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Abstract

Due to the observed and persistently strong improvements in life expectancy, the estima-
tion of future mortality improvements and trends by actuaries and demographers gains more
and more social and financial importance. Often, (stochastic) forecasting is performed by
means of parametric mortality models, e.g. the models of Lee and Carter (1992), Cairns et al.
(2006), or Plat (2009) that reduce the puzzle of mortality to a few interpretable parameters.
Often a random walk with drift is used to project the time dependent parameters within such
models. However, in some cases it seems to underestimate the uncertainty in future mortality
rates due to its constant and fixed drift (see Börger et al. (2014) or Lee and Miller (2001)). In
many countries, historical mortality trends seem to have changed once in a while and there
exists nowadays a significant number of models with changing mortality trends with appli-
cations in different populations. Therefore, mortality forecasts should take this fact under
consideration.

In this paper, we analyse different approaches that account for changing mortality trends.
First, we analyse and compare different trend models qualitatively and deduce criteria to
identify a suitable model. Then, we analyse and discuss existing methods to calibrate a
model with changing trend. However, data about historical trend changes is sparse, and thus,
the parameter estimation of these trend processes is vulnerably dependent on the concrete
calibration method. Starting from existing approaches, we derive a stable calibration method
by using historical observations to make consistent forecasts of future mortality. Within this
calibration, we implicitly derive the distribution of the future trend process. Finally, we apply
the trend model in a numerical example and show how the different components of uncertainty
in the parameter estimates can be quantified.
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1 Introduction

Increasing life expectancies can be observed in most countries and societies have to find ways to
deal with the ageing population. Estimating future mortality rates is one of the most common
tasks of actuaries or demographers, and in the literature, a considerable variety of models have
been developed. Most popular are parametric mortality models that reduce information about
mortality and longevity to only a few parameters in a lower dimensional setting. There exist
models like Lee and Carter (1992) and Booth et al. (2002) with one time varying parameter,
hereafter called period effect, or models with two time dependent period effects like Cairns et al.
(2006) and Renshaw and Haberman (2006). Also models of higher dimension including cohort
effects, curvatures, multiple populations (see Hunt and Blake (2014)) exist. For the prediction of
the future mortality trends, it is necessary to forecast these period effects into the future. These
two-stage stochastic mortality models are widely used in actuarial literature, see Cairns et al.
(2008) or Haberman and Renshaw (2011). Here, trend processes like random walks, Autoregres-
sive Moving Average (ARMA) models, trend stationary models, vector error correction models
(VECM) can be used. To analyse, compare and further develop different trend processes will be
the aim of this paper.

As Figure 1 indicates for the period effects of English and Welsh males calibrated with the
Cairns et al. (2006) model (for specification and parameter estimation see Appendix A), the his-
torical evolutions show significant changes in the trends over time. Similar findings can be made
for basically any population worldwide. Therefore, a variety of models aims to identify and model
trend changes in the historical mortality trend (see van Berkum et al. (2014), Coelho and Nunes
(2011), Bai and Perron (2003), Chen (2009), Li et al. (2011)). These models can be subdivided
into models that only aim to estimate optimal historical changing trends and then extrapolate the
most recent trend into the future. However, assuming a constant trend for the entire prediction
seems inconsistent with the historical observation of several significant trend changes. On the
other hand, models like those of Hunt and Blake (2015), Sweeting (2011), Milidonis et al. (2011),
Lemoine (2014), Hainaut (2012), and Börger and Schupp (2018) also include stochastic future
trend changes in their respective predictions.

These models take the historically observed trend changes to estimate a distribution for future
trend changes. However, data on historical trend changes is sparse, and thus, the estimation of
the simulation model contains a considerable amount of uncertainty. If the magnitude of histori-
cal trend changes is rather inhomogeneous, the simulation of future trend changes will no longer
be consistent with the observed historical trend changes as those will be hardly reproduced by
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Figure 1: Period effects in the CBD model for English and Welsh males for ages 60 to 109

the distribution of future trend changes. In this paper, we avoid this inconsistency by including
the distribution of future trend changes in the calibration of historical trends. We extend the
calibration to a pure maximum likelihood estimate, including the distribution of future trend
changes. However, it becomes apparent that this estimation is not feasible from a practical point
of view. Therefore, we deduce an approach, based on the pure maximum likelihood estimation,
that can be calibrated efficiently.

The remainder of this paper is structured as follows: In Section 2, we structurally compare
different trend processes. Parameter estimation of these approaches is then discussed in Section
3. In particular, we present a calibration approach that incorporates the distribution of future
trend changes to achieve more consistent forecasts. In Section 4, we focus on uncertainties in
the parameter estimation and explain how the uncertainties can be accounted for in a practical
application. Finally, Section 5 concludes.

