the largest publicly available databases in the
world. However, it has the particular disadvantage that a lot of observations are right-censored; particularly
at age 110. This prohibits a gain of information about the right tail behavior of the deaths curve. However,
it is common knowledge that there have been humans which survived the age of 110 (e.g. the famous case
of Jeanne Calment, see Robine and Allard (1998)) and thus the structure of the HMD data is not particularly
suitable for our purposes. In contrast, the IDL is more informative regarding the death counts of the highest
ages: It provides the exact lifespan of so-called supercentenarians, i.e. individuals who at least reached their
110th birthday. The IDL covers 309 US female supercentenarians which allows for a statistical analysis in the
typical extreme value framework as, e.g. presented in the monographs by de Haan and Ferreira (2006); Reiss
and Thomas (2007); Falk et al. (2010) and Resnick (2013). These rather classical EVT methods have already
been applied to estimate the maximum attainable age in different populations, see e.g. Aarsen and de Haan
(1994) and Gbari et al. (2016) for the Netherlands and Belgium as well as Watts et al. (2006) for Canada and
Japan. To our knowledge, there is no similar analysis for the US. The underlying inference procedures are
deduced from asymptotic considerations which may lead to (slightly) imprecise estimates when applied to the
IDL. To increase the inferential accuracy we combine the datasets of the IDL and the HMD and analyze them
with existing methods from censored EVT following Einmahl et al. (2008) (see also Gomes and Neves (2011);
Worms and Worms (2014) or Gomes and Guillou (2015) for other censored EVT approaches).

In statistics, it is well known that accounting for censoring is important. In particular, disregarding the
censoring issue may lead to biased estimates. Nevertheless, we could not find a single paper on estimating the
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maximum lifespan that dealt with censoring accordingly. This gap is closed by the present article.

The remainder of this paper is organized as follows. Section 2 gives a detailed description of the employed
datasets and discusses some issues with the structure of the databases. Thereafter, classical EVT is applied
to analyze the IDL in Section 3, whereas Section 4 deals with the analysis of the joined dataset by modern
censored EVT approaches. The paper closes with a discussion and outlook in Section 5.

