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Abstract

A variety of mortality models can be used to project future mortality. However, the

parameters of most of these models lack a clear demographic interpretation. Hence, it

may be hard to identify forecasts which are not consistent to the most recent observed

trends in the mortality evolution or that are demographically implausible. On the other

hand, demographers make predictions on future mortality but typically focus on single

aspects only instead of comprehensive mortality forecasts. This article aims to close the

gap between these forecasting approaches.

We establish a new best estimate mortality model which is based on the extrapolation

of four statistics that have a clear demographic interpretation. The four statistics are

taken from the classification framework of Börger et al. (2018). Our model yields forecasts

for the deaths curve which are consistent with the most recent demographic trends in

the deaths curve evolution. Moreover, expert opinions on future trends in the mortality

evolution can easily be incorporated, and we illustrate how the model can be used for

scenario analyses.
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1 Introduction

Estimates for future mortality are important in many areas, e.g. for projections of social security

systems or risk management in the private pension and life insurance sector. To derive such

estimates, a variety of mortality models has been developed most of which are statistical models

in the sense that they extract certain patterns from historical mortality data and extrapolate

those patterns into the future.

Some of the earliest mortality models (which are also called ”laws of mortality”) are quite

simple, as they are based on only few parameters. One of the first models in this spirit is the law

of mortality by Gompertz (1825). This model has often been extended. For example, Pollard

(1987) gives a comprehensive review on mortality models which have been developed from the

19th century until the 1980s. Such models have often been used for deterministic mortality

forecasts. During the most recent decades, stochastic mortality models have emerged, e.g. the

Lee-Carter model (Lee and Carter, 1992) or the Cairns-Blake-Dowd model (Cairns et al., 2006).

An overview is given for example by Booth and Tickle (2008) or (with a more actuarial focus) in

Cairns et al. (2008). While the majority of the early ”laws of mortality” only take into account

age-dependent patterns of mortality, some of the more recent models also allow for period and

even cohort effects. This allows for model fitting to longer data series and in particular for more

flexible (e.g. stochastic) extrapolations.

However, in many cases, the parameters in these models lack a clear demographic interpretation.

Therefore, it is not easy for the user of the model to assess if an extrapolation of these parameters

will result in plausible mortality forecasts from a demographic point of view. We will provide

examples for that later on.

In the literature we also find many approaches for forecasting (certain aspects of) future mortality

from a demographic point of view. For example, Manton et al. (1991) divide the perspectives

on the future life expectancy in three groups - the ”traditional”, the ”visionary”, and the

”empiric” perspective - and give examples for each perspective. Olshansky et al. (1990) take the

”traditional” point of view by suggesting that there might be a limit to the increase in human

longevity. More than one decade later, Oeppen and Vaupel (2002) analyzed the world record life

expectancy and found a linearly increasing trend which they extrapolate several decades into the

future. In the spirit of Manton et al. (1991) this is rather a ”visionary” perspective. Sometimes

demographic forecasts are also made implicitly (i.e. without an explicit extrapolation of any

statistic). For example, Dong et al. (2016) ”strongly suggest that the maximum lifespan of

humans is fixed” and build their claim on historical trends in demographic statistics measuring

the evolution of old-age mortality. In the same spirit, but more than three decades earlier Fries

(1980) derived future limits for the maximum human lifespan based on demographic statistics.

So demographers typically do not only use statistical observations (which are often the only

input for the statistical mortality modeling), but also combine knowledge from biology, medicine,

sociology, and other fields of research in their forecast. However, their forecasts often focus on



single aspects of the mortality evolution only, e.g. the life expectancy at birth or the maximum

human lifespan, and they typically do not make suggestions for the entire distribution of deaths

over all ages in any future year. The latter, however, is provided by mortality models (but

typically without taking demographers’ forecasts into account). Therefore, it seems worthwhile

to combine the purely statistical approach of mortality modeling with the demographic expertise.

This paper aims to close this gap. To this end, we propose a methodology that can derive the

entire mortality distribution for any future point in time based on forecasts for a set of statistics

that come with a clear demographic interpretation.

We build our methodology on recent work of Börger et al. (2018). They introduce a new

classification framework for (observed historic) changes in mortality over time which is based on

the deaths curve, i.e. the density function of the age at death. They show that four statistics,

each with a clear demographic interpretation, describe the key structural elements of a deaths

curve - its support and the pattern it exhibits on this support. Thus, they express changes in a

deaths curve between two points in time by changes in these four statistics. In their classification

framework, a uniquely defined ”mortality scenario” is then assigned to every possible evolution

of a deaths curve over time. Such a scenario consists of four components and each component

has one of three specifications: It can 1) be ”right-shifting” or ”left-shifting” (or neutral in

respect of ”shifting mortality”), it can 2) exhibit ”extension” or ”compression” (or be neutral in

this dimension), it can 3) show signs of ”compression” or ”decompression” (or be neutral in

that respect), and it can 4) show ”concentration” or ”diffusion” (or again be neutral in that

respect). In Section 2.1 we will explain this in more detail.

