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Abstract

We use data from a large US life expectancy provider to test for asymmetric information

in the secondary life insurance—or life settlement—market. We compare realized lifetimes

for a subsample of settled policies relative to all (settled and non-settled) policies, and find

a positive settlement-survival correlation indicating the existence of informational asymmetry

between policyholders and investors. Estimates of the “excess hazard” associated with settling

show the effect is temporary and wears off over approximately eight years. This indicates

individuals in our sample possess private information with regards to their near-term survival

prospects and make use of it, which has economic consequences for this market and beyond.
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1 Introduction

Asymmetric information in insurance markets is an important and intensive area of research.1

This paper makes two primary contributions to the existing body of knowledge. First, we provide
evidence for asymmetric information in the secondary life insurance market—the market for so-
called life settlements—between policyholders and investors. To the best of our knowledge, this is
the first empirical study of informational frictions in a secondary personal insurance market.2 This
complements research from primary insurance markets, where the decision problem is different in
nature but the underlying risk is the same. Second, we are able to characterize the evolution of
the informational friction over time. While there is a significant impact immediately after selling
the insurance coverage, the effect dissipates over approximately eight years. This suggests that
the policyholders in our sample are competent in evaluating their own relative survival prospects
over the near future, in a situation where they are prompted with relevant information and where
there are significant monetary consequences to their decision. This complements research from the
behavioral literature suggesting that individuals fare poorly at appraising their own mortality.

Within a life settlement, a policyholder sells—or settles—her life-contingent insurance pay-
ments for a lump sum to a life settlement (LS) company, where the offered price depends on
an individualized estimation of her survival probabilities by a third party life expectancy (LE)
provider. Clearly, ceteris paribus, an LS company will pay more for a life insurance policy with
shorter estimated life expectancy since, on average, survival-contingent premiums have to be paid
for a shorter period whereas the death benefit is disbursed sooner. The company profits from a
short realized lifespan relative to the estimate. The policyholder, on the other hand, benefits from
a life expectancy estimate that is (too) short—whereas she may walk away from the transaction
if the estimate notably overstates her true life expectancy. This wedge creates the possibility of
asymmetric information between the policyholder and the life settlement company influencing the
transactions.

We use the dataset of a large US LE provider to test for this informational asymmetry. Leaning
on the literature that studies asymmetric information in primary insurance markets, we derive
a test that hinges on the correlation between selling insurance coverage and (ex-post) risk. We
find that individuals selling their policy live significantly longer (relative to their LE estimate)

1While seminal theoretical contributions have emphasized the importance of informational frictions since the 1960s
(Arrow, 1963; Akerlof, 1970; Rothschild and Stiglitz, 1976; Stiglitz and Weiss, 1981), the corresponding empirical
literature has flourished only relatively recently (Puelz and Snow, 1994; Cawley and Philipson, 1999; Chiappori and
Salanié, 2000; Dionne et al., 2001; Cardon and Hendel, 2001; Finkelstein and Poterba, 2004; Finkelstein and McGarry,
2006; Cohen and Einav, 2007; Einav et al., 2010b, among others).

2Our findings are in line with a recent industry study by Granieri and Heck (2014) that postdates earlier drafts
of our paper. More precisely, based on simple comparisons of survival curves for different populations, the authors
conclude that within the life settlement market “insureds use the proprietary knowledge of their own health to select
against the investor.”
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than those retaining the insurance coverage, providing evidence that individuals possess private
information regarding their mortality prospects. It is important to distinguish our result from the
notion that individuals wishing to sell their insurance coverage, as a group, live longer, e.g. because
they are wealthier per se3 or because the absence of dependents requiring protection implies the
availability of resources to spend on their own care. Rather, what we find is that among those
seeking out the opportunity to sell their policy, those deciding to pull the trigger will on average
live longer, conditional on all observables. The identification then relies on the idea that for two
individuals with the same observable characteristics, the quoted price will be more attractive to the
one (privately) expecting a longer life, ceteris paribus. Example calculations for an average 75-year
old male policyholder suggest that the effect amounts to roughly half a year of additional expected
lifetime, relative to a life expectancy of a little over ten years, although this result is sensitive to
underlying assumptions.

To analyze the pattern of the deviation between the two groups, we derive non-parametric esti-
mates of the excess hazard (or excess mortality) for policyholders choosing to settle. These show
that the difference in the hazard is most pronounced immediately after settling the policy but wears
off over the course of roughly eight years. Survival regressions confirm this observation: When
including a time trend interacted with the settlement dummy, the model fit improves markedly and
the effect becomes stronger at settlement but weakens over time, zeroing after the same approx-
imately eight-year time frame. Thus, while there is a large asymmetry immediately after selling
the insurance coverage, the influence of the factors leading to the difference in mortality dissipates
over time. This structure is in line with adverse selection with regards to the policyholder’s ini-
tial condition as the origin of the asymmetry, but not with other explanations such as permanent
changes in behavior, confounding attributes, or information gains due to the transaction process.
A key conclusion is that individuals participating in the life settlement market appear competent in
evaluating their propensity to survive in the near future.

While the basic empirical approach and the basic results are straightforward, there are a num-
ber of aspects in the identification process that warrant further investigation. In particular, our
comparison group includes both non-settled and (unknown) settled cases, which complicates iden-
tifying the qualitative and the quantitative impact of asymmetric information. With regards to the
quantitative impact, we derive “correction” formulae that give estimates for more relevant settled-
vs. non-settled comparison given certain assumptions.4 With regards to the qualitative impact,
we are able to stave off pressing concerns on sample selection and omitted variables through a

3Face values in life settlement transactions are relatively large (3.92 million USD on average in our sample),
indicating that market participants are generally relatively wealthy.

4We note that this situation of a mixed comparison sample is similar to what individual investors in the LS market
face, since they know what policies they purchased and bid on, but do not generally know what happened to the
policies that they did not submit a (successful) bid on. Hence, our econometric approach is relevant to them as well.
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combination of theoretical and empirical robustness considerations.
More precisely, although our sample of settled policies covers a significant portion of the entire

market, one concern is that the sample of known settled policies differs from the (unknown) set of
all settled policies in some relevant and systematic way. Since we are controlling for all observ-
ables used by the LE provider, these would need to be additional characteristics, such as details on
the policies or a second LE estimate from another provider. We have policy face value available
for a fraction of the sample, and robustness analyses that include it as a covariate reveal the same
significant patterns. Moreover, we show theoretically that additional information on the individu-
als’ mortality, e.g. a second LE estimate, will lead to a bias against our results if the proportion
of settlements is increasing in mortality—which is true in the data. Additional robustness analy-
ses include considering modified samples that exclude early deaths in the comparison group and
repeating the analysis using the latest observation date for a policy in our LE database to address
concerns on (post) selection bias based on survival experience. Again our findings are robust.

Related Literature and Organization of the Paper

Our paper relates to the large literature on asymmetric information in insurance markets (see Foot-
note 1 for a list of references). In this context, several contributions highlight the merits of insur-
ance data for testing theoretical predictions (Cohen and Siegelman, 2010; Chiappori and Salanié,
2013), although heterogeneity along multiple dimensions may impede establishing or characteriz-
ing informational asymmetries (Finkelstein and McGarry, 2006; Cohen and Einav, 2007; Cutler et
al., 2008; Fang et al., 2008). We contribute by carrying out tests in a secondary insurance market,
which offers the same benefits of insurance data but considers a different decision problem—
namely selling rather than purchasing insurance coverage. To our knowledge, this aspect has not
been explored thus far.

Our results are of immediate interest and have implications for the life settlement market,
for instance in view of pricing the transactions (Zhu and Bauer, 2013) and regarding equilibrium
implications (Daily et al., 2008; Fang and Kung, 2017). In addition, our findings corroborate
empirical results from the primary life insurance market that policyholders, or at least a subset
of policyholders, possess superior information regarding their mortality prospects (He, 2009; Wu
and Gan, 2013). We complement these studies in that we are able to provide insights on the
characteristics of the informational advantage.

More broadly, our results provide positive evidence on individuals’ ability to make financial
decisions that depend on their mortality prospects. This contrasts research from the behavioral
literature comparing individual forecasts of absolute life expectancies to actuarial estimates, which
suggests that individuals fare poorly at appraising their own mortality prospects (Elder, 2013;
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Payne et al., 2013; and references therein). Our results indicate that individuals participating in the
life settlement market are competent in evaluating their relative life expectancy, when prompted
with relevant information on population mortality. This may be the more material task in situations
where there are significant monetary consequences and when appropriate “default” choices that are
suitable for average individuals are provided, such as retirement planning.

In what follows, we first provide background information on life settlements and the possible
relevance of asymmetric information in this market. We then describe our dataset and our basic
empirical approach. The next sections present our analysis of the time trend of the informational
asymmetry and a variety of robustness analyses. Section 6 discusses the impact and the origin of
the informational friction, and the final section concludes. An online appendix collects details on
derivations and supplemental results.

2 Life Settlements and Asymmetric Information

Within a life settlement transaction, a policyholder offers her life insurance contract, typically via
a broker, to an LS company. Based on individual LE reports (typically two) from established LE
providers, the company then prepares an offer. If the offer is accepted, the policy—and, particu-
larly, all life-contingent insurance benefits and premiums—will be transferred to the company, who
then holds it in its own portfolio or on behalf of capital market investors. Emerging from so-called
viatical settlements with terminally ill insureds in the 1980s, a typical life settlement transaction
involves senior policyholders with a below average life expectancy. According to recent industry
figures, in 2016 the total market volume amounted to approximately USD 100 billion in face value,
which is less than one half percent of the total US life insurance market (Roland, 2016).

As indicated in the Introduction, an LS company will pay more for a policy with shorter life ex-
pectancy, ceteris paribus, and profits from a relatively short realized lifespan. The policyholder, on
the other hand, gains from a short life expectancy estimate relative to her true (privately) expected
lifespan. This creates the possibility for asymmetric information affecting the transactions. To
illustrate, we consider a simple one-period model. We assume that at time zero, the policyholder
is endowed with a one-period term-life insurance policy that pays $1 at time one in case of death
before time one and nothing in case of survival thereafter. The probability for dying (mortality
probability) before time one is P(τ < 1) = q, where τ is the time of death.5

Suppose the policyholder is offered a life settlement at price π. For simplicity, we assume she
assesses her settlement decision ∆ = 1{policyholder settles} by comparing the settlement price to the

5While the model is very simple, it illustrates the basic points and it facilitates the discussion of robustness of our
results in Section 5. In particular, we provide an extension that delivers less obvious implications in Appendix A.3.
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present value of her contract (the risk-free rate is set to zero):

∆ = 1⇔ π > q − ψ, (1)

and ψ characterizes the policyholder’s proclivity for settling.6 The latter may originate from risk-
averse policyholder preferences with different bequest motives, liquidity constraints, etc. Here,
we simply use ψ to capture deviations from a value-maximizing behavior, under which the market
may unravel due to a “lemons problem” as in Akerlof (1970). The key assumption is that the
policyholder is more likely to settle when offered a higher price.

Thus, from the policyholder’s perspective, the question of whether or not to settle the policy
based on Equation (1) is deterministic. However, this will not be the case from the perspective
of the LS company offering to purchase the policy since it will have imperfect information with
respect to q and/or ψ.7 More precisely, assume that the policyholder has private information on the
mortality probability q but the LS company solely observes the expected value, E[q], conditional
on various observable characteristics such as age, medical impairments, etc. Then we obtain for
the mortality probability conditional on the observation that the policyholder settles her policy:

P(τ < 1|∆ = 1) = E [q|∆ = 1] = E [q |q < π + ψ ] ≤ E[q] = P(τ < 1). (2)

Hence, if there exists private information on q, we will observe a negative relationship between
settling and dying.

Note that we can alternatively represent the result in (2) as:

E[ 1{τ<1}∆]− E[ 1{τ<1}]E[∆] ≤ 0⇔ Corr
(
∆, 1{τ<1}

)
≤ 0⇔ Corr

(
∆, 1{τ≥1}

)
≥ 0. (3)

Therefore, this is simply a version of the well-known correlation test for the presence of asymmet-
ric information that examines whether (ex-post) risk and insurance coverage are positively related
(Chiappori and Salanié, 2000, 2013). However, since we are considering secondary market trans-
actions, the mechanism is reversed: A policyholder will be more inclined to settle—i.e., sell—her
policy if she is a low risk from the insurer’s perspective—i.e., if she has a low probability of dy-
ing. The intuition for this result is straightforward: If the policyholder has private insights on her
lifetime distribution, she will gladly agree to beneficial offers from her perspective while she will

6We do not consider partial settlement. While private information may affect the contract choice in theory, the
possibility of owning multiple policies, the non-exclusivity of the contractual relationship, and the presence of differ-
ent sources of uncertainty (q and ψ) may hinder screening. Importantly, partial settlements are not common in the
marketplace.

7Of course, such an informational asymmetry may affect the pricing of the transaction, i.e. the choice of π. We
refer to Zhu and Bauer (2013) for a corresponding analysis. Here, we focus on the implications when the settlement
price is given.
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walk away from bad offers; hence, a pool of settled policies, on average, will display relatively
longer life expectancies than the entire population of policyholders that considered selling their
policy, controlling for observables.

Asymmetric information with respect to ψ alone, e.g. arising from heterogeneous preferences
or liquidity constraints, cannot yield a negative relationship. However, it is possible that there
exists an indirect relationship in case ψ itself is related to the lifetime distribution. For instance,
the policyholder’s risk aversion or wealth reflected in ψ may be positively linked to her propensity
to survive—although for wealth such a relationship would arguably work in the opposite direction
since more financially constrained individuals are more likely to settle. In any case, a negative
relation between settling and dying will—directly or indirectly—originate from an informational
asymmetry with respect to the time of death, and hence our basic empirical approach analyzes this
relationship.

3 Data and Empirical Approach

To test for the negative relationship, we analyze the impact of settling on realized future lifetime
based on individual survival data. Our primary dataset consists of N = 53, 947 distinct lives
underwritten by Fasano Associates (Fasano), a leading US LE provider, between beginning-of-year
2001 and end-of-year 2013. More precisely, we are given survival information for each individual
and, particularly, the realized death times for individuals that died before January 1st, 2015. In
addition to their lifetimes, we are given individual characteristics including sex, age, smoking
status, primary impairment, as well as one or more life expectancy estimates at certain points
in time. Here, the LE provider calculates the LE estimate by applying an individual mortality
multiplier (frailty factor)—which is the result of the underwriting process—to a given proprietary
mortality table. Therefore, we can use the LE estimate in combination with the underlying table
(also provided by Fasano) to derive the mortality multiplier, and then use it to obtain the estimated
hazard, µ̂(i)

t , for each individual. All-in-all, there are 140, 257 LE evaluations, so many of the
lives occur multiple times in the dataset. Since we are interested in the influence of informational
frictions on the settlement decision, we focus on the earliest underwriting date for each individual
since it serves as a proxy for the decision time.8 Table 1 provides summary statistics.

This dataset contains LEs for policyholders that decided to settle (close) their policy, LEs for
policyholders that walked away from a settlement offer, and LEs for individuals that were under-
written for different reasons, such as LEs for newly issued life insurances or for existing workers’
compensation portfolios. The LE provider typically does not receive feedback on whether or not

8We discuss the impact of deviations between the earliest underwriting date and the settlement decision time in the
context of our robustness analyses in Section 5.3.
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Average (Std. Dev.) Count (Perc.)
Full Closed Full Closed

Life Expectancy Estimate Male
11.83 11.54 34,182 8,767
(4.28) (4.00) (63.36%) (66.31%)

Underwriting Age Observed Deaths
75.10 75.40 13,418 3,415
(7.43) (6.50) (24.87%) (25.83%)

Table 1: Summary statistics for the entire dataset (“Full”; 53,947 lives, earliest observation date)
and the subsample of closed cases (“Closed”; 13,221 lives, earliest observation date).

a policy closed, so that this aspect is unknown for our full dataset—and it is clearly unknown (not
yet known) when compiling the initial life expectancy estimate. However, we also have access to
a secondary dataset of overall 13, 221 lives underwritten by Fasano (and several policies not un-
derwritten by Fasano) from individual investors as well as from a large service provider in the life
settlement market. For this subsample of policyholders, we have the additional information that
they settled their policy. We will refer to this secondary dataset as the subsample of closed cases,
whereas we will refer to the rest as the remaining sample. Corresponding summary statistics are
also provided in Table 1. We note that when relying on average face values, our sample of closed
policies exceeds half of market share based on the estimate by Roland (2016)—and on its own
far exceeds earlier estimates of total market size (e.g. by the research firm Conning, see Cohen
(2013)). Thus, we cover a significant portion of the total life settlement market. Furthermore,
since more than 90% of the sample comes from a third-party service provider that handles policy
origination and policy servicing (premium payments, annual reviews, valuation, etc.) for a broad
set of firms, our sample is not affected by idiosyncrasies of a single or a small number of investors.

Our empirical strategy follows studies of asymmetric information in primary insurance mar-
kets: We regress ex-post realized risk on ex-ante coverage (Cohen and Siegelman, 2010). If, con-
ditional on all observed covariates, coverage has a positive and significant influence on risk, one
can infer the existence of asymmetric information. In the setting of a secondary life market, risk
is given by the realized death time, whereas (elimination of) coverage is given by the settlement
decision. Thus, we analyze the impact of settling on hazard.

We first consider a conventional proportional hazards model (we alternatively analyze additive
specifications to establish robustness in Section 5.1). More precisely, we assume the hazard for
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individual i, µ(i)
t , satisfies:

µ
(i)
t = β0(t)× exp

{
β1 ln(µ̂

(i)
t ) + β2 ln(1 + DOUi) + β3 ln(1 + AUi) + β4 SEi

+
15∑
j=1

β5,j PIi,j +
2∑
j=1

β6,j SMi,j + γ SaOi

}
, 1 ≤ i ≤ N. (4)

Here β0(t) is a non-parametric term. µ̂(i)
t is the estimated hazard recovered from the provider’s

LE assessment. DOUi is the underwriting date, measured in years and normalized so that zero
corresponds to January 1st, 2001. AUi is the individual’s age at underwriting, measured in years.
SEi is a sex dummy, zero for female and one for male. PIi,j, j = 1, . . . , 15, are primary impairment
dummies for various diseases.9 SMi,j, j = 1, 2, are smoker dummies, where SMi,1 = 1 for a
smoker and SMi,2 = 1 for an “aggregate” (unknown/uncertain smoking status) entry.

We include all covariates that are available for the full dataset in our regression (4) (Chiap-
pori and Salanié (2000) and Dionne et al. (2001) emphasize the importance of incorporating all
pricing-relevant variables in asymmetric information tests). The estimated hazard µ̂(i)

t serves both
to capture the basic shape of the mortality curve over time and to pick up the information from
the underwriting process. Hence, the coefficients for age, sex, primary impairments, etc. reflect
residual effects beyond the LE provider’s estimate. We include log-linear effects for underwriting
date and age for ease of presentation and interpretation; specifications with dummies are provided
in the Appendix (see columns [C] and [F] in Table A.1 and Figure A.1). We omit information that
is only available for a fraction of the individuals in our basic regressions. However, we run checks
including these variables and address the possible impact of omitted variables and sample selection
issues in our robustness analyses (Sec. 5).

Finally, we include a Settled-and-Observed dummy SaOi that is set to one for the subsample
of closed cases and zero otherwise. We test for asymmetric information by inferring whether the
estimate γ̂ for the corresponding coefficient is negative and significant. Since the life expectancy
for individual i is (Bowers et al., 1997):

LEi = E [τi] =

∫ ∞
0

exp

{
−
∫ t

0

µ(i)
s ds

}
︸ ︷︷ ︸

=P(τi>t)

dt,

where τi is the individual’s remaining lifetime, a negative coefficient γ increases life expectancy,
yielding the positive settlement-survival correlation indicative of asymmetric information (see Eq.
(3) in Sec. 2). Note that the remaining cases include policyholders that rejected the settlement

9We do not list the primary impairments to protect proprietary information of our data supplier since they are not
material to our results.
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offer as well as individuals that settled but are not contained in our closed cases and individuals
that were underwritten for other reasons. Thus, we actually compare closed cases relative to a mix
of closed and non-closed cases, and analyzing the difference presents a more conservative test than
when directly comparing closed versus non-closed cases.10

We rely on the conventional partial maximum likelihood method to estimate the coefficient
vector (Cox, 1975). Column [A] in Table 2 presents the results. The estimated hazard µ̂(i)

t is highly
significant, with a coefficient β̂1 of around 0.9—and, thus, close to one as would be the case for
(ex-post) “perfect” estimates by the LE provider. Indeed, most of the primary impairment dummies
are insignificant, suggesting that the provider’s estimates adequately debit for the corresponding
conditions, with a couple of exceptions. However, the regression results also show that underwrit-
ing date, age, sex, and smoking status have a significant influence beyond their inclusion in µ̂(i)

t .

For age and smoking status (both positive), this may be a consequence of β̂1 being less than one,
whereas the positive impact of the underwriting date may originate from the estimates becoming
more conservative (lower) over time. This is broadly consistent with analyses of the provider’s
performance in Bauer et al. (2017); we refer to that paper for corresponding details.

As for the Settled-and-Observed variable that is in the focus of our analysis, the corresponding
coefficient estimate is negative and highly significant. More precisely, we find that for two indi-
viduals with otherwise the same observables that are both included in our dataset, the one that is
known to have settled her policy will exhibit a 1 − eγ̂ ≈ 11.3% lower hazard—and thus will, on
average, live longer. Thus, we find a strong negative relationship between settlement and mortality,
which indicates the existence of asymmetric information in the life settlement market. In particu-
lar, individuals possess private information on their survival prospects and make use of it in their
settlement decision.

Aside from its relevance to the life settlement market, this result complements analyses of
asymmetric information in primary life insurance markets, where several papers fail to find evi-
dence for the existence of asymmetric information based on correlation tests (Cawley and Philip-
son, 1999; McCarthy and Mitchell, 2010). As discussed in detail by Finkelstein and Poterba
(2014), these results may originate from (unobserved) related confounding factors such as risk
aversion or wealth also affecting insurance decisions, or also from risk factors not included in the
pricing—so that researchers may fail to reject the null hypothesis of symmetric information within
a correlation test even if there exists private information about risk type. For example, underwrit-
ing is limited in certain segments of the primary market (such as life annuities) and regulation
in some instances restricts factors that can be considered in pricing (such as gender or genetic

10As a consequence, our point estimate γ̂ will need to be inflated to account for the mixed nature of the sample
in order to present a suitable point estimate for the latter (closed vs. non-closed) comparison. Online Appendix A.1
provides more details on this issue and derives inflation formulae.
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[A] [B] [C] [D] [E] [F]

1/14 ×
∫ 14

0
β0(t) dt 0.0187 0.0184 0.0082 0.0682 0.0140 0.0230

Estimated hazard, µ̂(i)
t 0.8986∗∗∗ 0.8968∗∗∗ 0.8873∗∗∗ 0.8496∗∗∗ 0.8914∗∗∗ 0.8787∗∗∗

(0.0101) (0.0101) (0.0170) (0.0245) (0.0103) (0.0097)
Underwriting date, ln(1 + DOUi) 0.3101∗∗∗ 0.3043∗∗∗ 0.4008∗∗∗ 0.0037 0.3032∗∗∗ 0.2480∗∗∗

(0.0277) (0.0277) (0.0559) (0.1742) (0.0280) (0.0259)
Age at underwriting, ln(1 + AUi) 0.5796∗∗∗ 0.5852∗∗∗ 0.5282∗∗∗ 0.3333∗ 0.6273∗∗∗ 0.5364∗∗∗

(0.0827) (0.0828) (0.1458) (0.1860) (0.0846) (0.0819)
Sex, SEi −0.1022∗∗∗ −0.0986∗∗∗ −0.1002∗∗∗ −0.1173∗∗ −0.1012∗∗∗ −0.0735∗∗∗

(0.0196) (0.0196) (0.0338) (0.0562) (0.0198) (0.0196)
Primary impairment 1, PI1 −0.0268 −0.0414 0.6292 0.2387 0.0371 0.0958

(0.2863) (0.2863) (1.0090) (0.1740) (0.2975) (0.3242)
Primary impairment 2, PI2 −0.0186 −0.0310 0.4725 0.1681 0.0382 0.1767

(0.2894) (0.2894) (1.0095) (0.1747) (0.3009) (0.3254)
Primary impairment 3, PI3 0.1722 0.1618 0.8950 0.4860∗∗∗ 0.2254 0.2311

(0.2835) (0.2835) (1.0062) (0.1812) (0.2947) (0.3219)
Primary impairment 4, PI4 0.2012 0.1921 0.9694 0.7312∗∗∗ 0.2449 0.3068

(0.2854) (0.2854) (1.0067) (0.1495) (0.2967) (0.3226)
Primary impairment 5, PI5 0.0102 −0.0031 0.6858 0.4032∗∗∗ 0.0532 0.1868

(0.2812) (0.2812) (1.0051) (0.1353) (0.2925) (0.3195)
Primary impairment 6, PI6 −0.0235 −0.0348 0.7388 0.2516∗∗ 0.0342 0.0582

(0.2793) (0.2793) (1.0030) (0.1281) (0.2906) (0.3181)
Primary impairment 7, PI7 0.2090 0.1971 0.9404 0.5932∗∗∗ 0.2642 0.3144

(0.2788) (0.2788) (1.0025) (0.1067) (0.2901) (0.3176)
Primary impairment 8, PI8 0.2190 0.2072 1.0213 0.6967∗∗∗ 0.2779 0.2622

(0.2811) (0.2811) (1.0044) (0.1622) (0.2923) (0.3197)
Primary impairment 9, PI9 0.8307∗∗∗ 0.8187∗∗∗ 1.4796 0.9988∗∗∗ 0.8908∗∗∗ 0.8779∗∗∗

(0.2820) (0.2820) (1.0054) (0.1435) (0.2932) (0.3199)
Primary impairment 10, PI10 0.1125 0.0999 0.8266 0.3712∗∗∗ 0.1663 0.2048

(0.2812) (0.2812) (1.0044) (0.1393) (0.2925) (0.3199)
Primary impairment 11, PI11 0.9088∗∗∗ 0.8981∗∗∗ 1.7950∗ 1.5868∗∗∗ 0.9548∗∗∗ 1.0873∗∗∗

(0.2837) (0.2837) (1.0061) (0.1642) (0.2950) (0.3218)
Primary impairment 12, PI12 0.4133 0.4003 1.1213 0.8346∗∗∗ 0.4571 0.5142

(0.2818) (0.2818) (1.0051) (0.1560) (0.2931) (0.3203)
Primary impairment 13, PI13 0.1131 0.1008 0.8708 0.5406∗∗∗ 0.1654 0.2211

(0.2790) (0.2790) (1.0026) (0.0973) (0.2903) (0.3179)
Primary impairment 14, PI14 0.3822 0.3702 1.0951 0.8518∗∗∗ 0.4375 0.5144

(0.2789) (0.2789) (1.0026) (0.1101) (0.2902) (0.3178)
Primary impairment 15, PI15 −0.1845 −0.1968 0.5275 - −0.1321 −0.1300

(0.2801) (0.2801) (1.0034) - (0.2913) (0.3191)
Smoker, SMi,1 0.3743∗∗∗ 0.3736∗∗∗ 0.3892∗∗∗ 0.4391∗∗∗ 0.3757∗∗∗ 0.3112∗∗∗

(0.0429) (0.0429) (0.0737) (0.1109) (0.0434) (0.0433)
“Aggregate” smoking status, SMi,2 0.2114∗∗∗ 0.2120∗∗∗ 0.2416∗∗∗ 0.2884∗ 0.2124∗∗∗ 0.2250∗∗∗

(0.0551) (0.0551) (0.0878) (0.1581) (0.0555) (0.0550)
Face Value, ln(1 + ln(1 + FV)) −0.1328

(0.1369)
Settled-and-Observed, SaOi −0.1203∗∗∗ −0.4929∗∗∗ −0.6439∗∗∗ −0.3065∗∗ −0.3835∗∗∗ −0.1111∗∗

(0.0200) (0.0642) (0.1047) (0.1556) (0.0659) (0.0527)
Settled-and-Observed × trend, 0.2225∗∗∗ 0.3940∗∗∗ 0.2201∗∗ 0.1638∗∗∗ 0.0711∗∗

SaOi × ln(1 + t) (0.0360) (0.0681) (0.1047) (0.0370) (0.0327)

Log-likelihood value −134, 032.02 −134, 012.44 −41, 600.90 −13, 707.24 −132, 337.92 −132, 918.00

Table 2: Proportional hazards survival regression results. Column [A]: Basic regression (Eq. (4)),
earliest observation date; column [B]: With time trend, earliest observation date; column [C]: Only
considering cases with known face value (in the remaining sample) and with time trend, earliest
observation date; column [D]: Only considering cases with known face value (in the entire dataset)
and with time trend, face value as covariate, earliest observation date; column [E]: Excluding
cases with times of death within six months of underwriting (in the remaining sample) and with
time trend, earliest observation date; column [F]: With time trend, latest observation date. ∗∗∗, ∗∗,
and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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information). In contrast, the evaluation of mortality for the pricing of life settlements is highly
individualized. Furthermore, while risk aversion is a key driver for purchasing life insurance, the
decision of whether or not to sell a policy for an affluent senior frequently is driven by investment
or estate planing considerations—so that risk aversion may be less relevant. Therefore, our analy-
sis may not be subject to the same confounding influences as purchasing coverage in the primary
market, or at least not to the same extent. Our result that individuals possess private information is
in line with He (2009) and Wu and Gan (2013), who find evidence for asymmetric information in
primary life insurance when accounting for certain biases.

4 Time Trend of the Informational Asymmetry

To shed light on the characteristics of the informational friction, we derive non-parametric esti-
mates of the excess hazard associated with settling over time since settlement. Here, by excess
hazard, we mean the difference in the hazard rate between an arbitrary individual in the subsam-
ple of closed policies relative to an otherwise identical individual in the full sample. That is, the
difference in mortality when knowing a policyholder settled relative to not having this information.

In line with our regression approach, we consider proportional excess hazard—which is also
referred to as multiplicative excess hazard in the statistical literature. We rely on a repeated appli-
cation of the proportional excess hazard estimator from Andersen and Vaeth (1989), which in turn
is based on the well-known Nelson-Aalen non-parametric estimator. More precisely, we first adjust
all hazard estimates from the LE provider µ̂(i)

t based on the survival experience in the full sample,
and then derive the excess hazard to the adjusted hazard estimate based on the survival experience
in the closed subsample (see Appendix A.2 for more details). Thus, the result is an estimate of the
factor to be multiplied on the hazard rate for an arbitrary individual from the full dataset to give
the hazard rate for an individual with the same observables but from the closed subsample, as a
function of time since settlement.

Figure 1 shows the estimate (solid curve). Clearly, if the estimate had the shape of a horizontal
line at one (horizontal dashed line) or if the horizontal line at one fell within the (point-wise)
95% confidence intervals (dashed curves), we would conclude that there is no (significant) impact
of settling on an individual’s hazard. The observation that the estimate is overall less than one
illustrates the negative association between settling and hazard, in line with the regression result
from the previous section, and therefore the existence of asymmetric information.

With an approximately 60-70% reduction in hazard, the impact of settling is very pronounced
immediately after the settlement decision. However, the effect is wearing off over the course of
about eight years. While the (point) estimate continues to increase after year eight followed by a
sharp decrease in the last years, the confidence intervals become wider due to the limited data in
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Figure 1: Non-parametric estimate of proportional excess hazard for an individual in the closed
subsample relative to an individual in the full sample (solid curve), with point-wise 95% confidence
intervals (dashed curves) and the corresponding trend line from the survival regression (dotted
curve); earliest observation date.

this region, making it difficult to make an inference on the existence or the sign of the trend in
the later years after settling. Hence, the key characteristic that emerges is a negative influence on
hazard that is receding over time since settlement.

Survival regressions confirm this observation. We augment the basic specification from Equa-
tion (4) by a logarithmic time trend interacted with the Settled-and-Observed variable SaOi×ln(1+

t) in the exponent. Column [B] in Table 2 presents the resulting estimates. The coefficients for
the covariates that are not related to the settlement decision are similar to the basic specification
in column [A]. The coefficient for the Settled-and-Observed dummy (intercept of the trend) again
is negative and strongly significant, with its absolute value being more than four times that of the
basic specification. Hence, in line with the non-parametric estimate, we find a very pronounced
negative relationship between settling and hazard shortly after the settlement decision. The slope
of the trend is highly significant and positive, implying that the influence of settling on hazard be-
comes weaker over time since settlement, which is again in line with with the pattern as observed
in the non-parametric estimate.

Indeed, the regression model suggests a proportional excess hazard for individuals in the closed
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subsample relative to the remaining sample of the form:

g(t) = exp{−0.49} × (1 + t)0.22 ≈ 0.61× (1 + t)0.22,

which we also plot in Figure 1 (dotted curve). In particular, the trend suggests a reduction of haz-
ard of roughly 40% immediately after settlement but that the effect wears off zeroing after roughly
8 years, with a decreasing slope so that the effect after the 8-year time period is minor. The log-
likelihood of the model also increases markedly when adding the time trend, compared with the
basic specification. Alternative trend specifications (e.g., a linear trend in the exponent) yield sim-
ilar conclusions, although corresponding model likelihoods are lower. We do not find significant
results for a quadratic trend component. We refer to Online Appendix B for corresponding results.

5 Robustness

To demonstrate that our results do not originate from model misspecification and that they are
not driven by biases, we conduct a series of robustness analyses. We commence by repeating our
analyses under an additive model for the hazard, obtaining similar results. We then discuss omitted
variables and sample selection, again concluding that our qualitative findings are robust.