2 Data Description

In this section, we cover different aspects of the databases under consideration. Unfortunately, to our knowl-
edge there is no publicly available database which includes complete mortality data for a sufficiently long
history while providing the complete age range for all covered populations. However, with some restrictions
there are at least two publicly available databases which can be employed for our purpose: the International
Database on Longevity (see IDL (2015)) and the Human Mortality Database (see HMD (2015)). As outlined
in the introduction we focus on female US citizens for a reliable data quality and quantity that permits a rea-
sonable statistical analysis. In the remainder of this section, we briefly describe both the IDL and the HMD and
discuss some aspects of their structure with focus on US females. Furthermore, we compare these databases
and their characteristics directly and derive ramifications for subsequently applied inference methods.
The IDL contains data for 15 industrialized countries across the world. Each of its records relates to one in-
dividual dying after its 110th birthday, where the individual’s age at death is given exactly in days from their
birthdays. This exactness is a special feature of the IDL. As a further advantage, it is supposed to be free of
age ascertainment bias (see Maier et al. (2010)). For the United States, the IDL contains 395 persons dying at
the age of 110 or beyond between 1980 and 2003, whereof 309 are females. The oldest US female recorded in
the IDL reached an age of 43560 days (i.e. 119 years and 97 days). These figures illustrate a major issue of the
IDL: Its exactness and lack of ascertainment bias inevitably lead to a reduction in the number of observations.
Thus, the data may even underestimate the count of supercentenarians dying in the years between 1980 and
2003. This also fits the assessment of Kestenbaum and Fergusen (see Maier et al. (2010)), who guess that there
were more than 400 supercentenarians in the US (i.e. females and males) during the timespan covered by the
IDL. However, they further explain the process of validation of the IDL data and suggest the conclusion, that
the IDL fits the profile of the US female population well in general. To give a statistical framework for the
subsequent inference given in Section 3 we treat the records of the IDL as realizations from independent and
identically distributed random variables that are left-truncated at age 110.
In contrast to the IDL, the HMD covers mortality data and population sizes of 38 different countries, where
death counts are obtained in up to three dimensions: age at death, calendar year of death, and calendar year
of birth. A special feature of the HMD is the availability of edited data and unedited input data (at least not
edited by the HMD). Hence, we decided to use the edited HMD data, because in contrast to the unedited data
it has a homogeneous structure, which is important for the aggregation of the data over time. In order to reduce
complexity we employ the 1 × 1 number of deaths period data, i.e. we pass on the information of the year of
birth. Note however, that this data is manipulated in different ways, particularly by extrapolating models in
higher age ranges, see the explanations of the HMD method sheet given in Wilmoth et al. (2007) for details.
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Therefore, we may be confronted with certain misestimations of the number of deaths in advanced age ranges
and these manipulations may have an impact on the results of the joined analysis of IDL and HMD in Section 4.
Due to the lack of non-manipulated data we cannot quantify this impact.
For US females the HMD covers the years between 1933 and 2014. In sum it includes 73 million deaths over
all ages, whereof almost 4000 females are right-censored at 110, i.e. died at the age of 110 or beyond. The
input data builds on several official population and health statistics of the United States. In this sense, the data
is likely to be complete with regard to the US population in general. The HMD supplies only age discrete
data (i.e. in completed calendar years), which requires some adjustments to the data. We assume the deaths to
be uniformly distributed over each calendar year, which enables us to redistribute the deaths uniformly during
each year of age.
In summary, the HMD is in terms of quantity by far better than the IDL. In contrast, the data of the IDL has
a significantly higher quality. This disparity cannot be resolved in any way. As mentioned above, the HMD is
likely to represent the US population in general, i.e. we act on the assumption that every US citizen is recorded
in this database. Thus, we can assume, that each individual recorded in the IDL has also a representation in
the HMD as an individual dying at the age of 110 or beyond. We use this assumption in Section 4 where we
merge the data of both databases in order to achieve a more informative combined data set.
Another disparity between the HMD and the IDL is the age range covered by the databases. While the HMD
only contains single age mortality data up to the age of 109 and a cumulative entry at 110 and beyond, the IDL
covers the age range beyond 109. These circumstances imply different strategies for the statistical analysis of
these databases as outlined in the two subsequent sections.

3 Classical EVT analysis of the IDL

In this section, we consider the classical EVT framework given by iid random variables Xi ∼ F with unknown
cumulative distribution function (cdf) F . Here Xi indicates the age at death of subject i and we are particularly
interested in the right endpoint of the cdf F , i.e. we search for xF := sup{x : F (x) < 1} ≤ ∞. Since we do
not want to presume the existence of a limit to human lifespan, we should also allow for an infinite lifetime,
i.e. for xF =∞. A consistent estimator for xF is then given by Mn = maxi≤n{Xi} with cdf F n. To infer this
estimator, there are two well-established EVT approaches, each employing a different class of distributions:
the generalized extreme value distributions (GED) and the generalized Pareto distributions (GPD). In what
follows, we briefly describe these two approaches and refer to de Haan and Ferreira (2006) for more details
and proofs.

The GED is based on the Fisher-Tippet Theorem (see Fisher and Tippett (1928)). It describes the class of
potential limit distributions Gγ of the standardized maximum (Mn− bn)/an for suitable sequences an > 0 and
bn. The class of GED Gγ(ax+ b), is given by

Gγ(x) =

{
exp

(
−(1 + γx)−

1
γ

)
, 1 + γx > 0 γ 6= 0

exp (− exp(−x)) , x ∈ R γ = 0
(3.1)
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where a and b are scaling and location parameters which can be calculated from the current dataset.