This classification framework allows us to check if any given mortality forecast is consistent with

most recent demographic trends. A mortality forecast can be considered demographically reason-

able in case the historical patterns in the four statistics are extrapolated in a demographically

plausible manner.

The other way round, it can also serve as a basis to create mortality forecasts for the whole

deaths curve that match a given forecast for the four statistics from the classification framework.

Such a forecast can either be an extrapolation of the four statistics based on their past evolution

or a forecast based on demographic insights (or a combination thereof, e.g. an extrapolation

that is adjusted based on demographic insights). This results in a new type of mortality model

which will be derived in this paper.

The remainder of this paper is organized as follows: In Section 2 we briefly summarize the

classification framework of Börger et al. (2018) and test frequently used mortality forecasting

models for consistency with the past in terms of their projection of the four key statistics. This

illustrates the need for mortality forecasts with better consistency to recently observed mortality

scenarios. Consequently, in Section 3 we introduce a deterministic mortality forecasting model,

which is based on the four components of the aforementioned classification framework. This

model uses forecasts for the four statistics (e.g. extrapolation of recent trends or some expert

opinion) to project the entire deaths curve and thus allows for consistency of the mortality



forecasts with recently observed mortality scenarios and/or the experts’ expectations. In Section

4 we discuss examples and potential applications for this model. Finally, Section 5 concludes.

2 Consistency of Existing Mortality Models

2.1 A Unique Classification Framework for Mortality Evolution Pat-

terns

This section briefly summarizes the classification framework introduced by Börger et al. (2018).

They uniquely assign a mortality scenario to any change of a deaths curve between two points

in time. More concretely, a mortality scenario is defined as a four dimensional vector with the

following components:

1. Right- or left-shifting mortality is linked to an increase or decrease in the modal age at

death (M). This statistic is defined as the age in which most people die, i.e. the maximum

of the deaths curve. Thus M can intuitively be interpreted as the position of the center of

the deaths curve. So shifting mortality is linked to a shift of the deaths curve’s center to

the right or to the left, respectively.1

2. Extension or contraction is linked to an increase or decrease of the upper bound of the deaths

curve’s support (UB). This statistic is defined as the right endpoint of the deaths curve’s

support.2 Intuitively it is the highest age that has been reached within the population of

interest. Whenever this age moves to the right, the support of the deaths curve extends

and whenever UB moves to the left the deaths curve’s support contracts. Like the modal

age at death, UB indicates changes in the deaths curve’s position.

3. Compression or decompression is linked to an increase or a decrease of the degree of

inequality (DoI). This statistic measures the size of the area between the observed deaths

curve and a hypothetical deaths curve where the age at death is uniformly distributed.

Intuitively this area (and hence the inequality of the distribution of deaths by age) will

increase, if the observed deaths curve moves farther away from the uniformly distributed

deaths curve. Consequently, there must be age segments, where the number of deaths

increases, i.e. deaths become more compressed. If the observed deaths curve moves closer

towards this uniform distribution, the area between these two curves will decrease and

hence we observe decompression.

1Börger et al. (2018) noted that the ”peak might not be unique in only rather theoretical scenarios [...]. In
such a case, one might use a suitable alternative to M or modify the framework to include additional statistics.”

2In the literature we find an extensive discussion about the existence of this age. For example Gampe (2010)
or more recently Barbi et al. (2018) find evidence for a plateau in the mortality hazard after an age beyond 100.
In contrast, for example Gavrilov and Gavrilova (2011) find that this is an artefact. By use of methods from
extreme value theory for example Feifel et al. (2018) found significant statistical evidence for the existence of a
finite lifespan for US females. Thus, like Börger et al. (2018) we assume that the right endpoint of the deaths
curve’s support always exists.



4. Concentration or diffusion is linked to an increase or decrease in the number of deaths in

the modal age at death (d(M)). This statistic measures the deaths curve’s value at age M .

If more/less people die at the ages around M , d(M) will increase/decrease. Intuitively

this statistic indicates the relative importance of the ages around M compared to the rest

of the deaths curve. Like DoI, d(M) indicates changes in the deaths curve’s shape.

Each component of this vector can also assume the value neutral, which is the case if the

respective statistic neither (significantly) increases nor decreases between two points in time.

This results in a total of 34 = 81 possible different scenarios, some of which might not be relevant

in practice. It is noteworthy though that any material change of the deaths curve is detected by

at least one of the components. Börger et al. (2018) consider a scenario to be a pure scenario if

only one of four components is different from neutral. If at least two components indicate a

change, a mixed scenario prevails. They find that in practice, mixed scenarios are the rule rather

than the exception (see also Genz, 2017) and conclude that the presence of mixed scenarios is

not considered sufficiently in the literature.

This classification framework for observed changes of the deaths curve can be applied to deaths

curves with any starting age x0. For example, if one is interested in the evolution of old-age

mortality, x0 should be a rather old age and the deaths curve gives the age distribution at death

conditional on survival to this (old) age.