5.1 Additive Model Specification

In addition to the proportional hazards assumption in Section 3, we alternatively consider an addi-
tive hazards regression model (Aalen et al., 2008, e.g.):

µ
(i)
t = β0(t) +β1 µ̂

(i)
t +β2 DOUi+β3 AUi+β4 SEi+

15∑
j=1

β5,j PIi,j +
2∑
j=1

β6,j SMi,j +γ SaOi, (5)

where the variables are defined as in Equation (4). While less popular, the additive specification
directly resembles the standard regression test for the coverage-risk correlation as described in
Cohen and Siegelman (2010). We rely on the generalized least-squares (GLS) approach from Lin
and Ying (1994) to estimate the coefficient vector and on their formula for the model likelihood.
Column [A] in Table 3 presents the results for the basic model (5).

Similarly to the proportional model, the coefficients for underwriting age, sex, and the variables
relating to smoking status are significant—although underwriting date is not significant here. Un-
like the proportional model, however, five of the fifteen primary impairments are significant and all
of the significant coefficients are positive. In turn, to balance these positive terms, the coefficient
for the estimated hazard µ̂(i)

t , while highly significant, with roughly 0.2 is now far away from one
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as would be the case for “perfect” estimates by the LE provider. This suggests that the proportional
model may be better suited to capture residual effects.

Important for our focus, the coefficient for the Settled-and-Observed covariate again is negative
and highly significant. Thus, we again find a strong negative relationship between settlement and
hazard, indicating the existence of asymmetric information in the life settlement market.

When augmenting the basic specification (5) by a linear time trend interacted with the Settled-
and-Observed covariate, SaOi × t, we obtain analogous effects as in the proportional model: The
intercept more than doubles, and the coefficient for the time trend is positive and significant. The
model likelihood also increases, and the coefficients for the non-settlement related variables are
very similar to the basic model. Column [B] in Table 3 presents the corresponding estimates (see
also Appendix B for alternative trend specifications with lower likelihood values). Hence, here our
result that the influence of the informational friction is most pronounced right after settlement but
wears off over time also appears robust.

To corroborate, we again derive non-parametric estimates of the additive excess hazard associ-
ated with settling. More precisely, similarly to the proportional excess hazard from Section 4, we
estimate a function of time since settlement, which added to the hazard of an arbitrary individual
in the full sample gives the hazard for an individual with the same observables from the closed
subsample. Here, again our estimate is based on a repeated application of the corresponding (ad-
ditive) excess hazard estimator from Andersen and Vaeth (1989), which in turn is based on the
well-known Kaplan-Meier non-parametric estimator (see Appendix A.2 for more details).

Figure 2 shows the resulting estimate (solid curve). Clearly, here if the estimate had the shape
of a horizontal line at zero (horizontal dashed line) or if the horizontal line at zero fell within the
(point-wise) 95% confidence intervals (dashed curves), we would conclude that there is no sig-
nificant impact of settling on an individual’s hazard. The observation that the estimate is overall
less than zero illustrates the negative association between settling and hazard, in line with the re-
gression results. And, also in analogy with the proportional case and the regression with time
trend, we find that the negative excess hazard is most pronounced in the earlier years after set-
tlement and dissipates over approximately eight years. Similar to the proportional excess hazard
case, we also plot in Figure 2 the additive excess hazard suggested from the survival regression,
g(t) = −0.01 + 0.0014× t (dotted line).

5.2 Omitted Variables

In preparing the offer price, the LS company will have access to additional information, begin-
ning with the fact that the policy is for sale. Since our full dataset also includes individuals that
were underwritten for different reasons than the intent to sell their policy, this could create a bias.
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[A] [B] [C] [D] [E] [F]

1/14 ×
∫ 14

0
β0(t) dt −0.0090 −0.0090 −0.0102 −0.0038 −0.0094 −0.0108

Estimated hazard, µ̂(i)
t 0.2032∗∗∗ 0.2031∗∗∗ 0.2551∗∗∗ 0.2775∗∗∗ 0.1959∗∗∗ 0.2264∗∗∗

(0.0067) (0.0067) (0.0120) (0.0182) (0.0066) (0.0073)
Underwriting date, DOUi 0.0001 0.0001 0.0017∗∗∗ 0.0023∗∗∗ 3.2× 10−5 −0.0008∗∗∗

(0.0002) (0.0002) (0.0003) (0.0007) (0.0002) (0.0002)
Age at underwriting, AUi 0.0016∗∗∗ 0.0016∗∗∗ 0.0011∗∗∗ 0.0007∗∗∗ 0.0017∗∗∗ 0.0019∗∗∗

(0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001)
Sex, SEi 0.0043∗∗∗ 0.0042∗∗∗ 0.0014 −0.0002 0.0043∗∗∗ 0.0054∗∗∗

(0.0007) (0.0007) (0.0011) (0.0016) (0.0007) (0.0008)
Primary impairment 1, PI1 0.0131 0.0129 0.0419∗∗ 0.0302∗∗∗ 0.0157 0.0245

(0.0150) (0.0150) (0.0206) (0.0086) (0.0145) (0.0177)
Primary impairment 2, PI2 0.0793∗∗∗ 0.0791∗∗∗ 0.0614∗∗ 0.0515∗∗∗ 0.0757∗∗∗ 0.1074∗∗∗

(0.0192) (0.0192) (0.0251) (0.0197) (0.0185) (0.0216)
Primary impairment 3, PI3 0.0029 0.0028 0.0325 0.0186∗∗∗ 0.0058 0.0101

(0.0149) (0.0149) (0.0202) (0.0064) (0.0143) (0.0175)
Primary impairment 4, PI4 0.0293∗ 0.0292∗ 0.0572∗∗∗ 0.0499∗∗∗ 0.0309∗∗ 0.0414∗∗

(0.0153) (0.0153) (0.0211) (0.0100) (0.0148) (0.0180)
Primary impairment 5, PI5 0.0284∗ 0.0282∗ 0.0505∗∗ 0.0507∗∗∗ 0.0287∗∗ 0.0485∗∗∗

(0.0150) (0.0150) (0.0204) (0.0078) (0.0144) (0.0177)
Primary impairment 6, PI6 −0.0042 −0.0043 0.0227 0.0049∗∗ −0.0008 0.0025

(0.0147) (0.0147) (0.0200) (0.0022) (0.0142) (0.0174)
Primary impairment 7, PI7 0.0052 0.0051 0.0297 0.0130∗∗∗ 0.0084 0.0140

(0.0147) (0.0147) (0.0200) (0.0024) (0.0142) (0.0174)
Primary impairment 8, PI8 0.0044 0.0042 0.0328 0.0176∗∗∗ 0.0077 0.0100

(0.0148) (0.0148) (0.0201) (0.0050) (0.0143) (0.0175)
Primary impairment 9, PI9 0.0879∗∗∗ 0.0878∗∗∗ 0.0944∗∗∗ 0.0741∗∗∗ 0.0897∗∗∗ 0.1045∗∗∗

(0.0160) (0.0160) (0.0219) (0.0129) (0.0154) (0.0185)
Primary impairment 10, PI10 −0.0035 −0.0036 0.0228 0.0061∗∗ −0.0002 0.0038

(0.0148) (0.0148) (0.0200) (0.0024) (0.0142) (0.0174)
Primary impairment 11, PI11 0.0486∗∗∗ 0.0484∗∗∗ 0.0775∗∗∗ 0.0730∗∗∗ 0.0500∗∗∗ 0.0708∗∗∗

(0.0154) (0.0154) (0.0212) (0.0127) (0.0148) (0.0182)
Primary impairment 12, PI12 0.0086 0.0084 0.0317 0.0157∗∗∗ 0.0113 0.0174

(0.0148) (0.0148) (0.0202) (0.0044) (0.0143) (0.0175)
Primary impairment 13, PI13 −0.0045 −0.0047 0.0232 0.0089∗∗∗ −0.0013 0.0035

(0.0147) (0.0147) (0.0199) (0.0016) (0.0142) (0.0174)
Primary impairment 14, PI14 0.0152 0.0151 0.0382∗ 0.0241∗∗∗ 0.0183 0.0269

(0.0148) (0.0148) (0.0200) (0.0036) (0.0142) (0.0174)
Primary impairment 15, PI15 −0.0141 −0.0143 0.0137 - −0.0108 −0.0080

(0.0147) (0.0147) (0.0199) - (0.0142) (0.0174)
Smoker, SMi,1 0.0297∗∗∗ 0.0297∗∗∗ 0.0311∗∗∗ 0.0405∗∗∗ 0.0292∗∗∗ 0.0313∗∗∗

(0.0026) (0.0026) (0.0048) (0.0093) (0.0026) (0.0029)
“Aggregate” smoking status, SMi,2 0.0115∗∗∗ 0.0116∗∗∗ 0.0138∗∗∗ 0.0124 0.0115∗∗∗ 0.0135∗∗∗

(0.0025) (0.0025) (0.0042) (0.0077) (0.0025) (0.0029)
Face Value, ln(1 + FV) −0.0031∗∗∗

(0.0005)
Settled-and-Observed, SaOi −0.0049∗∗∗ −0.0107∗∗∗ −0.0132∗∗∗ −0.0084∗∗∗ −0.0087∗∗∗ −0.0046∗∗∗

(0.0007) (0.0012) (0.0019) (0.0028) (0.0011) (0.0015)
Settled-and-Observed × trend, SaOi × t 0.0014∗∗∗ 0.0034∗∗∗ 0.0023∗∗∗ 0.0011∗∗∗ 0.0011∗∗∗

(0.0003) (0.0005) (0.0008) (0.0003) (0.0004)

Log-likelihood value −74, 521.29 −74, 304.23 −26, 748.04 −6872.19 −75, 599.54 −73, 678.67

Table 3: Additive hazards survival regression results. Column [A]: Basic regression (Eq. (5)),
earliest observation date; column [B]: With time trend, earliest observation date; column [C]: Only
considering cases with known face value (in the remaining sample) and with time trend, earliest
observation date; column [D]: Only considering cases with known face value (in the entire dataset)
and with time trend, face value as covariate, earliest observation date; column [E]: Excluding
cases with times of death within six months of underwriting (in the remaining sample) and with
time trend, earliest observation date; column [F]: With time trend, latest observation date. ∗∗∗, ∗∗,
and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Figure 2: Non-parametric estimate of additive excess hazard for an individual in the closed sub-
sample relative to an individual in the full sample (solid curve), with point-wise 95% confidence
intervals (dashed curves) and the corresponding trend line from the survival regression (dotted
curve); earliest observation date.

Furthermore, policy information such as the face value may proxy for unknown variables such as
wealth, and the company may have available additional LE estimates from different LE providers
or insights from their own experience.

To rule out endogeneity concerns, we first repeat the regression analyses when only considering
the 7, 832 cases in the remaining sample for which we have information on the policy face value
(but keeping all cases for the closed subsample). Since face value is only available for individuals
participating in the life settlement market, this addresses the possibility of “participant in the life
settlement market” to be a relevant omitted variable. Columns [C] of Tables 2 and 3 show the
results for the proportional and the additive hazards model with time trend, respectively. Again,
we find significant negative intercepts and significant positive slope coefficients for the time trend
associated with the SaO variable. While the magnitude of the intercepts remains at a similar (yet
slightly higher) level, the slopes are considerably higher than the corresponding estimates from
columns [B] in both specifications, implying that the effect wears off over a shorter period.

To analyze the impact of the policy face value or potentially non-observed correlated variables
on our findings, we further limit the dataset by also considering only the 2, 672 cases with known
face values in the closed subsample—so that we can additionally include face value as a covariate
in the survival regression (ln(1 + ln(1 + FV)) and ln(1 + FV) in the proportional and the addi-
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tive specification, respectively). We present the results in columns [D] of Tables 2 and 3 for the
proportional and the additive hazards model with time trend, respectively.11 Since we only have
face value for a fraction of all (closed and remaining) policies, the standard errors are a lot larger.
Nonetheless, the settlement-related variables are again significant with consistent signs for both
specifications. This reinforces our main prediction of a negative and receding relationship between
settling and hazard. We observe that for the proportional hazards regression, the coefficient for
face value—while negative—is not significant whereas it is significant and negative in the addi-
tive specification. Hence, we have mild evidence that high face values are associated with longer
realized lifetimes, indicating a wealth effect.

The LS company may have available additional pricing-relevant information that is unknown
to our LE provider, particularly the underwriting results from different LE providers (typically
there are at least two evaluations).12 More precisely, we only have access to the LE provider’s
estimate µ̂(i)

t and not the LE used for pricing. To the extent that the difference is substantial, a
second estimate may affect the pricing and thereby the decision to settle, giving rise to possible
endogeneity and a potential bias.

However, since we are primarily interested in the sign of the settlement coefficient, a positive
(conditional) relationship between the omitted estimate and settlement yielding a positive bias will
not be critical in view of our result whereas a negative relationship may pose problems.13 It is
important to note that there are two relevant influences: On the one hand, a relatively high sec-
ond hazard estimate will typically lead to a higher offer price rendering settling more likely; on
the other hand, a relatively high second estimate is indicative of a higher true hazard rate, which
will make settling less likely for an unchanged offer price. Hence, in order to assess whether the
relationship is positive or negative, the key question is whether or not the proclivity for settling
increases in the estimate. Appendix A.3 corroborates this insight by working out a version of the
simple model from Section 2 with uncertainty in the offer price originating from additional infor-
mation on the mortality probability estimate. In line with the arguments here, the model shows that
the average difference between the unconditional mortality probability and the mortality probabil-
ity conditional on settling will be larger in the presence of additional information if the fraction of
policyholders deciding to settle is increasing in the unknown mortality probability estimate.

We can assess this relationship in the context of the available estimate by analyzing the propor-

11Here, we encounter collinearity with respect to the primary impairments since every policyholder in the reduced
dataset is affected by exactly one primary impairment. We address this by taking out PI15 in the regression.

12We emphasize that the relevant perspective is that of the LS company / the investor with the winning offer for the
policy. Other parties such as the broker and, of course, the policyholder may have different information sets that could
also be affected by the bidding process. We discuss the origin of the informational asymmetry in the next section.

13Consider e.g. the extreme and stylized case where the company has full information (such that the true coefficient
γ will be zero) and the correlation between µ(i)

t and SaOi is 1 (-1). Then clearly the estimated γ̂ from Eqs. (4) and (5)
will be positive (negative).



ASYMMETRIC INFORMATION IN SECONDARY INSURANCE MARKETS 19

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.8 1 1.2 1.4 1.6 1.8 2 2.2

multiplier

proportion
95% CI

trend

(a) full sample

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 1 1.2 1.4 1.6 1.8 2 2.2

multiplier

proportion
95% CI

trend

(b) sample with known policy face values

Figure 3: Proportion of policyholders that settled their policy as a function of the mortality multi-
plier (solid curve), with point-wise 95% confidence intervals (dashed curves); earliest observation
date. Left panel: Proportion calculated based on the full sample. Right panel: proportion calcu-
lated based only on policies with known face values.

tion of policyholders that decided to settle their policy as a function of the corresponding mortality
multiplier. As discussed in Section 3, this multiplier is used relative to a life table that accounts
for basic characteristics such as gender, age, etc., so that it controls for observable characteristics
and reflects the assessment of the LE provider. In Figure 3, we plot the proportion of policyholders
within our subsample of closed policies, both relative to the full sample (left panel) and relative to
the sample of policies with known face value (right panel). In constructing the figures, we consider
bins of multipliers of lengths 0.1 and derive the proportion (solid curve) as well as 95% confidence
intervals (dashed curves) based on a binomial assumption. Since we have many outliers with rela-
tively (very) small or (very) large multipliers and the calculation of reliable proportions is difficult
in this range, we disregard the 5% of the sample with the lowest multipliers and the 15% with the
highest multipliers, so that the plots show 80% of the sample. As is evident from the figures and
the trend lines (dotted lines), we find a generally positive relationship. This suggests our analysis
is robust with regards to additional information on LEs.

5.3 Sample Selection

As indicated in Section 3, we use the earliest underwriting date as a proxy for the time the individ-
ual decides whether or not to settle her policy—which is the relevant point in time for exploiting
the informational advantage. This is justified by the fact that the time delay between the time an
LE estimate is ordered and the time when it is communicated is typically not very long; indeed,
frequently investors have rules in place that they will not use an estimate for bidding if it is older
than six months. However, a policyholder interested in settling might nonetheless decease during



ASYMMETRIC INFORMATION IN SECONDARY INSURANCE MARKETS 20

this waiting period and therefore not be included in the closed subsample—potentially contributing
to the negative relationship between settlement and hazard that we observe.

To analyze whether the negative correlation is solely driven by this delay, we eliminate cases
where the policyholder died within six months of the (earliest) underwriting date in our remaining
sample. Thus, all policyholders that might have considered settling but died before having the
opportunity will be excluded from the analysis. Since by doing so we also exclude policyholders
that did settle but are not observed, policyholders that would not have settled, and individuals that
did not even contemplate settling in the first place, and since being in the remaining subsample now
implies a survival of at least six months, this prodedure even creates a bias against the hypothesis
of a negative settlement-hazard correlation in our analysis. Nonetheless, as can be seen from
Columns [E] in Tables 2 and 3, while the effect naturally decreases due to the aforementioned bias,
the intercept and the slope of the settlement dummy are still highly significant and remain similar
to the original results. Hence, we can exclude this mechanism as a primary driver for the observed
correlation.

A related silent assumption for our analyses thus far is that a random sample of closed policies
is a random sample of closed policies at settlement or, in other words, that being observed as
one of the policies in the closed subsample is independent of survival. A potential problem with
this assumption are so-called tertiary trades, that is policies that are resold at some point in time
after the closing date. Clearly, a tertiary trade will only take place if the policyholder is alive, so
that—assuming there exists an LE from our provider for the company that originally owned the
policy—tertiary policies may be associated with longer observed lifetimes.14

To address this and other concerns relating to possible sample selection issues, we rerun the
regression analyses using the latest observation date for each policy in the full dataset, i.e. we eval-
uate the impact of settling on survival experience relative to the last time the life was underwritten
by our LE provider. Regression results are presented in columns [F] of Tables 2 and 3 for the
proportional and additive specifications, respectively. The estimates for the non-settlement-related
variables are similar to the earliest observation date (columns [B]). For the settlement-related vari-
ables, the qualitative observations are analogous, although—as is to be expected given the results
on the time trend from Section 4—the effect is less pronounced since it weakens over time. In
particular, the results from both specifications indicate that the effect wears off after approximately
four years. Thus, while these estimates are less in line with our objective of studying the existence
and pattern of private information when selling the policy, we are able to identify the residual
effect—lending force to our results.

14To illustrate, assume Investor 1 buys policies from insureds A and B. Later, Investor 1 sells her portfolio to Investor
2. Assume that by then, B has died whereas A is still alive. If our closed subsample contained Investor 2’s portfolio,
we would know that A settled but would have no information on B.
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6 Impact and Origin of the Informational Friction

To quantify the impact of settling on life expectancy, we provide example calculations based on
our proportional hazards regression results. We face two difficulties. First, as discussed in Section
3, our regression estimates are based on analyses of the known closed policies relative to the
remaining policies, with the latter including a mix of closed and non-closed cases. Since we are
interested in the more direct closed versus non-closed comparison, we adjust our point estimate
based on different parameter values of the (unknown) proportion of closed policies in the full
sample p (cf. Footnote 10). More precisely, we inflate the coefficient γ based on the analysis in
Appendix A.1 (Eq. (7)) and assume that the impact wears off over eight years according to the
time trend in our regression model from Section 4.15 As a reference, when relying on average face
values, the market size estimate by Roland (2016) implies a proportion of roughly 47%. Second,
our regressions give us estimates for the overall impact, but not for a specific individual. Hence, we
rely on US population mortality data to evaluate the impact on average policyholders at different
ages that are roughly in line with the aggregate statistics from our dataset (ages 70, 75, and 80).16

Table 4 presents results for representative US male policyholders. Appendix B presents addi-
tional results for female policyholders as well as for alternative specifications (time-constant effect,
additive regression specification). The first column of the table presents LE estimates/increases
based on the observed proportion of closed policies (13, 221/53, 947 ≈ 24.5%). Since the actual
proportion can only be higher, these estimates provide lower bounds for the LE differences be-
tween settlers and non-settlers with identical observable characteristics. The remaining columns
present LE results based on various assumptions of the proportion that range from 30% to 70%.
Overall, our calculations suggest that the life expectancies for individuals that settled their policy
exceed those of policyholders not settling their policy by between 0.35 to 0.81 years, or roughly
2.5% to 11% of the life expectancies. In particular, for a 75 year old policyholder and assuming
that the proportion of closed cases in the full sample is 50%, we obtain roughly half a year of addi-
tional life expectancy relative to a non-settler’s life expectancy of a little over 10 years. Of course,
the results are based on specific assumptions and, as discussed in Section 5, there are aspects that
may cause deviations in either direction. Nevertheless, these magnitudes suggest that asymmetric
information has an economically significant impact on the life settlement market, and should be
accounted for in market operations—e.g. in view of pricing and risk management.

Identifying the origin of the informational asymmetry is a difficult problem since different ex-

15As shown in Appendix B, assuming a time-constant effect as in the basic specification (4) yields a more pro-
nounced impact on life expectancy, so our choice is conservative.

16The mortality data are taken from the Human Mortality Database; University of California, Berkeley
(USA), and Max Planck Institute for Demographic Research (Germany); available at www.mortality.org or
www.humanmortality.de. More precisely, we calculate life expectancies based on expected future survival proba-
bilities, where we use the Lee and Carter (1992) method to produce forecasts.
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Proportion of closed policies (p)

24.5% 30% 40% 50% 60% 70%

Age 70 (non-adjusted LE 13.93)
LE for settled cases 14.28 14.30 14.34 14.39 14.46 14.55
LE increase 0.35 0.37 0.41 0.46 0.53 0.62

Age 75 (non-adjusted LE 10.48)
LE for settled cases 10.88 10.90 10.95 11.01 11.09 11.20
LE increase 0.40 0.42 0.47 0.53 0.61 0.72

Age 80 (non-adjusted LE 7.50)
LE for settled cases 7.95 7.98 8.03 8.10 8.19 8.31
LE increase 0.45 0.48 0.53 0.60 0.69 0.81

Table 4: Comparisons of average life expectancies between population-level and settled US male
policyholders; proportional hazards model with time-weakening effect.

planations have similar empirical implications, particularly the positive risk-coverage relationship
we observe (Chiappori and Salanié, 2013). However, different sources of asymmetric information
may lead to different risk-coverage patterns over time. For instance, Abbring et al. (2003) rely on
dynamic relationships to characterize asymmetric information in the context of experience ratings
in automobile insurance.

The temporary and subsiding influence of settlement over time resembles patterns in so-called
select-and-ultimate life tables in actuarial studies that capture selection effects due to underwrit-
ing. To illustrate, in the left and right-hand panels of Figure 4 we plot the proportional and additive
excess hazard, respectively, for a preferred male life underwritten at age 75 as a function of time
since underwriting relative to ultimate hazard rates based on the Society of Actuaries 2001 Com-
missioner’s Standard Ordinary (CSO) preferred life table.17 Of course, here the “selection effect”
comes from the underwriting process allowing insurers to use lower hazard rates in the select pe-
riod, so the origin for the deviation is not an informational asymmetry. The relevant analogy is that
insurers will only have information on the policyholder’s health condition at the point of sale (time
of underwriting), and the relevance of this information dissipates as time progresses, producing the
converging pattern.

The shapes in Figure 4 are similar to our non-parametric estimates of proportional and additive

17For information on the 2001 CSO table, see https://www.soa.org/Research/Experience-Study/
ind-life/tables/intl-2001-cso-preferred-class-structure-mortality-tables.aspx.
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Figure 4: Excess hazard for a male policyholder underwritten at age 75 as a function of time
since underwriting for the Society of Actuaries 2001 Commissioner’s Standard Ordinary (CSO)
preferred life table. Left panel: Proportional excess hazard. Right panel: Additive excess hazard.

excess hazard due to asymmetric information in Figures 1 and 2, respectively. The key difference
is that the selection effect in life insurance lasts fifteen to seventeen years, whereas our estimates
show a vanishing impact of settlement after approximately eight years. Nonetheless, the analogy
provides suggestive evidence for an informational advantage regarding the initial health condition
that individuals select on in their settlement decision.

Alternative explanations for the positive settlement-survival correlation include hidden actions
(moral hazard), indirect effects e.g. via risk aversion, or a possible information gain during the
settlement process. In the present context, “moral hazard” may take the form of healthier lifestyle
choices after relinquishing the life insurance coverage, seeking improved medical care using the
proceeds from settling, or other positive changes in health-related behavior. If permanent changes
in behavior were the sole driver for the informational asymmetry, two policyholders with exactly
the same observable characteristics but only differing in their settling decision should display ex-
actly the same hazard rate right up until settlement, and we would expect to see a diverging rela-
tionship thereafter. In particular, if there were differences in care or in lifestyle, we would arguably
expect (at least) a persistent effect on hazard—in contrast to the subsiding pattern we identify.

Heterogeneity in underlying policyholder characteristics such as wealth or risk aversion can
be the root cause for an informational asymmetry. While, as indicated in Section 2, heterogeneity
in wealth is not likely to deliver the observed result, a (negative) correlation between settlement
and hazard could arise due to differences in risk aversion. More precisely, risk aversion—which in
the basic model from Section 2 is captured by the parameter ψ—may directly affect the decision
to settle or it may lead individuals to hold more (relinquishable) life insurance in the first place,
but may also affect survival prospects, e.g. by limiting engagement in risky activities or more
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engagement in preventative healthcare.18 However, these explanations, and particularly the idea
that risk aversion influences the purchase of insurance several years before the settlement decision,
assume that risk aversion is—or policyholder characteristics more generally are—persistent. Thus,
again, the converging pattern of the hazard rates after the settlement decision is not in line with
these explanations, since persistent differences in characteristics should yield persistent differences
in survival prospects.

The evolution of the difference in hazards also allows us to address the relevance of potential
informational asymmetries that originate directly from the settlement process. More precisely, a
wedge could arise from brokers forwarding shorter LEs to LS companies, or policyholders pick-
ing the highest among several bids for their policy (winner’s curse)—which may be submitted by
the LS company that received the lowest (combination of) LEs.19 Consider the following thought
experiment in opposition to this explanation: Suppose there are several identical distributed LEs
with different associated multipliers but the broker only forwards the one with the highest multi-
plier and the “winning” LS company prepares a bid on this basis; now, assuming the multiplier is
simply a relatively high random realization, the proportional excess hazard will be constant over
time at a level below one and the additive excess hazard will necessarily need to diverge to sustain
this constant proportional trend, in contrast to the converging pattern depicted in Section 4. We
provide a more detailed discussion and a Monte Carlo implementation of this experiment in Ap-
pendix C. The results show that indeed this mechanism can deliver a negative correlation between
settlement and hazard—we obtain negative and significant intercepts in all five simulations for the
proportional hazards specification. However, the trend components in the proportional hazards
regression specification are all insignificant, and they are all negative and significant for the ad-
ditive hazards specification (see Table A.4 and Figure A.2 for the corresponding non-parametric
estimates). These results are in stark contrast to the significantly positive results for the trend
component from Tables 2 and 3.

Thus, while there are several conceivable aspects contributing to the informational asymmetry,
the pattern over time is in line with adverse selection by policyholders based on private information
regarding their near-term survival prospects.

18Note that here, since risk aversion is not known to the LS company, a negative correlation between settlement and
hazard would still be driven by an informational asymmetry, although the mechanism is “indirect.”

19While LS companies used to order LEs themselves, within current transactions typically the broker assembles
several LEs and forwards them to the companies together with the policy information. While there is some discretion
which estimates to forward, certain LS companies require LEs from specific providers.
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7 Conclusion

In this paper, we show that in the secondary life insurance market, policyholders choosing to settle
their policy, ceteris paribus, exhibit significantly longer (relative to their LE estimate) lifetimes—
although the impact of settling on survival subsides over time. This documents the existence and
relevance of private information regarding near-term survival prospects. Our findings are robust
with respect to model specification and other sources for potential biases.

While the quantitative results are specific to our setting and particularly the population in view,
we believe that our qualitative insights have broader repercussions. More precisely, in addition to
complementing studies on informational asymmetries in primary insurance markets, our findings
indicate that individuals in our sample are competent in assessing their relative survival prospects
when prompted with relevant information, in a situation with significant monetary consequences.
Here, by relative survival prospects we mean the appraisal of whether an individual expects to
live longer or shorter than an average individual with a similar profile. This is in contrast to
individuals’ ability in predicting absolute life expectancies that seem to be subject to framing and
other behavioral biases (Payne et al., 2013; and references therein). We believe that the former
task may be more material for retirement planning given that individuals may be provided with
background information or suitable default choices based on their profile.

The existence and the origin of informational frictions is also material for answering policy-
relevant questions regarding the efficiency and welfare implications of the life settlement market.
For addressing such questions, it will be necessary to consider equilibrium implications, account-
ing for barriers to participate in this market (Einav et al., 2010b) and repercussions on primary
insurance (Daily et al., 2008; Fang and Kung, 2017). While addressing these issues is beyond the
scope of this paper, our findings will inform the process of building and estimating corresponding
equilibrium models (see e.g. Einav et al. (2010a)).
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A Technical Appendix

A.1 Impact of the Mixed Nature of the Remaining Subsample

As discussed in the main text, the estimate for the regression coefficient γ of the Settled-and-

Observed variable generally does not provide a consistent estimate for the difference between
closed and non-closed cases due to the mixed nature of the subsample of remaining policies. Put
differently, since the remaining cases include both non-closed and closed cases, γ will not con-
stitute a suitable adjustment for closed cases relative to individuals that did not settle their policy
but will only amount to a fraction of the “true” difference, and therefore needs to be inflated. In
what follows, we derive appropriate inflation formulas for the proportional hazards model and the
additive hazards model.

Proportional Hazards Model

To illustrate, consider the following simplified version of our proportional hazards model (4):

µ
(i)
t = β0(t)× exp {γ SaOi} . (6)

Denote by Yt all remaining observations at time t, by Y (1)
t all remaining settled/closed cases at

time t (unobserved), pt = Y
(1)
t /Yt, and by Y (2)

t all remaining Settled-and-Observed cases at time
t, qt = Y

(2)
t /Yt. Denote by Di(t) the “death counting process” for policyholder i (zero if alive,

one if dead). Furthermore, denote by γact the unknown actual regression coefficient for the model
in which the econometrician observes all settlement decisions—effectively replacing the Settled-
and-Observed variable (SaOi) by a corresponding Settled variable (Seti) in (6), and by γour our
coefficient based on the Settled-and-Observed cases only. For simplicity, assume further that at
any time t, the probability that a settlement decision is observed is constant. Therefore, based on
Lin and Ying (1994, Eq. (2.6)), γact and γour will be solutions to the following (partial) score

functions, respectively:

0 =
N∑
i=1

∫ ∞
t=0

[
Seti −

pt
(1− pt)× exp(−γ̂act) + pt

]
dDi(t), and

0 =
N∑
i=1

∫ ∞
t=0

[
SaOi −

qt
(1− qt)× exp(−γ̂our) + qt

]
dDi(t).
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Integrating and using the assumption that we obtain the number of Settled-and-Observed deaths by
multiplying the number of Settled deaths by the corresponding proportion (qt/pt), we obtain that:

(1− p)× exp(−γ̂act) + p ≈ (1− q)× exp(−γ̂our) + q,

where p is the (unknown) overall proportion of settled cases and q is the (known) overall proportion
of Settled-and-Observed cases in the portfolio, which for simplicity we assume are constant. Thus,
under the assumptions above, a suitable estimator for the actual difference between closed and non-
closed cases under the proportion hazards assumption is:

γ̂act ≈ − ln

(
q − p
1− p

+ exp(−γ̂our)× 1− q
1− p

)
, (7)

where of course γ̂our corresponds to the estimate from specification (4). In particular, for γ̂our = 0

we obtain γ̂act = 0, and in case γ̂our < 0 the actual coefficient γ̂act needs to be further inflated
(γ̂act < γ̂our < 0).

Additive Hazards Model

Similar to above, we consider the following simplified version of our additive hazards model (5):

µ
(i)
t = β0(t) + γ SaOi. (8)

Using the same assumptions and notations as before, based on the estimates in Lin and Ying
(1994, Eq. (2.8)) we have:

γ̂act

γ̂our
=

∫∞
0
Y

(2)
t [1− qt] dt∫∞

0
Y

(2)
t [1− pt] dt

,

and again using the assumption of constant proportions we obtain:

γ̂act

γ̂our
≈ (1− q)

(1− p)
.

Thus, a suitable estimator for the actual difference between closed and non-closed cases under the
additive hazards assumption is:

γ̂act ≈ γ̂our × (1− q)
(1− p)

, (9)

where γ̂our corresponds to the estimate from specification (5). In particular, since the ratio (1 −
q)/(1− p) is always greater than one, the inflated coefficient will again be greater (in its absolute
value) than the one estimated from the mixed sample.
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A.2 Development of the non-parametric estimators

Following the description in the main text, we derive non-parametric estimates for the excess haz-

ard for policyholders that settled their policy as a function of time. To formalize our notions
of excess hazard, assume we are given two individuals S and R with hazard rates {µSt }t≥0 and
{µRt }t≥0, respectively, that differ only in the information regarding their settlement decision but
are identical with respect to all observables. More precisely, assume that we know S settled her
policy whereas the settlement decision for R is not known. Then we can define the proportional

excess hazard {α(t)}t≥0 and the additive excess hazard {β(t)}t≥0 via the following relationships:

µSt = α(t)× µRt and µSt = β(t) + µRt .

Andersen and Vaeth (1989) provide non-parametric estimators for the proportional and additive
excess hazard by relying on the Nelson-Aalen (N-A) estimator for

∫ t
0
α(s) ds and the Kaplan-Meier

(K-M) estimator for
∫ t

0
β(s) ds, respectively. However, their approach relies on the assumption

that the baseline mortality (µRt in our specification) is known, whereas we only have available
estimates {µ̂(i)

t }t≥0, 1 ≤ i ≤ N, given by the LE provider. Therefore, for the estimation of
the proportional excess hazard, we instead use the following three-step procedure that relies on a
repeated application of the Andersen and Vaeth (1989) estimator:

1. We start with the specification:

µ
(i)
t = A(t)× µ̂(i)

t , 1 ≤ i ≤ N, (10)

and use the Andersen and Vaeth (1989) excess hazard estimator to obtain an estimate for
A, say Â, based on the full dataset. Hence, Â corrects systematic deviations of the given
estimates based on the observed times of death (in sample). We set:

µ̄
(i)
t = Â(t)× µ̂(i)

t , 1 ≤ i ≤ N,

for the corrected individual baseline hazard rate.