While this concept is rather general, the second approach based on the class of GPDs seems to be more
suitable with respect to the left truncated IDL data. In the GPD approach we are not only considering
the maxima of the realizations of random variables, but their values above a given threshold t, say t =
110 in our case (see also Balkema and de Haan (1974)). To this end, we are interested in the distribution
Ft(x) = P(X1 − t ≤ x|X1 > t). For example de Haan and Ferreira (2006) show that the limit equation
limt→xF supxF−t<x<0 |Ft(x)−Hγ,σ(x)| = 0 can only be fulfilled for distributions from the GPD given by

Hγ,σ(x) =

{
1−

(
1 + γx

σ

)−1
γ for γ 6= 0

1− exp(−x
σ
) for γ = 0,

(3.2)

where σ is again a scaling parameter. In both cases, the extreme value index (EVI) γ is the key parameter that
characterizes the tail of the limiting distribution. In particular, the value of γ separates two different cases:
If γ < 0 holds (case (i)), the considered distribution has a finite right endpoint which corresponds to a finite
maximal age. Contrary, if γ > 0 holds (case (ii)), the right endpoint is infinite and US females may have the
potential to live forever. For the decision between the cases (i) and (ii) and for the estimation of xF we need
adequate estimators for γ. The recent literature discusses several different estimators, some of which are valid
only for EVIs in certain intervals (see e.g. Pickands (1975) or Dekkers et al. (1989) for early work on this
topic and de Haan and Ferreira (2006) and Resnick (2013) for reviews). However, we particularly allow for
positive values of the EVI. This basically leaves us with two choices of estimators for γ: the moment estimator
(Mom) for the GED approach and the maximum likelihood estimator (MLE) for the GPD approach. The latter
is defined as that value of γ which maximizes the likelihood during a fit of the semi-parametric GPD model to
the data while the moment estimator is defined as

γ̂Mom
n (k) :=M (1)

n (k) + 1− 1

2

(
1−

(
M (1)

n (k)
)2
/M (2)

n (k)
)−1

, (3.3)

where M (j)
n (k) := 1

k

∑k
i=1 (log(Xn−i+1,n)− log(Xn−k,n))

j and Xi,n denotes the i-th order statistic. Other
estimators such as Pickands or Hill estimators have not been considered due to restricted EVI values (Hill) or
less efficiency (Pickands), see e.g. the discussion in Section 3 of de Haan and Ferreira (2006). In what follows,
γ̂
(·)
n (k) denotes the EVI estimator, where k is the number of upper order statistics used and (·) indicates the

short-form of the estimator (i.e. MLE or Mom, respectively). The choice of k as a function of the number of
observations n is crucial for a good estimate. Since both estimators are consistent for γ and even asymptotically
normally distributed if k → ∞ while k

n
→ 0, we should not choose k too small or too large. To this end, e.g.

de Haan et al. (2016) describe the following observation: the smaller the values of k, the higher the variance of
the EVI estimator while for increasing k the bias of the EVI estimator gets larger. Finding a suitable k between
these extremes is called the bias-variance tradeoff. To get a first idea of the choice of k, we perform a graphical
inspection: Figure 1 shows both the moment and maximum likelihood estimates for the IDL depending on k
and the point-wise 95% confidence intervals (CI) for both estimates (where we employed the methods of
Aarsen and de Haan (1994) for the construction of the Mom-based CI and carried them over to the MLE-based
CI for a better comparison).
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Figure 1: Point estimates k 7→ γ̂
(·)
n (k) of the EVI based on the MLE and Mom approach as a function of k

together with point-wise 95% CI for the IDL.

From Figure 1 we can see that both EVI estimates are positive for k ≤ 46 and negative for k > 46.
Interpreting values of k ≤ 46 as too small this suggests a negative EVI-estimate corresponding to a finite
maximal attainable age. However, the CI or more decisive the one-sided CI (not shown here) portend that the
null hypothesisH0 : γ > 0 of a positive EVI cannot be rejected at the significance level of 5%. In particular, the
asymptotic one-sided z-test forH0 based on the MLE (Mom) gives an approximate p-value of 0.2349 (0.2183).
Thus, the hypothesis of a potentially infinite lifetime cannot be rejected based on data from the IDL and the
methods described above. If we ignore this statistical insignificance for now and only take into account that the
EVI-estimates are negative for k > 46 we can nevertheless estimate a maximum attainable age. To this end,
we have to find a suitable k. A general recommendation, or rule-of-thumb, is to choose k in a region where
these estimates stabilize. Incorporating the bias-variance tradeoff as well as the asymptotic framework, this
points us to a choice of k between 100 and 200. The minimum, maximum and median of the MLE and Mom
estimates for γ with k between 100 and 200, the corresponding value of k, and the 95% confidence intervals
are given in Table 1.

As already seen in Figure 1 the CIs are rather wide and each contains the value of 0, i.e. a potential infinite
lifetime cannot be rejected at level 5%. This may be explained by the small sample size and a potentially
negative γ that is quite close to zero (i.e. does not lie far in the alternative). However, each of the estimated
EVI values corresponds to a different GPD (MLE case) or GED (Mom case) and can be used to estimate the
right-endpoint of the underlying distribution.

For illustrational purposes, exemplary QQ-plots for both median values are given in Figure 2. There the
empirical quantiles of the IDL data are plotted against simulated quantiles of the respective distribution func-
tions and the solid lines denote the corresponding regression line, respectively. Both plots show an acceptable
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γ̂
(·)
n (k) (95% CI for γ) k x̂

(·)
F (k) (95% CI for xF )

min MLE -0.0711 (-0.2173, 0.0751) 155 132.30 (91.62, 172.98)
Mom -0.0942 (-0.2772, 0.0888) 106 127.49 (99.53, 155.45)

median MLE -0.0572 (-0.1902, 0.0758) 128 136.71 (68.37, 205.05)
Mom -0.0663 (-0.2247, 0.0921) 142 133.11 (84.14, 182.08)

max MLE -0.0385 (-0.1977, 0.1207) 140 147.60 (02.92, 292.28)
Mom -0.0418 (-0.2032, 0.1196) 139 144.49 (21.32, 267.66)

Table 1: MLE- and Mom-estimates of the EVI (γ) and the right-endpoint (xF ) for the IDL data together with
95% confidence intervals for different choices of k.

Figure 2: QQ-plots of empirical quantiles over simulated quantiles; left panel: pareto distribution with γ =
−0.0572; right panel: generalized extreme value distribution with γ = −0.0663. The solid lines visualize the
regression line for the plots.

fit with a considerable advantage for the GPD model (left panel). This additionally reassures the potential
applicability of both EVI approaches. We note, that we also investigated whether the underlying distribution
function lies in the maximum domain of attraction of Gγ for the above choices of γ < 0. By means of the test
of Dietrich et al. (2002) with the critical value proposed in Huesler and Li (2006) we could not reject this.

In the next step, we determine the right endpoint of the corresponding models. As explained around Equa-
tion (3.1) above, we need to estimate the scaling and location parameters a and b, in order to find a GED. To
this end we apply the method described in Section 3 of de Haan and Ferreira (2006) and finally obtain estimates
for the maximum lifespan x̂Mom

F (k) (GED) and x̂MLE
F (k) (GPD), respectively. The estimators again depend

on the tuning parameter k and are consistent and asymptotically normal under similar regularity assumptions.
With this we can construct 95% CIs. Table 1 shows the results: It gives the minimum, median, and maximum
of the MLE and Mom endpoint estimates with the corresponding asymptotic 95% CIs and the value of k which
refer to the values of x̂Mom

F (k) and x̂MLE
F (k), respectively. The obtained estimates for the maximum lifespan

fluctuate between 127.49 (GED with minimum EVI Mom-estimate) and 147.6 years (GPD with maximum
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EVI MLE-estimate). This suggests, that the sample size is probably not sufficient for more precise results.
Moreover, the confidence intervals are again (too) widespread. In particular, for the larger EVI estimates the
asymptotic behavior of the underlying variance estimator (which is of order O(1/γ4) for γ → 0) cannot be
countervailed by the sample size which leads to the given CIs with poor relevance.

4 A joined censored EVT analysis of the HMD and IDL

The results of the previous section are neither rigorous nor statistically significant. As a consequence we need
to significantly increase the sample size of the data set. The HMD data purges this challenge with a sample
size of more than 73 million deaths over all ages whereof almost 4000 females die at the age 110 or beyond
(see Section 2). Unfortunately, this dataset is right censored at age 110 and thus we cannot apply the classical
EVT method we used in Section 3. However, Einmahl et al. (2008) provide several theoretical results with
regard to the statistical analysis of right censored extreme value data.
In their framework, the age at death of the i-th individual is modeled via independent and identically dis-
tributed random variables Xi with distribution function FX . These random variables may be independently
right censored by censoring random variables Ci

iid∼ FC , where FC is the distribution function of the censoring
distribution. Consequently, the observations in the dataset are given by Zi = min(Xi, Ci) and a censoring
indicator is given by δi = 1{Zi = Xi}. Let γ(·) and xF(·)denote the EVI and the endpoint of the distribution
function of X,C, and Z, respectively. To answer the target questions on the maximum lifespan we need to
determine γX and xFX . The classical EVT approaches from the previous sections, however, would only lead to
reasonable estimates for γZ and xFZ (when only using the observations Zi). On the other hand, a complete case
analysis (when deleting all censored observations) would generally lead to estimates that are strongly biased.
To address censoring adequately, Einmahl et al. (2008) introduce estimators for γX and xFX which are valid in
the following cases: 

case 1: γX > 0, γC > 0

case 2: γX < 0, γC < 0, xFX = xFC
case 3: γX = γC = 0, xFX = xFC =∞.

(4.4)

With regard to the estimation of the maximal attainable age at death only the second case corresponds to a
finite right-endpoint. For the sake of generality we nevertheless also allow for non-negative EVIs γX and γC .
Because of the right censoring of the HMD data at the age 110, the model described above can be simplified
by setting Ci ≡ 110, i.e. considering deterministic censoring variables with FC(x) = 1I(110 ≤ x). However, a
more general setting allows us to incorporate the information from the IDL. Thus, in what follows, we use the
following model: Ci

iid∼ (1 − ε)1I(110 ≤ x) + εD, where ε << 1 and D is a cdf with support (110,∞), both
unknown. This model allows for observed values after age 110 (as in the IDL) and thus we can bring these
datasets together.

Combining the data. In order to build a combined dataset (CDS) on the basis of the HMD and the IDL we
have to rearrange the structure of the HMD data (also recall the description of the databases in Section 2). First,
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we have to trim the HMD data in the dimension of calendar years: The IDL covers the time span between 1980
and 2003, while the HMD has much more years for US females. Thus, we cut off those calendar years of the
HMD data, where we have no data from the IDL. Secondly, we must trim the HMD data in the age dimension:
The applied EVT methods require a threshold which avoids moving too far to the left (i.e. employing too much
data from younger age ranges, without loosing too much necessary information). To this end, we cut off the
ages below age 90 from the HMD data. The choice of the age 90 seems to be reasonable since for US females
this age exceeds the modal value of the deaths curve, i.e. 90 > argmax0≤x≤∞ fZ(x) := argmax0≤x≤∞

∂FZ(x)
∂x

.
Thus the part of the deaths curve which lies beyond that age can be regarded to be the right tail of the deaths
curve (see also Drees et al. (2006)). Thirdly, we must thin out the HMD data: As we already discussed
in Section 2, we can reasonably assume that each person recorded in the IDL is also recorded in the HMD.
Therefore, we delete 309 randomly selected HMD records ”dying at 110 or beyond” for avoiding double counts
in the CDS. All these incorporating restrictions reduce the sample size n in the CDS to about 1.4 million.

Since this figure is still too large for most algorithms with respect to their computing times (even when
using modern computing clusters) we apply the following subsampling approach: Denote the complete CDS
sample as Zn := {Z1, ...Zn} and randomly draw m times from Zn without replacement to construct one
subsample of size m, m < n. We independently repeat this N times and thus obtain N subsamples Z im :=
{Zi

1, ..., Z
i
m}, 1 ≤ i ≤ N . We then estimate the EVIs separately for each subsample.

Following Politis et al. (1999) we should choosem from a theoretical perspective such that m
n
→ 0 asm→

∞. Moreover, the size of the subsamples m should be sufficiently large, such that each subsample includes
(uncensored) IDL data with a sufficiently high probability. Taking these issues as well as the computation
time into account we calculated estimates for different choices of m ∈ {1000, 5000} and N ∈ {1000, 5000}.
For the choice of k we employ a cross-validation type procedure that is related to the Leave-One-Out method;
leading to a more objective choice of the tuning parameter k at least compared to the rule of thumb approach
from Section 3. To this end, we draw one more subsample Z0

m from Zn of length m that serves as a test
sample. All other subsamples Z im, 1 ≤ i ≤ N, will serve as training samples. For each of these subsamples
Z im, 0 ≤ i ≤ N, we then calculate EVI estimates γ̂(·)X,i(ki) for varying numbers 1 ≤ ki ≤ m of upper order
statistics. To this end we use the methods described by Einmahl et al. (2008). Figure 3 shows the plots of
different EVI estimates k0 7→ γ̂

(·)
X,0(k0) for the test sample for m = 1000. For m = 5000 we found similar

results (not shown here).
It can be readily seen from Figure 3 that the censored MLE (black line) and Mom estimates (grey line) behave

similarly up to k0 ≈ 600 and diverge thereafter. A stable plateau is reached between 400 and 590 and the rule
of thumb choice would recommend some k from this interval; corresponding to a (of course rather naive) EVI
estimate of

γ̂
(·)
X ≈ −0.11.

However, as mentioned above we proceed more objective and compare the EVI estimates for the test set
k0 7→ γ̂

(·)
X,0(k0) with the corresponding EVI estimates from each trainings set ki 7→ γ̂

(·)
X,i(ki). For each of these

comparisons we obtain the estimator

k̂0,i := argmin
1≤k0≤m

m∑
ki=1

k
5/4
i

(
γ̂
(·)
X,0(k0)− γ̂

(·)
X,i(ki)

)2
, 1 ≤ i ≤ N. (4.5)
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Figure 3: Different EVI estimates as a function of the number of upper order statistics k0 in case of the trainings
dataset from the CBS with m = 1000.

This corresponds to the EVI estimate from the test set Z0
m that has the smallest penalized quadratic distance

from all EVI estimates of the ith trainigs set Z im. The choice of the penalty k5/4i reduces the influence of the
bias since it supports intermediate values and penalizes larger values of k (for which the bias is supposed to
become too large). Now we can derive an estimator for the EVI by taking the mean of all γ̂(·)X,0(k̂0,i), 1 ≤ i ≤ N
obtained from (4.5):

γ̂
(·)
X,0 = N−1

N∑
i=1

γ̂
(·)
X,0(k̂0,i).

Table 2 shows the results for both estimators (i.e. MLE and Mom), two subsample sizes m ∈ {1000, 5000}
and a fixed number of replications N = 5000. The results for N = 1000 are similar (not shown here). We also
give the corresponding 95% confidence intervals, utilizing the asymptotic normally distributed estimators for
the EVI given in Einmahl et al. (2008).

We see from Table 2 that all EVI estimates lie between −0.115 and −0.109 which is in line with to the
(intuitive) choice −0.11 from the rule of thumb method. In particular, they are much smaller than the EVI
estimates obtained from the IDL dataset alone, see Section 3. Moreover, it seems that the choice of m mainly
affects the width of the confidence intervals (which is clear), whereas the EVI point estimates are only slightly
affected. However, for each combination of m and estimator (MLE or Mom) we obtain significantly negative
estimates for the EVI γX . This corresponds to a finite right endpoint and the resulting censored MLE and Mom
endpoint estimates are also shown in Table 2. Note that for the latter no adequate confidence intervals have
been devloped so far.