We would like to emphasize once again that each of the aforementioned statistics has an intuitive

interpretation. So either an extrapolation of past trends or an expert opinion on the future

development can be used in forecasting. Also, it can be relatively easily assessed whether a

simple statistical extrapolation of a past trend is (demographically) reasonable or not. This

is much more difficult in models that are based on an extrapolation of statistics which do

not allow for an intuitive interpretation. While an intuitive interpretation is not necessary for

extrapolations of past trends, it is of course very helpful in case of extrapolations based on

expert opinion.

An extrapolation of past trends can be based on the methodology that was developed by Börger

et al. (2018) to determine (piecewise linear) trends in each of the four statistics in the past.

In order to illustrate this concept, we use data from the Human Mortality Database (HMD,

2015) for Swiss females and determine the deaths curve for each calendar year between 1920

and 2014 and starting age x0 = 60. For each calendar year, we estimate the four statistics

of the classification framework and fit piecewise linear trends to the resulting time series (see

Figure 1).3 For the extrapolation performed in this paper, the slope of most recent trend line is

relevant, whereas for the classification in Börger et al. (2018), the sign of the trend was more

3Between any two trends, Börger et al. (2018) allow for jumps, which can be important whenever a time
series has sudden changes in its level. In Figure 1 we can see an example for such a jump in UB.



relevant.4

Figure 1: Observed trends in the four statistics of the classification framework for Swiss females
between 1920 and 2014; top-left: M , top-right: UB, bottom-left: DoI, bottom-right: d(M)

2.2 Consistency Issues in Existing Forecasting Models

In this subsection, we check the demographic consistency of mortality forecasts. We fit two

well-established mortality forecasting models (the Lee-Carter model (LC) and the Cairns-Blake-

Dowd model (CBD)) to the mortality data from the previous subsection. From Figure 1 we

can see, that the most recent trend change occurred in 1992 for M , in 1976 for UB, in 1963 for

DoI, and in 1986 for d(M). Since all statistics exhibit stable trends from 1992 onward, we fit

both mortality models to data between 1992 and 2014 and for ages above 60. This gives both

4Hence, they developed a test whether any trend is significantly different from neutral (i.e. the slope of
the line fitted to the time series is significantly different from zero). For any calendar year, each of the four
components can then be classified as increasing, decreasing, or neutral. The resulting four-dimensional vector is
the mortality scenario for this calendar year.



models the best possible chance to extrapolate historical trends in a demographically reasonable

manner.5

Figure 2 shows the observed values of each statistic of the classification framework between

1992 and 2014 as well as extrapolated linear trends and the values forecast with the LC and the

CBD model from 2015 to 2070.6

Figure 2: Observed values (black dots) between 1992 and 2014, extrapolated trends (blue lines),
and model forecasts of the LC (green line) and the CBD model (red line) from 2015 to 2070;
top-left: M ; top-right: UB; bottom-left: DoI; bottom-right: d(M)

Three of the four statistics exhibit significant jumps at the transition from the calibration to the

forecasting period in both mortality models. This indicates that the extrapolated deaths curves

5When determining the calibration period for mortality models which do not allow for trend changes, the
mortality evolution during the calibration period should not exhibit any trend change. Thus for such models the
most recent trend change in the classification framework of Börger et al. (2018) provides a suitable criterion for
the choice of the calibration period.

6To calibrate the parameters of both models we use the R package StMoMo (see Villegas et al., 2018).
This package also gives best estimate forecasts from which we determine estimates of the four statistics of the
classification framework. The kinks in the forecast values for UB, DoI, and d(M) stem from a discretization
issue which is due to the fact that the models only provide mortality rates for integer ages. We ignore this minor
issue since it does not affect the interpretation of the graphs.



do not exhibit smooth changes at this transition, i.e. they are not consistent with the immediate

past. Thus, for both mortality models, the forecast deaths curves appear to be implausible from

a demographic point of view even for the immediate future.

The projection of M on the other hand seems more plausible than those for the other three

statistics since the transition from the calibration to the forecasting period does not exhibit a

jump.

3 A New Best Estimate Mortality Model

In this section, we present a deterministic mortality forecasting model which can yield deaths

curves that are consistent with a specific given forecast for the four statistics defined in Section

2.1. In particular, consistency with the most recent evolution of the deaths curve can be ensured

by extrapolating the most recent trends in the four statistics.

3.1 Theoretical Concept

Our mortality model forecasts (continuous) deaths curves which – if scaled such that it integrates

to one – can be interpreted as the density function of the age distribution at death From these

deaths curves basically all other mortality statistics and in particular age dependent mortality

rates can be deduced.

In order to develop the theoretical concept behind our model, we first assume that a forecast

(Mt, UBt, DoIt, d(M)t) of the four statistics for any year t of the forecasting period is given.