2 Structural comparison of trend processes

As outlined in the Introduction, we compare now different approaches to model mortality trends
in a population (summarized in Table 1 in Appendix B). In this section, we distinguish between
two groups of trend processes: A larger group that focus on the changing historical trend pro-
cesses and extrapolate the most recent trend and a smaller group of trend processes that also
start with a changing historical trend process but continue to include trend changes also in fu-
ture simulations. In both groups, difference stationary processes (random walk models) or trend
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stationary processes (trend models) can be used. Although these models are very similar, they
also have a crucial difference that we can use to decide which model is suitable in a particular case.

2.1 Difference and trend stationary processes

Broadly known models based on random walks are well studied and often the first choice to model
the period effect κt of a parametric mortality model. These models use cumulative, difference
stationary error terms together with a common drift:

κt = κt−1 + d+ εt.

One-year errors εt remain in the future evolution of κt and hereby influence estimates of κT
where T ≥ t. Hence, uncertainty in short-term and long-term forecasts of random walks with
constant drifts are driven by the underlying volatility structure. In order to reflect the long-term
uncertainty as observed in the period effects in Figure 1, a high degree of volatility would be
necessary, which in turn would massively overestimate the short-term uncertainty. Therefore, a
second source of uncertainty is required, e.g. a variable drift. More general models like the class
of ARIMA(p,d,q) models include error structures for several years but are structurally also not
suitable to reflect structural changes.1

Similar to the random walk models, trend models are another option to model period effects.
These models use trend stationary errors around a linear trend. The easiest form of a trend
model would be a simple linear regression, described by

κt = κ̂t + εt,

where κ̂t = β0 + β1 · t with β0 the starting value and β1 the corresponding slope of the trend and
κ̂t the underlying period effect κt net of random fluctuations.

The formula of the random walk with drift and the formula of the trend model are very
similar and basically differ in the error structure. With a difference stationary structure, the
correlation coefficient of subsequent changes in the period effect (Corr(∆κt,∆κt−1) = 0 with
∆κt = κt − κt−1) should be roughly zero. In a trend stationary model it can be shown that a
negative correlation of subsequent changes in the period effect is expected (Corr(∆κt,∆κt−1) =
−1/2 2). We calculated the empirical correlation coefficients for 56 period effects (standard CBD

1For applications of ARIMA (p,d,q) models in parametric mortality models, see Chan et al. (2014) and Richards
et al. (2014).

2With the restriction of the trend component being treated as given. With changes in the trend process a closed
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Figure 2: Boxplot of empirical correlation coefficients of subsequent changes in 60 period effects

model κ1
t , κ

2
t , males and females, different age spans (50 − 89, 60 − 109) for England & Wales,

Sweden , USA, Australia, France, Spain, Netherlands3) see Figure 2. Most period effects seem to
be trend stationary. However, there are also exceptions (e.g. Swedish Males aged 50− 89 with a
Corr(∆κt,∆κt−1) = −0.11), and therefore it is necessary to decide on a case by case basis which
trend process is suitable.

2.2 Models without changes in the trend process in projections

Many authors discuss changes in the historical parameters of trend processes, e.g. a time de-
pendent drift dt in a random walk model or a time dependent slope βt in a trend model. Booth
et al. (2002) develop an approach for the specification of optimal periods for the estimation of the
random walk with drift in the Lee and Carter (1992) model. This already implies the assumption
of different mortality scenarios. An explicit change in the Lee and Carter (1992) model is tested
in the approaches of Li et al. (2011) and Coelho and Nunes (2011), that find a change in almost
every population under consideration. Applying the Zivot and Andrews (2002) procedure Li et al.
(2011) test the null hypothesis that the period effects should be modelled with a random walk
with constant drift against the alternative of a broken trend stationary mode. For England &
Wales and the United States they suggest to model the underlying period effects κ̂t with a trend

formula cannot be derived. However, since changes occur only rarely and are a priori unknown, the correlations
should nevertheless provide a valuable indication for the model choice.

3We limited the analysis to data which is marked as reliable on the HMD website (see Human Mortality Database
(2018)), e.g. years 1860 onwards for Sweden.
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change and jump in in the mid 1970s. To our perspective, the trends appear rather continuously
and jumps should be rather small. Moreover, jumps corresponding to pandemia should only
influence the long term trend marginally. Also other authors apply continuous linear trends in
related processes in mortality modeling, e.g. