
Submitted to Statistical Science

The Myth of Immortality:
An Analysis of the Maximum
Lifespan of US Females
Jan Feifel, Martin Genz, and Markus Pauly
Ulm University

Abstract. Questions related to the existence and specification of a limit to
human lifespan lead to heated discussions in several scientific fields such as
biology, demography, medicine, or actuarial sciences. In the present paper, we
contribute to this discussion from a statistical point of view. To this end, we
use combined mortality data of US females obtained from the International
Database on Longevity as well as the Human Mortality Database. The use of
old-age mortality data typically raises two issues: sparse information on the
old ages and censored observations. Up to the present paper, this censoring
issue has been ignored in previous investigations on the maximum human
lifespan. We address this accordingly by combining sub-sampling and cross-
validation techniques with recent results on censored extreme value theory.
As the main result, we estimate the maximum lifespan of US females for
moving intervals of nine calendar years between 1980 and 2003.
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man Mortality Database, Supercentenarians, Old-age mortality.

1. INTRODUCTION

The dream of immortality is not only subject to legends, science fiction, and fairy tales but also has
attracted the attention of researchers from many different fields of science. Who has not yet dreamed
about the possibility to extend the individual lifespan to ages that have never been reached before? Fol-
lowing, for example, de Grey (2003) immortality may become reality in near future. On the other hand,
there may be a natural limit to human life which probably is just not yet in sight. Or maybe we have
already reached this limit. For example Dong, Milholland and Vijg (2016) found ’evidence for a limit to
human lifespan’ which is supported by a comprehensive data analysis. However, they base their claims
on statistics like the maximum reported age at death which completely ignores people who are still alive
at highest ages. Others like, e.g., Fries (1980) found natural constraints to longevity while a few decades
later reality exceeded their forecasts. Recently, Rootzén and Zholud (2017) concluded that ’human life
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2 FEIFEL ET AL.

is unbounded but short’. However, their statistical analysis is based on small sample sizes and thus may
lack power, see also Section 3 below. In any case, as pointed out by Weon and Je (2009), ’the existence
of maximum human lifespan remains a puzzle in aging research’.
From a statistical point of view, all of these questions are related to the support of the density function
of the underlying age distribution at death (the so-called deaths curve) and lead to investigations about
its right endpoint. The current paper studies them for US females by means of modern statistical meth-
ods from extreme value theory (EVT). Since the deaths curve typically changes over time Börger, Genz
and Ruß (2017) its right-endpoint also changes over time Wilmoth et al. (2000); Cohen and Oppenheim
(2012). We, therefore, study the evolution of the deaths curve’s right tail over moving time periods.
For this analysis, we use data from the International Database on Longevity (IDL) and the Human Mor-
tality Database (HMD). To avoid gender effects and to ensure an acceptable data quality and quantity we
focus on data of US females. The HMD is one of the largest publicly available databases on mortality in
the world. However, many observations in the HMD are right-censored, particularly at the age of 110.
This prohibits a gain of information about the right tail behavior of the deaths curve. However, it is well-
known that there have been humans which survived the age of 110 (see e.g. Robine and Allard (1998) for
the famous case of Jeanne Calment) and thus the HMD data alone is not suitable for any EVT analysis. In
contrast, the IDL is more informative regarding the death counts of the highest ages: It provides the exact
age and time of death of so-called supercentenarians, i.e. individuals who at least reached their 110th

birthday. The IDL covers death counts of 309 US female supercentenarians in the time span 1980–2003.
This allows for a statistical analysis in the classical EVT framework de Haan and Ferreira (2006); Reiss
and Thomas (2007); Falk, Hüsler and Reiss (2010); Resnick (2013) as has, e.g., been applied to estimate
the maximum attainable age for the Netherlands and Belgium Aarsen and de Haan (1994); Gbari et al.
(2017); Einmahl, Einmahl and de Haan (2017) as well as for Canada and Japan Watts, Dupuis and Jones
(2006). Since such an analysis has not been carried out for the US alone, we start our investigation with
the IDL. Since 309 is a rather small number for quite a large time horizon we increase the inferential
accuracy by subsequently combining the datasets of the IDL and the HMD. We then study this combined
data set (CDS) over moving time intervals, each of 9 years length. In this way, we evaluate the progres-
sion of the lifespan distribution from 1980–2003. As a by-product, working at smaller time intervals is
more convincing with respect to the usual iid assumption underlying EVT methods. Moreover, it allows
for an adequate treatment of the present truncation by incorporating survivors of each time interval as
right-censored observations. To take care of this issues in an adequate way we employ methods from
censored EVT following Einmahl, Fils-Villetard and Guillou (2008), see also Gomes and Neves (2011);
Worms and Worms (2014) or Gomes and Guillou (2015) for other censored EVT approaches.
To our knowledge, this is the first paper on estimating the maximum lifespan in a population that

• employs methods from censored EVT and
• includes old-aged survivors into their analysis
• while adequately dealing with the underlying censoring issue.