We then denote the space of all density functions on the (age) interval [x0, UBt] which are

differentiable at least three times by Dt,x0 . It contains all functions dt : [x0, UBt]→ [0, 1] that

fulfill the following two properties: ∫ UBt

x0

dt(x)dx = 1 (1)

and

dt(x) ≥ 0 for all x ∈ [x0, UBt]. (2)

In order to restrict that space to deaths curves with ”typical” shapes, we demand the following

additional properties:

The deaths curve assumes the value of zero only at UBt:



dt(x)

> 0 for all x ∈ [x0, UBt)

= 0, x = UBt

. (3)

For a sufficiently large x0, the deaths curve is unimodal, i.e. it has a unique global

maximum which is also the only local maximum.7 Consequently, we get:

d′t(x)

> 0 for all x ∈ (x0,Mt)

< 0 for all x ∈ (Mt, UBt)
. (4)

For a sufficiently small choice of x0, a typical deaths curve has two (unknown) inflection

points, one between x0 and Mt and one between Mt and UBt.
8 Further, the deaths

curve is concave between the inflection points and convex in both tails. Accordingly,

the second derivative is positive in x0 and UBt, and negative in Mt:

d′′t (x0) > 0,

d′′t (Mt) < 0,

d′′t (UBt) > 0, and

d′′′t (x)

< 0 for all x ∈ [x0,Mt)

> 0 for all x ∈ (Mt, UBt]
.

(5)

We denote by Dt,x0 the subset of Dt,x0 which contains all deaths curves that fulfill these

constraints. It is the set of ”density functions with reasonable shape”.

In the practical application of this model there might be further requirements the deaths curve

should fulfill to be plausible. Therefore the set Dt,x0 further can be restricted. In particular, for

more stable results in the left tail, it is advisable to specify the number of deaths in the starting

age d(x0). This is:

7Besides the expected maximum at M , local maxima can typically be observed at age 0 (infant mortality)
and at the peak of the so-called accident hump (typically at some age between 18 and 25). Thus, for example a
choice of x0 = 30 would be sufficiently large in any relevant case. In this sense, this is not a limitation if one is
interested in mature- and old-age mortality.

8If the distance between x0 and M becomes too small, it may happen that the deaths curve is concave at x0

and there is no inflection point between x0 and Mt. In practical applications, however, this is irrelevant unless
an x0 is chosen that is very close to the initial value of M and/or a strongly decreasing trend for M is assumed.



Given a forecast for the number of deaths at the starting age at time t, d(x0)t, it must

hold:

dt(x0) = d(x0)t (6)

for pre-specified values d(x0)t.

Since typically, the logarithm of the number of deaths at the starting age log d(x0) follows a

piecewise linear trend, we linearly extrapolate the most recent trend of this statistic in order to

get reasonable and demographically consistent forecasts for d(x0)t at any future year t.

In the last step, we consider the subset Dt,x0 ⊂ Dt,x0 containing only deaths curves which

also match the forecasts of the statistics (Mt, UBt, DoIt, d(M)t), i.e. for each element dt :

[x0, UBt]→ [0, 1] of Dt,x0 it must hold:9

arg max dt(x) = Mt, (7)

sup
x>x0

(dt(x) > 0) = UBt, (8)

UBt − x0
2 · (UBt − x0)− 1

·
∫ UBt

x=x0

∣∣∣∣dt(x)− 1

UBt − x0

∣∣∣∣ dx = DoIt, and (9)

max
x≥x0

(dt(x)) = d(Mt). (10)

Of course, the set Dt,x0 might be empty or there might be more than one curve in this set. In

case this set is empty, we follow that the (long-term) extrapolations of the statistics are not

plausible.10 In case there is more than one deaths curve in the set Dt,x0 , a criterion is required

to determine which deaths curve should serve as a forecast at time t. We discuss concrete

examples for that in the next subsection.

The constraints from the Equations 1, 2, and 7 to 10 are mandatory for our model. A curve

which does not fulfill all these constraints is either no deaths curve at all (if Equations 1 and/or

2 are not fulfilled) or not consistent with the forecasts of the future mortality scenarios (i.e.

9Börger et al. (2018) propose discrete estimators for the four statistics. Since we are in a continuous setting
we had to adjust the estimators accordingly.

10Alternatively, this could also mean that the shape requirements (Equations 3 to 6) are too restrictive, i.e. a
deaths curve that we regard as implausible from today’s point of view because it violates one of these equations
should nevertheless be considered feasible at a (probably far away) future point of time.



at least one of the Equations 7 to 10 is not fulfilled). The constraints from Equations 3 to 6

are helpful in choosing a plausible deaths curve but not necessary for an extrapolation of the

deaths curve. In this sense these requirements can be extended or relaxed depending on the

application of the model, the question at hand, or the user’s view on what a plausible deaths

curve should look like.

3.2 Basic Idea of Practical Implementation

In the previous subsection we have introduced the theoretical concept of our new model.

Now we explain how it can be implemented in order to derive concrete mortality forecasts

(i.e. for computing deaths curves for future years t, starting age x0, and statistics’ forecasts

(Mt, UBt, DoIt, d(M)t)). First we need to specify a functional representation of the elements of

the set of ”typically shaped” deaths curves Dt,x0 . The functional representation needs to be

chosen carefully since a restrictive and inflexible representation can imply that the set Dt,x0

becomes empty too easily. This would for instance be the case if one considered only those

deaths curve which correspond to a mortality curve according to the Gompertz law (Gompertz,

1825). In this case all deaths curves would be determined by only two parameters which makes

it impossible in general to find deaths curves which fulfill Equations 7 to 10 simultaneously.

Therefore, it appears more reasonable to use non-parametric representations, e.g. based on

splines. In this case, the number and the degree of the splines as well as their positions obviously

have an impact on whether the set Dt,x0 is empty or not. Here, a reasonable trade-off between

tractability of the representation and variability in the deaths curves it can generate is necessary.

For the example applications in the subsequent section, we use a set of 21 B-Splines of polynomial

degree five for the deaths curve representation. While the high polynomial degree ensures a

reasonable degree of smoothness of the deaths curves, the large number of splines allows for

sufficient flexibility in the deaths curves. This representation clearly outperforms the common

parametric deaths or mortality curve representations in terms of flexibility in the generated

deaths curves. In Appendix A we provide details on the spline representation and its estimation

in forecasting future deaths curves.

Based on this representation we can determine whether the set Dt,x0 is empty. In this case

there is no reasonably shaped deaths curve for the year t. In the other case it usually contains

infinitely many feasible deaths curves which differ only very slightly since they coincide with

respect to the four statistics form Section 2.1. In order to determine a unique mortality forecast,

one of the following criteria could be applied to pick a single deaths curve from Dt,x0 :

• Smoothness of the deaths curve: One may pick the deaths curve from Dt,x0 which leads to

maximal smoothness according to some smoothness measure.

• Minimum deaths curve changes over time: One may choose the deaths curve which is

”most similar” to a previous deaths curve. The similarity can be determined by any



distance measure.

In our algorithm we implicitly use the criterion of minimum deaths curve changes over time and

choose the deaths curve with minimal distance to the deaths curve of the last year where we

have observed data, i.e. the last year before the projection starts (see Appendix A for more

details).

4 Applications of the New Model

In this section we apply the model to the data that had also been used in Section 2, i.e. Swiss

females with starting age 60. For the first example, we extrapolate the most recent linear trends

for each of the four statistics to the years between 2015 and 2070 and for each calendar year fit

a deaths curve to the extrapolated statistics.

Figure 3: Deaths curves for Swiss females in the years 1990, 2000, 2010 (observed, dashed lines)
and 2020, 2030, 2040, 2050, 2060, and 2070 (forecast with linear extrapolation of most recent
trends, solid lines).

Figure 3 shows nine deaths curves for Swiss females between 1990 and 2070. Both for the

historical deaths curves and for the extrapolated deaths curves we observe right-shifting mortality

as the peaks of the deaths curves move more and more to the right. At the same time the upper

bounds of the deaths curve’s support also move to the right indicating extension. Also, the

deaths curves from Figure 3 become more and more compressed between 1990 and 2070 since

the extrapolation yields an increasing DoI implying compression. Finally, the number of deaths



in the modal age at death d(M) increases over time as the peak of the deaths curves in this

figure becomes ever higher.

It is particularly noteworthy that the forecast deaths curves between 2020 and 2070 smoothly

continue the historical changes of the deaths curve between 1990 and 2010. The four trends

(right-shifting mortality, extension, compression, concentration) are neither accelerated nor

decelerated at or after the transition from the calibration to the forecasting period. Hence the

mortality forecasts are consistent with the most recent observed demographic trends.

Of course, this new mortality model by definition extrapolates the four statistics it is based on

in a reasonable manner. For the whole curve to be considered a reasonable forecast, also other

quantities like probabilities of death should be plausibly forecast. Figure 4 shows forecasting

results for log qt(x) for selected ages from 60 to 100. We can see that these are reasonably

extrapolated to the future.11

Figure 4: Logarithm of the probability of death for the ages x = 60, 70, 80, 90, and 100 between
1990 and 2014 (observed values) and between 2015 and 2070 (forecast values).

The demographic literature on mortality scenarios contains many different statistics which are

designed to measure changes in the age distribution of deaths over time. In order to test our

model for consistency also in terms of such other statistics we analyze their evolution between

1990 and 2070 (where from 2015 to 2070 we calculated the statistics based on our forecasts).

As examples we considered the remaining period life expectancy at different ages (e(60) in

11We have performed similar analyses also for the force of mortality and the probability of survival. All were
plausible. For the sake of brevity, we omit details.



particular), statistics of the C-family (C50 in particular; see Kannisto, 2000), the Inter-Quartile

Range (IQR; see Wilmoth and Horiuchi, 1999), graphical measures like the Moving Rectangle

(MR; see Wilmoth and Horiuchi, 1999), and the standard deviation of the age distribution at

death above the modal age at death (SD(M+); see e.g. Kannisto, 2001).