2. We then use the specification:
µ

(i)
t = α(t)× µ̄(i)

t (11)

for individual i in the closed subsample. Note that if we used the full dataset to estimate α,
we would obtain α(t) ≡ 1 and

∫ t
0
α(s) ds would be a straight line with slope one. However,

when applying (11) to the subsample of closed policies, the resulting estimate for α—or
rather

∫ t
0
α(s) ds—picks up the residual hazard information due to the settlement decision.
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3. Finally, we derive an estimate for α from the cumulative estimate (
∫ t

0
α(s) ds) using a suit-

able kernel function as in Wang (2005).

For the additive excess hazard, we proceed analogously replacing Equations (10) and (11) by:

µ
(i)
t = B(t) + µ̂

(i)
t and µ(i)

t = β(t) +
[
B̂(t) + µ̂

(i)
t

]
︸ ︷︷ ︸

=µ̄
(i)
t

,

respectively.
In the context of Figures 1, 2, and A.2, for the derivation of the derivatives in Step 3., we use

the Epanechnikov kernel with a fixed bandwidth of one.

A.3 A Version of the Model from Section 2 with Price Uncertainty

Assume the LS company has access to an additional estimate for the insured’s probability of death
q that is not known to the econometrist, say θ. Here, we assume that the underlying probability
measure P reflects all available information and, to simplify the presentation, we ignore uncertainty
in ψ. Since we interpret θ as a signal for q, we assume (i) that a higher θ will result in a higher
offer price, i.e. π(θ) is increasing, and (ii) that q is stochastically increasing in θ. Then it is easy to
see that:

E [q|q < π(θ) + ψ, θ] is increasing as a function of θ. (12)

Indeed, it is sufficient to assume the weaker condition (12) holds, which solely indicates that the
estimate for q conditional on a policyholder settling her policy is increasing in θ.

Now if the econometrist finds a negative correlation between settling and dying, in the context
of this extended model this means:

E [q|q < π(θ) + ψ] < E [q] , (13)

where the conditional expectation on the left-hand side incorporates all the information available
to the econometrist (reflected in P) and the observation that the policyholder settled. However,
the question from the point of view of the LS company—which, as indicated in Footnote 13, is
the relevant perspective—is whether there exists asymmetric information, indicated by a negative
correlation, when incorporating all pricing-relevant information, particularly θ:

E [q|q < π(θ) + ψ, θ]
?
< E [q|θ]
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for at least some choices of θ. When aggregating over all policyholders:

E [E [q|q < π(θ) + ψ, θ]]
?
< E [E [q|θ]] = E [q] . (14)

Therefore, the question of whether the observed relationship (13) provides definite evidence for
the relevant relationship (14) depends on the relationship between the expectations on the left-hand
sides of (13) and (14). In particular, the implication will hold if:

E [E [q|q < π(θ) + ψ, θ]] ≤ E [q|q < π(θ) + ψ] . (15)

We need the following lemma:

Lemma A.1. LetX be a real random variable, g be an increasing function such that E [g(X)] = 0,

and h be an increasing and positive function. Then E [g(X)h(X)] ≥ 0.

Proof. Let K = argmaxx{g(x) ≤ 0}. Then:

0 = E[g(X)] = E [g(X)|X ≤ K] P(X ≤ K) + E [g(X)|X > K] P(X > K).

Now clearly g(X)h(K) ≤ g(X)h(X) on {X ≤ K}, so that

E [g(X)h(K)|X ≤ K] ≤ E [g(X)h(X)|X ≤ K] .

Similarly,
E [g(X)h(K)|X > K] ≤ E [g(X)h(X)|X > K] .

Thus,

0 = E [g(X)h(K)|X ≤ K] P(X ≤ K) + E [g(X)h(K)|X > K] P(X > K)

≤ E [g(X)h(X)|X ≤ K] P(X ≤ K) + E [g(X)h(X)|X > K] P(X > K)

= E [g(X)h(X)] .

Now, by the tower property of conditional expectations, (15) is equivalent to:

E
[
E
[
q 1{q<π(θ)+ψ}|θ

]]
P(q < π(θ) + ψ)

− E [E [q|q < π(θ) + ψ, θ]] ≥ 0

⇔ E

[
E [q|q < π(θ) + ψ, θ]

(
P(q < π(θ) + ψ|θ)
P(q < π(θ) + ψ)

− 1

)
︸ ︷︷ ︸

=g(θ)

]
≥ 0.
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Since E [q|q < π(θ) + ψ, θ] is increasing as a function of θ by our assumption and since E [g(θ)] =

0, with the lemma relationship (14) will hold if g is increasing. Note that g is an affine transforma-
tion of the proportion of policyholders deciding to settle given the estimate θ, so that the pivotal
relationship is the increasingness of this proportion in θ. Conversely, the implication will go in the
other direction, so that that the econometrist’s analysis will potentially overstate the effect, if the
proportion of policyholders settling their policy is decreasing in the estimate.

B Supplemental Results

Table A.1 presents supplemental survival regression results based on proportional and additive
hazards specifications. Columns [A] and [B] in the table show results for the earliest observation
date with alternative time trend specification under the proportional hazards specification (adding a
quadratic trend, SaOi×ln2(1+t), in column [A] and adding a linear trend, SaOi×t, in column [B]).
Columns [D] and [E] show comparable results under the additive hazards specification (adding a
quadratic trend, SaOi×t2, in column [D] and adding a logarithmic trend, SaOi×ln(1+t), in column
[E]). As is evident from the table, the quadratic trend components fail to be significant in both
specifications, whereas the alternative time trend specification in either case provides qualitatively
similar conclusions on informational frictions, yet with lower likelihood values when compared
with the default trend choices in the main text.

Columns [C] and [F] of Table A.1 present results when using dummy variables for underwriting
date and age at underwriting in the proportional and additive hazards specification, respectively.
Comparing the estimates to the baseline results from Tables 2 and 3, it is clear that using the (log-
)linear trend did not have a significant impact on the results. In particular, there is little change
in the settlement-related variables that are in the focus of our analysis. This is also illustrated by
Figure A.1 that plots coefficients of the corresponding dummy variables, from which we note that
a basic increasing trend assumption can capture the relevant shape.

Tables A.2 and A.3 present the results of the impact of settling on life expectancy for represen-
tative US male and female policyholders under various model specification, using the approximate
inflation formulas as derived in Equations (7) and (9) in Appendix A.1. Among all cases, we es-
timate LE increases from 0.21 to 2.21 years for policyholders who choose to settle their policy.
Percentage-wise, the relative change of LE for settled policyholders ranges from 2.8% to 16.0%.
We note that the estimated LE increases are more pronounced under the time-constant trend as-
sumption.



Online Appendix to “Asymmetric Information in Secondary Insurance Markets” 8

[A] [B] [C] [D] [E] [F]

1/14 ×
∫ 14

0
β0(t) dt 0.0182 0.0189 0.4645 −0.0090 −0.0090 0.0061

Estimated hazard, µ̂(i)
t 0.8966∗∗∗ 0.8974∗∗∗ 0.8804∗∗∗ 0.2031∗∗∗ 0.2031∗∗∗ 0.1822∗∗∗

(0.0101) (0.0101) (0.0125) (0.0067) (0.0067) (0.0069)
Underwriting date, ln(1 + DOUi) 0.3048∗∗∗ 0.3039∗∗∗ - 0.0001 0.0001 -

(0.0277) (0.0277) - (0.0002) (0.0002) -
Age at underwriting, ln(1 + AUi) 0.5880∗∗∗ 0.5798∗∗∗ - 0.0016∗∗∗ 0.0016∗∗∗ -

(0.0828) (0.0828) - (0.0001) (0.0001) -
Sex, SEi −0.0984∗∗∗ −0.0990∗∗∗ −0.0866∗∗∗ 0.0042∗∗∗ 0.0043∗∗∗ 0.0049∗∗∗

(0.0196) (0.0196) (0.0202) (0.0007) (0.0007) (0.0007)
Primary impairment 1, PI1 −0.0385 −0.0451 −0.0185 0.0129 0.0129 0.0122

(0.2863) (0.2863) (0.2867) (0.0150) (0.0150) (0.0150)
Primary impairment 2, PI2 −0.0286 −0.0341 0.0416 0.0792∗∗∗ 0.0792∗∗∗ 0.0820∗∗∗

(0.2894) (0.2894) (0.2902) (0.0192) (0.0192) (0.0192)
Primary impairment 3, PI3 0.1639 0.1590 0.2388 0.0028 0.0028 0.0055

(0.2835) (0.2835) (0.2840) (0.0149) (0.0149) (0.0149)
Primary impairment 4, PI4 0.1945 0.1887 0.2404 0.0292∗ 0.0293∗ 0.0271∗

(0.2854) (0.2854) (0.2858) (0.0153) (0.0153) (0.0154)
Primary impairment 5, PI5 −0.0005 −0.0063 0.0607 0.0282∗ 0.0283∗ 0.0279∗

(0.2812) (0.2812) (0.2818) (0.0150) (0.0150) (0.0150)
Primary impairment 6, PI6 −0.0429 −0.0377 0.0385 −0.0043 −0.0043 −0.0022

(0.2793) (0.2793) (0.2799) (0.0147) (0.0147) (0.0148)
Primary impairment 7, PI7 0.1994 0.1942 0.2793 0.0051 0.0051 0.0071

(0.2788) (0.2788) (0.2794) (0.0147) (0.0147) (0.0148)
Primary impairment 8, PI8 0.2095 0.2042 0.2840 0.0043 0.0043 0.0063

(0.2811) (0.2811) (0.2817) (0.0148) (0.0148) (0.0148)
Primary impairment 9, PI9 0.8207∗∗∗ 0.8164∗∗∗ 0.9004∗∗∗ 0.0878∗∗∗ 0.0878∗∗∗ 0.0860∗∗∗

(0.2820) (0.2820) (0.2825) (0.0160) (0.0160) (0.0160)
Primary impairment 10, PI10 0.1024 0.0967 0.1648 −0.0036 −0.0036 −0.0007

(0.2813) (0.2812) (0.2818) (0.0148) (0.0148) (0.0148)
Primary impairment 11, PI11 0.9003∗∗∗ 0.8952∗∗∗ 0.9591∗∗∗ 0.0484∗∗∗ 0.0485∗∗∗ 0.0476∗∗∗

(0.2837) (0.2837) (0.2843) (0.0154) (0.0154) (0.0154)
Primary impairment 12, PI12 0.4029 0.3970 0.4702∗ 0.0084 0.0085 0.0118

(0.2818) (0.2818) (0.2824) (0.0148) (0.0148) (0.0149)
Primary impairment 13, PI13 0.1031 0.0978 0.1712 −0.0047 −0.0046 −0.0026

(0.2790) (0.2790) (0.2796) (0.0147) (0.0147) (0.0148)
Primary impairment 14, PI14 0.3726 0.3671 0.4535 0.0151 0.0151 0.0172