The remainder of this paper is organized as follows: Section 2 gives a detailed description of two em-
ployed databases and discuss their structure. Moreover, in this section, we describe how we construct a
combined data set which exploits the advantages of both databases and we make a quantitative analysis
of this data set. Thereafter, in Section 3 we introduce and apply classical EVT methods to analyze the
IDL data alone and illustrate our findings. As this leads to results which are neither statistically signifi-
cant nor rigorous, we analyze the combined data set by means of censored EVT in Section 4. The results
are illustrated and discussed in Section 5 and the paper closes with some conclusions and an outlook in
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Section 6.

2. DATA DESCRIPTION

In this section we cover different aspects of the data used for our research. Unfortunately, there is no
publicly available database which includes complete mortality and survival data for a sufficiently long
history while providing the complete age range for all covered populations. Nevertheless, we admit that
there are databases giving detailed information on survival as well as the time and age at death. But
often these databases are not publicly available and only cover single populations. In particular, this
complicates the comparison of results. We therefore decided to analyze publicly available data. In what
follows, we first describe some characteristics of the databases underlying our investigations. We then
describe how to exploit their advantages, and finally make a quantitative analysis for the estimation of
the deaths curve’s right endpoint.

2.1 Characteristics of the HMD and IDL Databases

Our research is based on data from two different databases: the International Database on Longevity
IDL (2017) and the Human Mortality Database HMD (2015). As outlined in the introduction we focus
on US females to have a rather homogeneous population and a sufficiently large sample size.
The IDL contains data for 15 industrialized countries across the world. Each of its records relates to one
individual dying after its 110th birthday, where the individual’s age at death is given exactly in days from
their birthday and it is supposed to be free of age ascertainment bias Maier et al. (2010). For the US the
IDL provides the age and time of death of 309 females dying at the age of 110 or beyond between 1980
and 2003. The oldest US female recorded in the IDL reached an age of 43560 days (i.e. 119 years and
97 days). These figures illustrate a major issue of the IDL: Its exactness and lack of ascertainment bias
inevitably lead to a reduction in the number of observations. Thus, the data may underestimate the count
of supercentenarians dying in the years between 1980 and 2003. Maier et al. (2010) explain the process
of validation of the IDL data and concludes that the IDL fits the profile of the US female population well
in general though it probably underestimates the absolute number of people dying in this age range. A
further disadvantage of the IDL is the lack of survival data: We only know the time and age of death of
some very old US females but there might be some individuals still alive in similar or even higher ages.
Moreover, the IDL stopped collecting data after 2003.
In contrast to the IDL the HMD covers mortality and population size (i.e. survival) data of 38 differ-
ent countries, where death counts are obtained in up to three dimensions: age at death, calendar year of
death, and calendar year of birth. The HMD edits the input data to obtain a homogeneous structure over
calendar years per population but also across populations. To reduce complexity we pass on the informa-
tion of the year of birth and only employ the single-year and single-age death counts and population size
(survivor) data. Unfortunately the HMD only supplies age and time discrete data, i.e. we only know how
many members of a population die during the (integer) year t and in the (integer) age x, but we neither
know the exact date of death, nor their exact age at death. We therefore follow Wilmoth et al. (2017) and
assume the date of death as well as the date of birth during a calendar year to be uniformly distributed. In
this way we can redistribute the death counts per calendar year and thus work with an exact time and age
at death. Similarly, we can derive an exact age structure of the population at the end of a calendar year.
For our analysis, we extracted HMD population size data for US females for the time horizon from 1980
– 2003. In sum it includes almost 26 million deaths over all ages whereof 1853 females are deterministi-
cally right-censored at 110, i.e. died at the age of 110 or beyond. This means that the HMD only contains
single age mortality data up to the age of 109 and a cumulative entry 110+ thereafter. This constricts the
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estimation of the maximum attainable age. For this reason, we additionally merge the IDL into the HMD
for the analysis. This combination exploits the quantity of the HMD and the quality of the IDL data.

2.2 Combining the Data – the CDS

The input data of the HMD for US females builds on several official population and health statistics of
the United States. In this sense, the data is likely to be complete with regard to the US population in gen-
eral. Thus, it is reasonable to assume the IDL population being a sub-population of the HMD population.
With this assumption we combine them as follows: First, as we are interested in old-age mortality, we
only include the HMD data (death counts and survivors) beyond the age of 97. The inclusion of survivors
thereby adds right-censored observations to our time interval (1980–2003) of interest. Second, for each
calendar year, we randomly delete as many deaths counts from the HMD deaths counts’ entry 110+ as
we observe deaths in this age range in the IDL. Finally, we derive the number of survivors of each cal-
endar year from the data of the IDL. This is possible as we know the exact age and time of death of each
individual recorded in the IDL. We randomly delete as many survivors of the HMD as we have survivors
implicitly given by the IDL for each calendar year and each age in the age span beyond 97. This merges
the IDL into the HMD and avoids double counts in the resulting data set which we denote as CDS (com-
bined data set). Later on, we analyze the CDS with censored EVT techniques introduced in Einmahl,
Fils-Villetard and Guillou (2008) which require the assumption of iid observations. However, since the
structure of mortality typically changes over time Börger, Genz and Ruß (2017), this presumption may
not be reasonable for the complete time horizon of the CDS of 24 calendar years. Since evaluating on an
annual basis would lead to rather small sample sizes, particularly with respect to the proportion of the
IDL data in the CDS per period, we found a compromise: We run our analysis on time windows of nine
adjacent calendar years. In each step, these windows are shifted by one-year, i.e. we start with the win-
dow between 1980 and 1988, proceed with the window between 1981 and 1989, and so on, ending with
the window between 1995 and 2003. We treat the records for fixed windows as realizations from inde-
pendent and identically distributed random variables that may be subject to independent right-censoring.
The assumption on identically distributed random variables on each window appears to be more con-
vincing compared to the entire period 1980–2003, see the Supplement for density plots underpinning
this assumption. Moreover, analyzing moving windows enables us to evaluate the evolution of the deaths
curve’s right endpoint over time.

2.3 Quantitative Analysis of the data bases

To get a picture of the data bases we oppose the values of the IDL and the HMD (for the records
beyond 97 years; without double counts) in Table 1. For each window the absolute numbers of death
counts and censored observations are shown. For the HMD the latter is split into censored individual
surviving the time window (i.e. the subject died at a later time point) and censoring due to HMD-specific
missing information for ages beyond 110 (110+ entries) which is responsible for less than 1% of the
censored observations. As the IDL collects the explicit age at death, observations from the IDL are only
censored due to survival of the specific time window. This quantity decreases in the last four windows
since the IDL only covers data up to the year 2003. As a small caveat, we note that this issue may lead to
a slight under-estimation of the right endpoint in the last four windows. In addition to the absolute death
counts in the IDL also its portion in the number of death counts in the age range beyond 110 from the
CDS are shown. This portion ranges between 10% and 20%, which means that for each window at least
one out of ten US female supercentenarians dying is an uncensored observation in the CDS. The portion
of the IDL data in all deaths of the CDS per window is much smaller (between about 0.03% and 0.05%)
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HMD IDL
Observed Censored observations Observed % of all CDS Censored

Window death due to death deaths in the due to
counts 110+ entries survivors counts range 110+ survival

1980-88 184752 624 85577 72 10.34 14
1981-89 198520 616 90676 79 11.37 14
1982-90 212466 624 95641 87 12.24 18
1983-91 227203 614 101020 84 12.03 32
1984-92 240896 617 105983 102 14.19 24
1985-93 257341 656 108517 118 15.25 23
1986-94 272599 657 110999 129 16.41 22
1987-95 287816 666 112084 135 16.85 28
1988-96 301362 675 115006 145 17.68 24
1989-97 314376 706 118120 152 17.72 30
1990-98 327949 732 119849 157 17.66 36
1991-99 342915 729 121968 168 18.73 45
1992-00 356859 752 123306 181 19.4 27
1993-01 370065 760 124548 173 18.54 11
1994-02 380731 751 125481 159 17.47 3
1995-03 391504 746 127637 142 15.99 0

TABLE 1
Shown are the window-specific sample sizes of the censored and uncensored observations in HMD and IDL together with the

portion of the IDL in the higher age entries (older than 110 years) of the CDS.

but this is mainly due to the high number of observations from the HMD in the age range between 97
and 109. Finally, the corresponding CDS death and censoring counts are obtained by summing up the
corresponding columns, respectively. It is apparent that these values reveal an increasing trend over the
windows. This is in line with the findings of, e.g. Robine and Paccaud (2005), who found that the number
of old Swiss people increases over time.
In what follows we first study the IDL data with classical EVT techniques for the whole time interval
1980–2003 as the number of IDL counts within each window are rather small (Table 1). We then use the
results as motivation for a more sophisticated analysis of the CDS with censored EVT methods for the
moving windows.

3. CLASSICAL EVT ANALYSIS OF THE IDL

Consider the classical EVT framework given by iid random variables Xi ∼ F with unknown cumula-
tive distribution function (cdf) F . Here Xi indicates the age at death of subject i and we are particularly
interested in the right endpoint of the cdf F , i.e. xF := sup{x : F (x) < 1} ≤ ∞. Since we do not want
to presume the existence of a limit to human lifespan, we should also allow for an infinite lifetime, i.e. for
xF =∞. For estimating xF there exist two well-established EVT approaches, each employing a differ-
ent class of distributions: the generalized extreme value distributions (GEV) and the generalized Pareto
distributions (GPD). In what follows, we briefly describe these two approaches and refer to de Haan and
Ferreira (2006) for more details and proofs.
The GEV is based on the Fisher-Tippet Theorem (see Fisher and Tippett (1928)). It describes the class
of potential limit distributions Gγ of the standardized maximum (max1≤i≤n{Xi} − bn)/an for suitable
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sequences an > 0 and bn. The class of GEV Gγ(ax+ b), is given by

Gγ(x) =

{
exp

(
−(1 + γx)

− 1
γ

)
, 1 + γx > 0 γ 6= 0

exp (− exp(−x)) , x ∈ R γ = 0,
(3.1)

where a and b are scaling and location parameters which can be estimated from the current dataset.
While this concept is rather general, a GPD approach seems to be more suitable with respect to the left
truncated IDL data since it considers values above a given threshold t Balkema and de Haan (1974), say
t = 110 in case of the IDL. To this end, we are interested in the distributionFt(x) = P(X1 − t ≤ x|X1 > t).
For example de Haan and Ferreira (2006) show that the limit equation limt→xF supxF−t<x<0 |Ft(x) −
Hγ,σ(x)| = 0 can only be fulfilled for distributions from the GPD given by