These new estimates for the maximum lifespan now vary between 125.82 (censored Mom-estimate based
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γ̂
(·)
n (k) (95% CI for γ) x̂

(·)
F (k)

m = 1000 MLE -0.1132 (-0.1444, -0.0820) 128.48
Mom -0.1146 (-0.1509, -0.0783) 125.90

m = 5000 MLE -0.1091 (-0.1235, -0.0947) 128.73
Mom -0.1112 (-0.1278, -0.0946) 125.82

Table 2: EVI estimates for γX obtained from the cross-validation type method for different choices of m ∈
{1000, 5000}, 95% confidence intervals for γ, and right endpoint estimates. All calculations are based on
N = 5000 training sets and one test set drawn from the CDS.

on subsamples of size m = 5000) and 128.73 years (censored MLE based on subsamples of size m = 5000).
Compared to the results from Section 3, where we analyzed the IDL data exclusively, these estimates show
significantly smaller values.

We finally note that we have also analyzed the HMD data exclusively with classical uncensored EVT
approaches ignoring the involved censoring. Employing subsampling techniques as above with the choice of
m = 5000, we obtain unreliable endpoint estimates around 116 years which are even smaller than the oldest US
female recorded (who reached an age of 119 years). This illustrates two facts: the importance of considering
the involved censoring in a thorough statistical analysis and the positive effect of combining different data
sources for the quality of the results.

5 Conclusion and Discussion

We have investigated the question of quantifying the maximum human lifespan for US women. In particular,
based on extreme value theory (EVT) methods we inferred the existence of a possibly finite lifespan for two
data sets: The International Database on Longevity (IDL) and a combination of the IDL with the human
mortality database (HMD). The IDL contains very accurate data from 309 female US supercentenarians dying
between 1980 and 2003. Presumably, due to its small sample size, the hypothesis of an infinite lifespan could
not be rejected for the IDL. Moreover, the obtained point estimates for the maximum attainable age fluctuated
considerably and are thus not very meaningful.We therefore additionally considered observations from the
more extensive HMD and combined them with the IDL which leads to a considerably larger data set. Since
observations from the HMD are right-censored we additionally had to employ censored EVT methods. In
particular, based on theoretical findings from Einmahl et al. (2008), we found significant evidence for a finite
lifespan in the combined data set and obtained reliable point estimates for the maximum attainable age of US
females. These estimates vary between 125.82 and 128.73 years which seems reasonable since the oldest US
female recorded in the IDL reached an age of more than 119 years.

These values cannot be compared directly to previous findings in recent literature since the basics (i.e. data
and methods) differ considerably. In particular, to our knowledge, the present statistical analysis is the first that
accounts for censoring of the underlying data. Nevertheless, to at least associate the numbers with the context
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of a maximum human lifespan we summarize some of the most recent results: Li et al. (2011) estimate the
maximum lifespan for Australians to 112.2 and to 109.43 for New Zealand females and males, respectively.
Similarly low estimates are obtained by Bravo and Corte-Real (2012) at 112.77 and 111.78 for Spanish and
Portuguese females, respectively. At least for Spain and Australia we can find IDL records for females dying
at higher ages (both after their 114th birthday). Not only in relation to our results, these figures seem to be
exceptionally low. For instance, even more than two decades ago, Aarsen and de Haan (1994) infer a 95%
confidence interval for the Netherlands between 113 and 124 years. More recently Weon and Je (2009) obtain
maximum age estimates around 126 years for Swedish females, Hanayama and Sibuya (2015) find estimates
for the maximum lifespan of Japanese at 123 years, and Gbari et al. (2016) quantify the maximum attainable
age of Belgian females between 120.3 and 122.73 years. Our estimates for US females are in the upper range
of these recent results. The disparity in the results may be an artifact caused by different sources of data or
the diversity of the employed methods. We nevertheless believe, that our results are reasonable since estimates
beyond 120 years are in line with several real observations not only from the IDL (e.g. the case of Jeanne
Calment, see Robine and Allard (1998)).

For future research, we recommend the application of censored EVT methods to other cohorts. Moreover,
an extension of the analysis by a calendar years dimension would be desirable. In particular, we believe that
even more reliable results may be obtained by considering the evolution of the maximal attainable age at death
over time. However, due to the lack of existing theory for extremal processes that are subject to right censored
data, we could not yet follow this approach. The same fact holds for censored extreme value regression models
that incorporate covariables.
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