(0.2790) (0.2789) (0.2796) (0.0148) (0.0148) (0.0148)
Primary impairment 15, PI15 −0.1945 −0.1997 −0.1326 −0.0142 −0.0142 −0.0107

(0.2801) (0.2801) (0.2808) (0.0147) (0.0147) (0.0148)
Smoker, SMi,1 0.3739∗∗∗ 0.3733∗∗∗ 0.3604∗∗∗ 0.0298∗∗∗ 0.0297∗∗∗ 0.0268∗∗∗

(0.0429) (0.0429) (0.0432) (0.0026) (0.0026) (0.0026)
“Aggregate” smoking status, SMi,2 0.2117∗∗∗ 0.2123∗∗∗ 0.2213∗∗∗ 0.0116∗∗∗ 0.0116∗∗∗ 0.0105∗∗∗

(0.0551) (0.0551) (0.0552) (0.0025) (0.0025) (0.0025)
Settled-and-Observed, SaOi −0.5994∗∗∗ −0.3300∗∗∗ −0.4650∗∗∗ −0.0113∗∗∗ −0.0143∗∗∗ −0.0101∗∗∗

(0.1189) (0.0419) (0.0643) (0.0016) (0.0016) (0.0012)
Settled-and-Observed × trend, 0.3993∗∗ 0.2127∗∗∗ 0.0063∗∗∗

SaOi × ln(1 + t) (0.1691) (0.0361) (0.0011)
Settled-and-Observed × quadratic trend, −0.0608
SaOi × ln2(1 + t) (0.0567)
Settled-and-Observed × trend, 0.0411∗∗∗ 0.0018∗∗ 0.0014∗∗∗

SaOi × t (0.0071) (0.0009) (0.0003)
Settled-and-Observed × quadratic trend, −4.1× 10−5

SaOi × t2 (0.0001)

Log-likelihood value −134, 011.87 −134, 015.18 −133, 987.62 −74, 322.44 −74, 357.20 -

Table A.1: Survival regression supplemental results. Column [A]: Proportional hazards assump-
tion with additional quadratic trend, earliest observation date; column [B]: Proportional hazards
assumption with linear time trend, earliest observation date; column [C]: Proportional hazards
assumption with logarithmic time trend and dummy variables for underwriting date and age at
underwriting, earliest observation date; column [D]: Additive hazards assumption with additional
quadratic trend, earliest observation date; column [E]: Additive hazards assumption with loga-
rithmic time trend, earliest observation date; column [F]: Additive hazards assumption with linear
time trend and dummy variables for underwriting date and age at underwriting, earliest observation
date. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.
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Figure A.1: Survival regression parameter estimations (left panels: Proportional; right panels:
Additive) of dummy variables for age at underwriting (top panels) and underwriting date (bottom
panels), with point-wise 95% confidence intervals (dashed curves); earliest observation date.
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Proportion of closed policies (p)

24.5% 30% 40% 50% 60% 70%

Age 70 (non-adjusted LE 13.93)
Proportional hazards; time-constant effect

LE for settled cases 14.69 14.75 14.88 15.05 15.30 15.69
LE increase 0.76 0.82 0.95 1.12 1.37 1.76

Additive hazards; time-weakening effect
LE for settled cases 14.37 14.41 14.49 14.60 14.77 15.07
LE increase 0.44 0.48 0.56 0.67 0.84 1.14

Additive hazards; time-constant effect
LE for settled cases 14.60 14.65 14.78 14.96 15.23 15.70
LE increase 0.67 0.72 0.85 1.03 1.30 1.77

Age 75 (non-adjusted LE 10.48)
Proportional hazards; time-constant effect

LE for settled cases 11.13 11.17 11.28 11.43 11.64 11.98
LE increase 0.65 0.69 0.80 0.95 1.16 1.50

Additive hazards; time-weakening effect
LE for settled cases 10.79 10.82 10.88 10.96 11.08 11.30
LE increase 0.31 0.34 0.40 0.48 0.60 0.82

Additive hazards; time-constant effect
LE for settled cases 10.88 10.91 10.98 11.09 11.25 11.52
LE increase 0.40 0.43 0.50 0.61 0.77 1.04

Age 80 (non-adjusted LE 7.50)
Proportional hazards; time-constant effect

LE for settled cases 8.02 8.06 8.15 8.26 8.43 8.70
LE increase 0.52 0.56 0.65 0.76 0.93 1.20

Additive hazards; time-weakening effect
LE for settled cases 7.71 7.73 7.77 7.83 7.91 8.05
LE increase 0.21 0.23 0.27 0.33 0.41 0.55

Additive hazards; time-constant effect
LE for settled cases 7.72 7.74 7.78 7.83 7.92 8.07
LE increase 0.22 0.24 0.28 0.33 0.42 0.57

Table A.2: Comparisons of average life expectancies between population-level and settled US male
policyholders; various model specifications.
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Proportion of closed policies (p)

24.5% 30% 40% 50% 60% 70%

Age 70 (non-adjusted LE 15.97)
Proportional hazards; time-weakening effect

LE for settled cases 16.25 16.26 16.29 16.34 16.39 16.46
LE increase 0.28 0.29 0.32 0.37 0.42 0.49

Proportional hazards; time-constant effect
LE for settled cases 16.69 16.74 16.86 17.02 17.25 17.60
LE increase 0.72 0.77 0.89 1.05 1.28 1.63

Additive hazards; time-weakening effect
LE for settled cases 16.48 16.52 16.61 16.75 16.95 17.29
LE increase 0.51 0.55 0.64 0.78 0.98 1.32

Additive hazards; time-constant effect
LE for settled cases 16.80 16.87 17.02 17.25 17.59 18.18
LE increase 0.83 0.90 1.05 1.28 1.63 2.21

Age 75 (non-adjusted LE 12.25)
Proportional hazards; time-weakening effect

LE for settled cases 12.58 12.60 12.64 12.69 12.76 12.84
LE increase 0.33 0.35 0.39 0.44 0.51 0.59

Proportional hazards; time-constant effect
LE for settled cases 12.87 12.92 13.02 13.16 13.35 13.66
LE increase 0.62 0.67 0.77 0.91 1.10 1.41

Additive hazards; time-weakening effect
LE for settled cases 12.63 12.66 12.73 12.83 12.98 13.23
LE increase 0.38 0.41 0.48 0.58 0.73 0.98

Additive hazards; time-constant effect
LE for settled cases 12.76 12.80 12.90 13.03 13.24 13.59
LE increase 0.51 0.55 0.65 0.78 0.99 1.34

Age 80 (non-adjusted LE 8.90)
Proportional hazards; time-weakening effect

LE for settled cases 9.29 9.31 9.35 9.41 9.49 9.59
LE increase 0.39 0.41 0.45 0.51 0.59 0.69

Proportional hazards; time-constant effect
LE for settled cases 9.40 9.44 9.52 9.63 9.79 10.15
LE increase 0.50 0.54 0.62 0.73 0.89 1.15

Additive hazards; time-weakening effect
LE for settled cases 9.16 9.18 9.23 9.30 9.40 9.58
LE increase 0.26 0.28 0.33 0.40 0.50 0.68

Additive hazards; time-constant effect
LE for settled cases 9.19 9.21 9.26 9.34 9.45 9.64
LE increase 0.29 0.31 0.36 0.44 0.55 0.74

Table A.3: Comparisons of average life expectancies between population-level and settled US
female policyholders; various model specifications.
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C Monte Carlo Experiment on Excess Hazard

To implement a Monte Carlo version of the thought experiment in Section 6, we first run a least-
square regression of the logarithm of the mortality multipliers on the observable characteristics
(excluding the multipliers themselves and the settlement-related variables). We also include sig-
nificant interactions of the terms so that we have 41 covariates in total. Based on the regression
model, we then derive projected life expectancies as well as the standard deviation of the error
term. The projected life expectancies will then be used as the benchmark of the assessment in the
Monte Carlo experiment, i.e. we assume these present the true life expectancies.

Now, following the logic from Section 6, assume that a fraction of all cases enter into a life set-
tlement transaction and the brokers commissioned with the sale “cherry-pick” among the available
LEs (multiplier estimates). More precisely, assume that for these transactions, several LEs from
various LE providers will be obtained but only the shortest LE (highest multiplier) is submitted.
Alternatively, we may assume that there are several offers from various LS companies that base
their pricing on different mortality multipliers, and the one with the highest bidding price (corre-
sponding to the highest multiplier estimate) will make the trade. Importantly, while in the context
of this experiment we assume the policyholder does not have private information on her survival
prospects, note that there still exists an informational asymmetry—the broker and/or policyholder
will have more information than the winning LS company—but this asymmetry emerges in the
transaction process.

Assume that each LE provider’s estimate is based on the same projected mortality multiplier
plus a varying error term (with mean of zero), according to our regression estimates. For simplicity,
we assume that the submitted (highest) multiplier corresponds to the 75th percentile. Based on this
logic, closed cases are systematically assessed with shorter LEs, whereas the remaining cases have
no systematic deviation. We use the resulting multipliers to generate a hypothetical set of forecasts
µ̂

(i)
t , 1 ≤ i ≤ N, where we use the skewed (75th percentile) multiplier for the (randomly sampled)

closed cases and the projected (median) multiplier for the remaining cases. Based on the simulated
sample, we derive non-parametric estimators similarly as in Section 4.

Figure A.2 presents the results for five different simulated datasets, where as for our actual
dataset we assume 13,221 out of the 53,947 policyholders are Settled-and-Observed. While the
shapes and magnitudes differ between the simulated datasets, we observe that the proportional
excess hazard roughly evolves according to a straight line below one, whereas the additive excess
hazard diverges. This is consistent with the assertions in Section 6. While it is possible that there
are systematic differences in the underwriting process between the LE providers, it is difficult
to construct a situation that yields the observed patterns from Section 4 based on this selection
process.
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Figure A.2: Monte-Carlo experiment of non-parametric estimates of excess hazard.
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Simulation

#1 #2 #3 #4 #5

Proportional hazards specification
Settled-and-Observed, SaOi −0.3218∗∗∗ −0.2568∗∗∗ −0.2890∗∗∗ −0.4372∗∗∗ −0.3896∗∗∗

(0.0596) (0.0587) (0.0589) (0.0599) (0.0598)
Settled-and-Observed × trend, SaOi × ln(1 + t) −0.0133 −0.0499 −0.0358 0.0204 0.0181

(0.0347) (0.0342) (0.0343) (0.0347) (0.0347)

Additive hazards specification
Settled-and-Observed, SaOi −0.0009 0.0001 0.0001 −0.0029∗∗ −0.0023∗∗

(0.0012) (0.0012) (0.0012) (0.0012) (0.0012)
Settled-and-Observed × trend, SaOi × t −0.0009∗∗∗ −0.0010∗∗∗ −0.0012∗∗∗ −0.0008∗∗∗ −0.0007∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Table A.4: Survival regression results for the five Monte-Carlo simulated datasets. ∗∗∗, ∗∗, and ∗

denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Table A.4 confirms the non-parametric findings by presenting corresponding survival regres-
sion results based on the same five simulated datasets, using both proportional and additive speci-
fications with time trend. For simplicity we only show regressed coefficients for settlement-related
covariates. We observe from the table consistent results across all simulation trials. In particular,
for the proportional specification, the intercept of the trend starts at significantly negative values,
however, the slope of the trend is insignificant and very close to zero, suggesting a persistent impact
of settling on survival prospects. For the additive specification, the slope of the trend is no longer
positive but significantly negative, which is again necessary to sustain the constant proportional
trend as assumed in the skewing process of our Monte Carlo simulation.
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