Figure 5: Alternative statistics between 1990 and 2014 (observed values) and between 2015 and
2070 (forecast values)

In Figures 5 (IQR, C50, MR, and SD(M+)) and 7 (e(60) given by the black line) we illustrate

some examples. Here we can see that the most recent trends in these statistics are reasonably



extrapolated until 2070.12

Since the four statistics used in our model allow for an intuitive interpretation, one might

be interested in analyzing the effects resulting from the individual scenario components. For

example the development displayed in Figure 3 is a ”mixed scenario”, where all four statistics

of the classification framework of Börger et al. (2018) increase over time. We simultaneously

observe right-shifting mortality, extension, compression, and concentration. In order to quantify

the impact of each of the four scenario components separately, we consider so-called ”pure

scenarios” in which only one statistic changes with time (and the others remain constant).

Figure 6 displays deaths curves for each pure scenario in 2014 and the last future year where we

still have reasonable deaths curves. Only in the pure right-shifting scenario we obtain deaths

curves with reasonable shape until 2070. For all other scenarios the deaths curves’ shapes in the

pure scenarios become deformed such that before 2070 Equations 3 to 6 from Section 3.1 can

not be fulfilled anymore. This is further evidence for the observation in Börger et al. (2018):

pure scenarios may occur for a certain period of time, but, over a longer time period, typically

only mixed scenarios can prevail.

Figure 7 shows the development of e(60) in each of the pure scenarios as well as in the mixed

scenario. In each pure scenario, the increase of the forecasts of e(60) is slower than in the mixed

scenario. The increase in e(60) in the pure right-shifting scenario is faster than in any other pure

scenario. This is an indication that in this example, the process of right-shifting mortality has a

stronger impact on the increase of life expectancy at age 60 compared to the effects resulting

from extension or compression.

As an alternative to the straightforward extrapolation of historic trends, the trends can easily

be altered in our model. If, e.g., one has reason to believe that the trend in one or more of the

four components will change at some point in time, one could either stop, intensify, reduce, or

even reverse the increase / decrease in these components at one or more arbitrary points in time.

Thus this model also allows for ”what-if-analyses” for virtually any change of the mortality

evolution in the future based on specifications of the four statistics. As an example for such

an analysis, we use the base scenario from Figure 3 but double the intensity of right-shifting

mortality and extension in 2015. Demographically this expert scenario means that the position

of the deaths curve will change twice as fast in the future than recently observed, while trends

in the deaths curve’s shape remain unaltered. In this sense, this scenario is a stress scenario

12In total we considered 16 different statistics on the deaths curve: C10, C50, and C90 from the so-called
C-family (see Kannisto, 2000), the remaining life expectancy at the ages 60, 70, 80, 90, and 100, the Fixed and
Moving Rectangle, the Fastest Decline, the Sharpest Corner, the Quickest Plateau, as well as the Inter-Quartile
Range (see Wilmoth and Horiuchi, 1999), the Prolate Index (see Eakin and Witten, 1995), and the standard
deviation above the modal age at death (see Kannisto, 2001). We have obtained plausible results also for the
statistics that are omitted in the figures for the sake of brevity.



Figure 6: Observed deaths curve from 2014 and forecast deaths curve in each pure scenario; top-
left: pure right-shifting scenario in 2070, top-right: pure extension scenario in 2052, bottom-left:
pure compression scenario in 2048, bottom-right: pure concentration scenario in 2031.

for changes in the deaths curve’s position.13 Note that for this scenario we obtain reasonable

deaths curves until 2070. Also, in this scenario, the cohort life expectancy of a 60-year old Swiss

female in 2015 (i.e. with year of birth 1954) would increase from 30.4 years to 32.1 years which

is an increase of more than 5.4%.

5 Conclusion

This paper discusses the plausibility of mortality forecasts from a demographic perspective. In

particular, trends in key demographic figures should be reasonably extrapolated into the future.

13It is noteworthy that such a stress scenario is not implausible. The observed trends for M and UB in Figure
1 have also exhibited strong changes in the past: While M increased by 0.21 years per calendar year between
1966 and 1992, its increase was only 0.12 years per calendar year thereafter. For UB we historically observed a
stronger increase (0.09 years per calendar year from 1920 to 1976) than in the most recent period of stable trend
(0.06 years per calendar year between 1976 and 2014).



Figure 7: Observed and forecasted period life expectancy at starting age 60 in five different
scenarios: mixed, pure right-shifting, pure extension, pure compression, and pure concentration
scenario.

For purely statistical projection models whose parameters lack a clear demographic interpretation

this is often not the case, and we provide examples for this. We apply the well-known models of

Lee and Carter (LC) and Cairns, Blake, and Dowd (CBD) and analyze the resulting deaths

curves in the classification framework of Börger et al. (2018). Here, deaths curves are classified

based on four statistics which all have an intuitive demographic interpretation: the modal age

at death M , the upper bound of the deaths curve’s support UB, the degree of inequality DoI,

and the number of deaths in the modal age at death d(M). We find that both, the LC and the

CBD model do not adequately extrapolate most recent historical trends in the four statistics. In

most cases, we find jumps in the statistics at the transition from the historical to the forecast

data in particular.