Hγ,σ(x) =

{
1−

(
1 + γx

σ

)−1
γ for γ 6= 0

1− exp(−x
σ ) for γ = 0,

(3.2)

where σ is again a scaling parameter.
In both cases, the extreme value index (EVI) γ is the key parameter that characterizes the tail of the limit
distribution. In particular, the value of γ separates two different cases: If γ < 0 holds (case (i)), the
considered distribution has a finite right endpoint which corresponds to a finite maximal age. Contrary,
if γ > 0 holds (case (ii)), the right endpoint is infinite and US females may have the potential to live
forever. For the decision between the cases (i) and (ii) and for the estimation of xF we need adequate
estimators for γ. The recent literature discusses several different estimators, some of which are valid
only for EVIs in certain intervals (see e.g. Pickands (1975) or Dekkers, Einmahl and de Haan (1989) for
early work on this topic and de Haan and Ferreira (2006) and Resnick (2013) for reviews). However, we
particularly allow for positive values of the EVI. This basically leaves us with two choices of estimators
for γ: the moment estimator (Mom) for the GEV approach and the maximum likelihood estimator (MLE)
for the GPD approach. The latter is defined as that value of γ which maximizes the likelihood during a
fit of the GPD model to the data while the moment estimator is defined as

γ̂Mom
n (k) :=M (1)

n (k) + 1− 1

2

(
1−

(
M (1)
n (k)

)2
/M (2)

n (k)

)−1
,(3.3)

where M (j)
n (k) := 1

k

∑k
i=1 (log(Xn−i+1,n)− log(Xn−k,n))

j and Xi,n denotes the i-th order statistic.
Other estimators such as Pickands or Hill estimators have not been considered due to restricted EVI
values (Hill) or less efficiency (Pickands), see e.g. the discussion in Section 3 of de Haan and Ferreira
(2006). In what follows, γ̂(·)n (k) denotes the EVI estimator, where k is the number of upper order statistics
used and (·) indicates the short-form of the estimator (i.e. MLE or Mom, respectively). The choice of
k as a function of the number of observations n is crucial for a good estimate. Since both estimators
are consistent for γ and even asymptotically normal if k → ∞ while k

n → 0, we should not choose
k too small or too large. To this end, e.g. de Haan, Mercadier and Zhou (2016) describe the following
observation: the smaller the values of k, the higher the variance of the EVI estimator while for increasing
k the bias of the EVI estimator gets larger. Finding a suitable k between these extremes is called the
bias-variance trade-off. To get a first idea of the choice of k, we perform a graphical inspection: Figure
1 shows both the moment and maximum likelihood estimates for the IDL depending on k and the point-
wise 95% confidence intervals (CI) for both estimates (where we employed the methods of Aarsen and
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FIG 1. Point estimates k 7→ γ̂
(·)
n (k) of the EVI based on the MLE and Mom approach as a function of k together with point-wise

95% CI for the IDL.

de Haan (1994) for the construction of the Mom-based CI and carried them over to the MLE-based CI
for a better comparison).
From Figure 1 we can see that both EVI estimates are positive for k ≤ 46 and negative for k > 46.
Interpreting values of k ≤ 46 as too small this suggests a negative EVI-estimate corresponding to a finite
maximal attainable age. However, the CI or more decisive the one-sided CI (not shown here) portend
that the null hypothesis H0 : γ > 0 of a positive EVI cannot be rejected at the significance level of 5%.
In particular, the asymptotic one-sided z-test for H0 based on the MLE (Mom) gives an approximate p-
value of 0.2349 (0.2183). Thus, the hypothesis of a potentially infinite lifetime cannot be rejected based
on data from the IDL and the methods described above. If we ignore this statistical insignificance for now
and only take into account that the EVI-estimates are negative for k > 46 so we can nevertheless esti-
mate a maximum attainable age. To this end, we have to find a suitable k. A general recommendation, or
rule-of-thumb, is to choose k in a region where these estimates stabilize. Incorporating the bias-variance
trade-off as well as the asymptotic framework, this points us to a choice of k between 100 and 200. The
minimum, maximum and median of the MLE and Mom estimates for γ with k between 100 and 200, the
corresponding value of k, and the 95% confidence intervals are given in Table 2.

γ̂
(·)
n (k) (95% CI for γ) k x̂

(·)
F (k) (95% CI for xF )

min MLE -0.0711 (-0.2173, 0.0751) 155 132.30 (91.62, 172.98)
Mom -0.0942 (-0.2773, 0.0888) 106 127.49 (99.53, 155.45)

median MLE -0.0572 (-0.2205, 0.1061) 128 136.71 (68.37, 205.05)
Mom -0.0663 (-0.2247, 0.0921) 142 133.11 (84.14, 182.08)

max MLE -0.0385 (-0.1978, 0.1207) 140 147.60 (02.92, 292.28)
Mom -0.0418 (-0.2032, 0.1196) 139 144.49 (21.32, 267.66)

TABLE 2
MLE- and Mom-estimates of the EVI (γ) and the right-endpoint (xF ) for the IDL data together with 95% confidence intervals

for different choices of k.

As already seen in Figure 1 the CIs are rather wide and each contains the value of 0, i.e. a potential
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infinite lifetime cannot be rejected at level 5%. This may be explained by the small sample size and a
potentially negative γ that is quite close to zero (i.e. does not lie far in the alternative). However, each of
the estimated EVI values corresponds to a different GPD (MLE case) or GEV (Mom case) and can be
used to estimate the right-endpoint of the underlying distribution.
For illustration, exemplary QQ-plots for both median values are given in Figure 2. There the empirical
quantiles of the IDL data are plotted against simulated quantiles of the respective distribution functions
and the solid lines denote the corresponding regression line, respectively. Both plots show an acceptable
fit with a considerable advantage for the GPD model (left panel).
This additionally reassures the potential applicability of both EVI approaches. We also investigated
whether the underlying distribution function lies in the maximum domain of attraction of Gγ for the
above choices of γ < 0. By means of the test of Dietrich, de Haan and Huesler (2002) with the critical
value proposed in Huesler and Li (2006) we could not reject this.

FIG 2. QQ-plots of empirical quantiles over simulated quantiles; left panel: pareto distribution with γ = −0.0572; right panel:
generalized extreme value distribution with γ = −0.0663. The solid lines visualize the regression line for the plots.

In the next step, we determine the right endpoint of the corresponding models. As explained around
Equation (3.1) above, we need to estimate the scaling and location parameters a and b, in order to find
a GEV. To this end we apply the method described in Section 3 of de Haan and Ferreira (2006) and
finally obtain estimates for the maximum lifespan x̂Mom

F (k) (GEV) and x̂MLE
F (k) (GPD), respectively.

The estimators again depend on the tuning parameter k and are consistent and asymptotically normal
under similar regularity assumptions. With this, we can construct 95% CIs. The last two columns of Ta-
ble 2 show the results: Given are the minimum, median, and maximum of the MLE and Mom endpoint
estimates with the corresponding asymptotic 95% CIs and the value of k referring to the endpoint esti-
mates x̂Mom

F (k) and x̂MLE
F (k), respectively. The obtained estimates for the maximum lifespan fluctuate

between 127.49 (GEV with minimum EVI Mom-estimate) and 147.6 years (GPD with maximum EVI
MLE-estimate). This suggests, that the sample size is probably not sufficient for more precise results.
Moreover, the confidence intervals are again (too) widespread. In particular, for the larger EVI estimates
the asymptotic behavior of the underlying variance estimator (which is of order O(1/γ4) for γ → 0)
cannot be countervailed by the sample size which leads to the given CIs with poor relevance.

4. A CENSORED EVT ANALYSIS OF THE CDS

The results of the previous section are neither statistically significant nor rigorous. As a consequence,
we need to significantly increase the sample size of the dataset. Moreover, the neglect of present censor-
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ing as well as the underlying iid assumption for the whole time span may lead to implausible estimates.
To take care of these issues we analyze the CDS over 16 moving time windows as described in Section 2
by means of censored EVT. To this end, Einmahl, Fils-Villetard and Guillou (2008) provide several the-
oretical results with regard to the statistical analysis of randomly right-censored extreme value data. In
their framework, the age at death of the i-th individual is modeled via iid random variablesXi with distri-
bution function FX . These random variables may be independently right censored by censoring random
variables Ci

iid∼ FC , where FC denotes their distribution function. Consequently, the observations in the
dataset are given by Zi = min(Xi, Ci) and a censoring indicator is given by δi = 1{Zi = Xi}. Let γ(·)
and xF(·)denote the EVI and the endpoint of the distribution function of X,C, and Z, respectively.
To answer the target questions on the maximum lifespan we need to determine γX and xFX based on the
available data. The classical EVT approaches from the previous subsection, however, would only lead to
reasonable estimates for γZ and xFZ (when only using the observations Zi). On the other hand, a com-
plete case analysis (when deleting all censored observations) would generally result in estimates that are
strongly biased. To address censoring adequately, Einmahl, Fils-Villetard and Guillou (2008) introduce
estimators for γX and xFX which are valid in the following cases:

case 1: γX > 0, γC > 0

case 2: γX < 0, γC < 0, xFX = xFC
case 3: γX = γC = 0, xFX = xFC =∞.

(4.1)

With regard to the estimation of the maximal attainable age at death only the second case corresponds to
a finite right-endpoint. For the sake of generality we nevertheless also allow for non-negative EVIs γX
and γC .
In what follows, we consider intervals of nine adjacent calendar years for the time span 1980–2003.
Starting with 1980–1988 these windows are shifted by steps of one calendar year, see Table 1. As the
CDS records of death and censoring counts for the 16 time windows (see Table 1) do not refuse the first
two cases of Assumption (4.1) at first sight we presume that the methods of Einmahl, Fils-Villetard and
Guillou (2008) are applicable to estimate the right endpoint of the deaths curve for each window. The
windows contain between about 300,000 and 500,000 of (partially censored) observations. Since this
figure is still too large for most algorithms with respect to the computing time (even when using mod-
ern computing clusters), we follow a sub-sampling approach: Let Zn := {Z1, ...Zn} denote the CDS
sample for one representative window. We then randomly draw m times from Zn without replacement
to construct a sub-sample of size m, where m < n. Independently repeating this N times we obtain
sub-samples Z im := {Zi1, ..., Zim}, 1 ≤ i ≤ N . We then estimate the EVIs (of the given window) sep-
arately for each sub-sample. Following Politis, Romano and Wolf (1999) we should choose m from a
theoretical perspective such that m

n → 0 as m→∞. Moreover, the size of the sub-samples m should
be sufficiently large, such that each sub-sample includes IDL data with a sufficiently high probability.
Taking these issues as well as the computation time into account we calculated estimates for m = 7500
and N ∈ {1000, 5000}. For the choice of k we employ a cross-validation type procedure that is related
to the Leave-One-Out method. This allows for a more objective choice of the tuning parameter k, at least
compared to the rule of thumb approach from Section 3. To this end, we draw one more sub-sample Z0

m

fromZn of lengthm that serves as a test sample. All other sub-samplesZ im, 1 ≤ i ≤ N, serve as training
samples. For each of these sub-samples Z im, 0 ≤ i ≤ N, we estimate the EVI γ̂(·)X,i(ki) and thereby vary
the number of upper order statistics 1 ≤ ki ≤ m. To this end, we use the methods described by Einmahl,
Fils-Villetard and Guillou (2008).
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FIG 3. Different EVI estimates as a function of the number of upper order statistics k0 in case of the trainings dataset of the
first window between 1980 and 1988 from the CDS.

Figure 3 shows different EVI estimates k0 7→ γ̂
(·)
X,0(k0) for the test sample of the first interval between

1980 and 1988 for N = 5000. Since there are several stable plateaus visible, it is not clear, where the
upper order statistic should be chosen to get a good bias-variance tradeoff. We therefore compare the
EVI estimates for the test set k0 7→ γ̂

(·)
X,0(k0) with the corresponding EVI estimates from each trainings

set ki 7→ γ̂
(·)
X,i(ki). For each of these comparisons we obtain the estimator

k̂0,i := argmin
1≤k0≤m

m∑
ki=1

k
5/4
i

(
γ̂
(·)
X,0(k0)− γ̂

(·)
X,i(ki)

)2
, 1 ≤ i ≤ N.(4.2)

This corresponds to the EVI estimate from the test set Z0
m that has the smallest penalized quadratic

distance from all EVI estimates of the ith trainings set Z im. The choice of the penalty k5/4i reduces the
influence of the bias since it supports intermediate values and penalizes larger values of k (for which the
bias is supposed to become too large). Now we can derive an estimator for the EVI by taking the mean
of all γ̂(·)X,0(k̂0,i), 1 ≤ i ≤ N , obtained from Equation (4.2):

γ̂
(·)
X,0 = N−1

N∑
i=1

γ̂
(·)
X,0(k̂0,i).

To additionally state corresponding 95% confidence intervals of the form (γ̂L, γ̂U ) we use the asymptotic
normality of the EVI estimators given in Einmahl, Fils-Villetard and Guillou (2008). Proceeding in this
way for all time windows we obtain the MLE- and Mom-based EVI estimates with corresponding 95%-
confidence intervals stated in Table 3 (for N = 5000). Moreover, the limiting distribution of the EVI-
estimators directly yields estimates for the right endpoint given any estimate for the EVI. However, no
mathematically sound confidence intervals for xF have been developed so far. We therefore seize on the
former suggestion that every EVI-estimate yields a right endpoint estimate and proceed as follows: For
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Mom MLE
window γ̂

(·)
n (k) (95% CI for γ) γ̂

(·)
n (k) (95% CI for γ)

1980-88 -0.14266 (-0.14307,-0.14226) -0.13500 (-0.13533,-0.13467)
1981-89 -0.14225 (-0.14266,-0.14183) -0.13827 (-0.14075,-0.13579)
1982-90 -0.15943 (-0.15973,-0.15913) -0.14813 (-0.14966,-0.14660)
1983-91 -0.15920 (-0.15954,-0.15886) -0.13979 (-0.14017,-0.13941)
1984-92 -0.13900 (-0.14761,-0.13038) -0.12407 (-0.12458,-0.12356)
1985-93 -0.13899 (-0.13956,-0.13843) -0.12448 (-0.12513,-0.12382)
1986-94 -0.14553 (-0.14596,-0.14511) -0.12650 (-0.12707,-0.12594)
1987-95 -0.14616 (-0.14663,-0.14569) -0.12669 (-0.12791,-0.12547)
1988-96 -0.15376 (-0.15430,-0.15322) -0.15025 (-0.15080,-0.14970)
1989-97 -0.15359 (-0.15585,-0.15134) -0.15062 (-0.15102,-0.15022)
1990-98 -0.14601 (-0.14819,-0.14383) -0.14717 (-0.14757,-0.14677)
1991-99 -0.14524 (-0.14564,-0.14484) -0.14676 (-0.14717,-0.14635)
1992-00 -0.15112 (-0.15162,-0.15061) -0.13735 (-0.13789,-0.13681)
1993-01 -0.13187 (-0.13607,-0.12768) -0.13764 (-0.14035,-0.13492)
1994-02 -0.15253 (-0.15318,-0.15188) -0.15808 (-0.15859,-0.15757)
1995-03 -0.14023 (-0.14231,-0.13815) -0.16646 (-0.16818,-0.16475)

TABLE 3
MLE- and Mom-estimates of the EVI (γ), upper order statistics k, and 95% confidence intervals for the CDS for N = 5000.

the upper and lower limits γ̂(·)L and γ̂(·)U of the 95 % empirical confidence interval of γX,0 we calculate
corresponding endpoint estimates, say x̂(·)FX ,L and x̂(·)FX ,U , to obtain an (at least descriptive) confidence

interval (x̂(·)FX ,L, x̂
(·)
FX ,U

) for xF . The results for N = 5000 are shown in Table 4 and discussed below.

5. DISCUSSION OF THE CDS RESULTS

In this section, we discuss our results and their plausibility. We start by describing the results on
the EVI given in Table 3 (the results for a subsample size of N = 1000 were similar and thus not
shown here). First, it is apparent that all EVI estimates are below zero for every window. Moreover,
even the upper bounds of their 95% confidence intervals are below zero. Since this even holds after
multiplicity adjustment (results not shown) we can argue for a significantly negative EVI (γFX < 0).
This particularly indicates the existence of a limit to the lifespan of US females in every window; at least
in this retrospective view. A similar investigation for the censored observations alone also indicated a
significant negative γFC < 0 so that Case 2 of Assumption (4.1) appears to be plausible. Accordingly,
we are able to estimate the right endpoint of the deaths curve as described in the former section.
Table 4 shows these estimates together with their confidence intervals for both the maximum likelihood
and the moment estimator in case ofN = 5000 subsamples (the results forN = 1000 were again similar
and thus not shown). As we can see from this table, both right endpoint estimates range between 120.278
and 126.610 over all time windows. Further, we cannot detect any major trends neither in the results for
the maximum likelihood estimator nor in those of the moment estimator.
Moreover, the confidence intervals range between 117.280 and 130.830 with a maximum interval length
of 9.283 years (MLE estimation in the window between 1993 and 2001). For the interpretation of these
results, we shall recall from Section 2 that the IDL stopped collecting data after 2003. Thus, the later time
spans contain less IDL survival data which may lead to a slight underestimation. Anyhow, the observed
rather constant behavior of the deaths curve’s right endpoint is in line with recent findings of Einmahl,
Einmahl and de Haan (2017) who also did not find ’indications of trends in these upper limits over the
last 30 years’ for Dutch residents based on classical (non-censored) EVT.

imsart-sts ver. 2014/10/16 file: Revision_Myth_of_Immortality.tex date: June 29, 2018



12 FEIFEL ET AL.

Mom MLE
window x̂FX (95% approx. CI for x̂FX ) x̂FX (95% approx. CI for x̂FX )

1980-88 122.802 (120.240, 127.740) 125.409 (122.072, 129.602)
1981-89 122.898 (120.304, 127.801) 124.839 (122.642, 129.510)
1982-90 120.781 (117.280, 123.487) 122.880 (121.530, 124.833)
1983-91 120.732 (117.432, 123.566) 124.099 (123.995, 129.278)
1984-92 123.001 (120.793, 124.673) 126.510 (123.700, 130.830)
1985-93 122.871 (120.881, 125.343) 126.610 (123.661, 130.671)
1986-94 121.832 (118.322, 126.409) 126.310 (123.391, 127.733)
1987-95 121.661 (118.465, 126.420) 126.278 (123.533, 127.622)
1988-96 120.562 (119.143, 122.889) 121.897 (119.420, 125.152)
1989-97 120.797 (119.508, 122.043) 122.206 (119.408, 125.067)
1990-98 122.107 (119.987, 123.567) 122.380 (119.214, 124.939)
1991-99 122.186 (118.805, 126.413) 122.354 (119.232, 124.976)
1992-00 121.107 (118.078, 124.314) 123.482 (119.541, 128.454)
1993-01 123.489 (120.877, 125.906) 124.340 (119.267, 128.550)
1994-02 120.278 (118.502, 122.782) 120.704 (117.576, 124.642)
1995-03 122.478 (120.417, 124.407) 120.946 (119.382, 122.930)

TABLE 4
MLE- and Mom-estimates of the right endpoint (xFX ) and 95% aprroximative confidence intervals for the CDS for

N = 5000.

As explained in Section 2.1, the oldest US female recorded in the IDL reached an age of 119 years and
97 days and she died in the year 1999. Though the lower bound of the confidence intervals for some
windows is lower than 119 years, the estimates for the right endpoint are always larger. Since the HMD
is regarded to be complete with respect the US population our results seem to be plausible.

Advantages of the CDS approach. We finally indicate the advantages of working with the CDS. First,
utilizing the HMD alone did not lead to reliable estimates (results shown in the Supplement). In partic-
ular, in the analysis of the HMD alone we obtained EVT estimates of the right endpoint that are below
the age of 119 years. However, from the IDL we know at least one proven case of a US female surviving
the age of 119 (see Section 2.1). On the other hand, we could infer more information from investigating
the CDS than building on the IDL alone: The evaluation of the deaths curve’s right endpoints on moving
windows was not possible on the IDL data alone due to too small sample sizes per window (see Table 1).
We, therefore, performed its EVT analysis for the whole time span 1980–2003 in Section 3 for which
the stated EVI confidence intervals even include the value of zero (see Table 2). However, the existence
of a finite lifespan could be accepted by means of the significantly larger CDS. Since the latter database
is larger (in particular it contains the IDL) and incorporates survival data, the corresponding results from
Table 3 are more reliable than the results for the IDL alone.