However, the classification framework of Börger et al. (2018) can not only be applied in order to

analyze the demographic plausibility of existing mortality projections. Since in the framework

two deaths curves are significantly different if and only if at least one of the four statistics

differs, the framework can also be the basis for a projection model. Projections of future deaths

curves (and thus essentially also any other mortality related quantity) can be derived from

extrapolations of the four statistics. This ensures by construction that the mortality forecasts

from this model are plausible from a demographic perspective. For the extrapolation of the

statistics one may rely on their most recent observed trends or on experts’ opinions on how

the statistics may evolve in the future. Suitable additional constraints on the shape of forecast

deaths curve need to be specified in order to ensure that the forecast deaths curves maintain a

reasonable shape, and we show how this can be done in practice. We also provide a concrete



example forecast for Swiss females and illustrate its demographic plausibility by analyzing the

evolution of additional statistics like the IQR over time.

The proposed projection model also allows for informative sensitivity analyses based on scenarios

with a clear demographic interpretation. As (rather theoretical) examples, we consider the pure

mortality scenarios in which only one of the four statistics evolves as in the most recent data and

the other three statistics remain constant in the future. We find that such pure scenarios can

only prevail for a certain period of time before the deaths curve’s shape becomes implausible.

As a possibly more realistic scenario, we also consider a 100% increase in the trends in M and

UB compared to most recent historical trends (indicating increased right-shifting and extension

of mortality). Here the remaining cohort life expectancy of 60-year olds increases by more than

5%. Such a scenario would be particularly critical from an annuity provider’s perspective as the

cohort life expectancy can be interpreted as an annuity present value with discount rate zero.

Thus, the proposed projection model can be a useful risk management tool for quantifying the

impact of demographic trends and its potential changes on the liabilities.

Furthermore, the proposed projection model can be a helpful addition to the toolkit of mortality

projection models with respect to quantifying model risk as its structure and its forecasting

approach are fundamentally different from those in established (statistical) models like the LC

or the CBD model.
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Appendices

A Aspects of the Practical Implementation of the Model

A.1 Deaths curve representation by B-splines

For the examples in this paper we use a B-Spline representation for the deaths curve (Schoenberg,

1946). The deaths curve in any year t is described as a linear combination of 21 polynomial

spline functions b
(j)
t (x), j ∈ {1, ..., 21} of degree five:

d̂t(x) =
21∑
j=1

a
(j)
t · b

(j)
t (x) = Bt(x) ∗ at, (11)

where at = (a
(1)
t , ..., a

(21)
t )T is the vector of spline weights and the vector-valued function

Bt : R → R21 gives the value of each spline at any age x ∈ [x0, UBt]. Each spline b
(j)
t (x)

is centered at its so-called knot k
(j)
t , j ∈ {1, ..., 21} and, since the polynomial degree is odd,

symmetric around its knot. Furthermore, it is different from zero only on a certain interval:

b
(j)
t (x)

> 0 for all x ∈ (max
{
x0, k

(j−3)
t

}
,min

{
UBt, k

(j+3)
t

}
)

= 0 for all x /∈ (max
{
x0, k

(j−3)
t

}
,min

{
UBt, k

(j+3)
t

}
)

. (12)

In our forecasting model, deaths curves and thus also the spline functions need to be continuously

differentiable at least three times (see Section 3.1), but differentiability in higher order is desirable.

The polynomial degree of five therefore is a reasonable choice in our examples, but may of course

be altered for other applications of the model.14

The number of splines essentially determines the flexibility of the deaths curve representation.

The larger the number of splines, the more likely we are to find a deaths curve which matches

a concrete forecast for the four statistics Mt, UBt, DoIt, and d(M)t. The specific number of

21 splines is a result of the chosen positioning of the spline knots within the interval [x0, UBt]

(see below). We found that a number in that range is necessary to have a sufficiently flexible

representation. Note that we fix the number of splines independently of the length of the deaths

curve’s support. Thus in case of extension or contraction (i.e. when UB increases or decreases),

we reposition the spline knots over time, but do not change the number of splines.

In order to specify a concrete spline representation of a deaths curve, the spline knot positions

k
(j)
t , j ∈ {1, ..., 21} and the spline weights at = (a

(1)
t , ..., a

(21)
t )T need to be determined such that

Equations 1 to 10 are fulfilled. In what follows, we explain these two steps in more detail.

14We also considered the more commonly applied third degree polynomials, but found that deaths curves can
become slightly ”wavy”.



A.2 Positioning of spline knots

Given a forecast of the four statistics (Mt, UBt, DoIt, d(M)t) for any year t, we determine the

positions of the spline knots as follows: First, we set one knot at each endpoint of the deaths

curve’s support, i.e. at x0 and at UBt, and at the modal age at death Mt. Between x0 and Mt

we add nine equidistant knots and between Mt and UBt we add five equidistant knots.15 For

sufficient flexibility also at the boundaries of the deaths curve’s support we need two additional

knots left of x0 and right of UBt. These knots are positioned such that all knots left or right of

Mt, respectively, are equidistant. Thus, the total number of splines is 3 + 9 + 5 + 2 · 2 = 21.

Figure 8 illustrates the 21 splines before weighting (see next paragraph) and their knot positions.

The two splines at each boundary whose maxima are not yet visible have their knots outside

the support [x0, UBt].

Figure 8: Knots and polynomial functions of degree five for 21 splines.

A.3 Determination of spline weights

Now, the spline weights need to be chosen for any future year t such that the resulting linear

combination of the 21 polynomial spline functions (see Equation 11) results in a deaths curve

that matches the given four statistics (Mt, UBt, DoIt, d(M)t). For the determination of the

vector of spline weights at we use numerical methods: For any t the Equations 1 and 6 to 10

from Section 3.1 can be translated into a system of non-linear, but convex equalities:

A
(1)
t (at) = y

(1)
t , (13)

where A
(1)
t : R21 → R6 is a corresponding function in the spline weights and y

(1)
t is a vector of

the target values. Analogously, the Equations 2 to 5 from Section 3.1 define a system of linear

15It might be reasonable to modify the respective number of knots (nine or five) if the distances between x0

and Mt or between Mt and UBt are rather small or extremely large.



(and thus also convex) inequalities:

A
(2)
t ∗ at < y

(2)
t . (14)

These constraints are continuous in the sense that they refer to each (also non-integer) age

in certain intervals of the support [x0, UBt]. For the numerical implementation we need to

”discretize” the constraints by evaluating them only at a finite number of ages. It turned out to

be sufficient to only evaluate the constraints at the spline knots.

In order to obtain starting values for the algorithm described below, we fit a spline representation

to the observed deaths curve of the most recent year t0 for which data is available. To this end

we perform a least square estimation where we require the constraints from Equations 1 to 5 to

be fulfilled.

The basic idea behind the algorithm is that – for any future year t – we search for spline weights

at which solve the Equations 13 and 14 and differ as little as possible from the weights at0 . Thus,

in terms of picking a single deaths curve from Dt,x0 we opt for minimum deaths curve changes

over time (see Section 3).16 The algorithm proceeds as follows:

1. In a first step we ensure that the curve is an element of the space Dt,x0 . To this end, we

scale the vector of spline weights, i.e.

ãt =
1∫ UBt

x0
Bt(x) ∗ at0dx

· at0 ,

such that Equation 1 holds.

2. In the second step, we alter the vector of spline weights such that the deaths curve is an

element of the set Dt,x0 . To this end, we check if ãt solves Equation 14. If it does, we

proceed with the third step. Otherwise, we carry out the following steps a to c which

build on the method of gradient descent:

(a) Based on Equation 14 we define a function ft of a vector of weights a:

ft(a) =
m∑
j=1

wj · A(2,j)
t ∗ a,

where m is the number of rows of the matrix A
(2)
t , A

(2,j)
t is the jth row of the matrix

16By this algorithm we find deaths curves with minimal distance from the observed deaths curve in the year t0.
The algorithm would also work iteratively, i.e. by using the weights at−1 as starting values for year t. However,
if one was only interested in a forecast for year t, one would have to forecast deaths curves for all years up to
year t in that case.



A
(2)
t , and the weights wj are given by17

wj =

1 if A
(2,j)
t ∗ a < 0

106 if A
(2,j)
t ∗ a ≥ 0

.

(b) We determine the gradient ∇ft(a) of the function ft(a) and, following the method of

gradient descent, update the vector of weights ã
(ν)
t via

ã
(ν)
t = ã

(ν−1)
t − θ · ∇ft(ã(ν−1)t ).

The step size θ is determined by minimizing the difference ft(ã
(ν−1)
t )− ft(ã(ν)t ) under

the constraint that no additional component of the vector A
(2)
t ∗ ã

(ν)
t becomes positive.

In the first iteration we set ã
(0)
t = ãt and ν = 1.

(c) We update ãt as long as there are positive entries in the vector A
(2)
t ∗ ãt. After the

final update we set ãt = ã
(ν)
t .

3. In the third step, we modify the vector of spline weights such that the deaths curve is

an element of the set Dt,x0 . Similarly to step 2.a, we define a function gt of the vector of

weights a,

gt(a) =
k∑
j=1

ωj · (A(1,j)
t (a)− y(1,j)t )2,

where k is the number of equality constraints, ωj is a scalar weight for the jth equality

constraint, A
(1,j)
t (a) is the left hand side value of Equation 13 for the jth equality constraint,

and y
(1,j)
t is the right hand side value of Equation 13 for the jth equality constraint. In

order to determine the root of the function gt, we apply the method of gradient descent

analogously to the optimization of the function ft. Starting with the vector of spline

weights ãt from Step 2, we search for the vector of spline weights at for which the value of

the function gt assumes its minimum value zero.18

The resulting deaths curve d̂t(x) = Bt(x) ∗ at is an element of the set Dt,x0 and thus a valid

forecast of our model.

17The constant 106 in the following formula stresses the constraints which are not yet fulfilled and therefore
accelerates convergence in the subsequent steps. We found 106 to be in a reasonable range.

18For numerical reasons the algorithm terminates as soon as gt(ãt) < e−7.