Setting the numbers into context. Comparing our results to previous findings in recent literature is
difficult because the basics (i.e. data and methods) differ considerably. In particular, the present statistical
analysis is the first that accounts for censoring of the underlying data accordingly. Nevertheless, to at least
associate the numbers with the context of a maximum human lifespan we summarize some of the most
recent results: Utilizing HMD data alone, de Beer, Bardoutsos and Janssen (2017) find that the maximum
human lifespan may increase to 125 years. Li, Ng and Chan (2011) estimate the maximum lifespan for
Australians to 112.2 and to 109.43 for New Zealand females and males, respectively. To this end, they use
HMD data. Bravo and Corte-Real (2012) also use HMD data and obtain similarly low estimates at 112.77
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and 111.78 for Spanish and Portuguese females, respectively. However, at least for Spain and Australia,
we can find IDL records for females dying at higher ages (both after their 114th birthday). Einmahl,
Einmahl and de Haan (2017) analyzed about 285,000 death counts of male and female Dutch residents
between 1986–2015 (who at least reached an age of 92) for single years (which makes the sample size for
each estimation even smaller) and found an average estimated upper endpoint at 115.7 years. Not only
in relation to our results, these figures seem to be exceptionally low. For instance, even more than two
decades ago, Aarsen and de Haan (1994) infer a 95% confidence interval for the Netherlands between
113 and 124 years (based on about 20,000 combined observations from Dutch men and women). More
recently, Weon and Je (2009) obtain maximum age estimates around 126 years for Swedish females and
Hanayama and Sibuya (2015) find estimates for the maximum lifespan of Japanese at 123 years. For both
analyses, HMD data is used. In contrast, Gbari et al. (2017) use a country-specific database for Belgian
citizens which includes 36,616 death counts for females dying in the age range 95+ after 1981. Based on
this data they quantify the maximum attainable age of Belgian females between 120.3 and 122.73 years.
Our estimates for US females are in the upper range of all these recent results. These disparities in the
results may be caused by different sources of data, differences between the populations under study, or
the diversity of the employed methods. In particular, the sample size of the data plays an important role
in the quality of the results. In this regard, the data we use outperforms the data from many previous
researches (see Table 1). Moreover, for example, the case of Jeanne Calment Robine and Allard (1998)
indicates that it is possible to survive to ages beyond 120 years. In this spirit we consider our results to
be reasonable.

6. CONCLUSION AND OUTLOOK

The present paper investigates the question of quantifying the maximum human lifespan for US fe-
males. To this end, we used two different sources of data: the International Database on Longevity (IDL)
and the Human Mortality Database (HMD). We discussed the specific characteristics of each database
and additionally exploited their advantages by constructing a comprehensive combined data set, the CDS.
These data include both death counts and censored survival data. We then started our investigation of in-
ferring the existence of a possibly finite lifespan by means of extreme value theory (EVT). Starting with
a classical EVT analysis of the IDL alone, the hypothesis of an infinite lifespan could not be rejected.
This is presumably due to its rather small sample size of 309 for the analyzed time span 1980–2003.
Moreover, the obtained point estimates for the maximum attainable age fluctuated considerably and are
thus not very meaningful. To obtain more reliable results we subsequently analyzed the CDS which we
even arranged into intersecting windows to study the evaluation of the lifespan over time. Due to the
involved censoring, we employed more convenient censored EVT methods from Einmahl, Fils-Villetard
and Guillou (2008) which we equipped with a computationally efficient algorithm based on sub-sampling
and cross-validation.
Finally, we illustrated and discussed our results. We found significant evidence for a finite lifespan in the
combined data and obtained reliable point estimates for the maximum attainable age of US females for
each window. These estimates vary between 120 and 127 years which appears to be reasonable compared
to existing results in the literature (particularly, the oldest US female recorded in the IDL reached an age
of more than 119 years).
In addition, we like to note, that independent of our analysis other authors like Einmahl, Einmahl and
de Haan (2017) and Rootzén and Zholud (2017) have been motivated to apply (uncensored) EVT meth-
ods on different datasets after reading the nature paper by Dong, Milholland and Vijg (2016). However,
judging from our findings, we recommend the application of censored EVT methods to other popula-
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tions for future research; employing the idea of the current CDS: Whenever there is a comprehensive
data set which is right censored (as e.g. in the HMD) and a comparatively small but exact dataset (as e.g.
given by the IDL) on the same population this method can be used and benefits from much larger and
reliable data. In addition, we like to stress that for enhanced analysis additional research is needed from a
methodological point of view to construct asymptotically correct confidence limits for the right endpoint,
to develop Bayesian EVI estimate versions under censoring and to accordingly treat more complicated
censoring issues as, e.g., interval-censored data for the Weibull model.
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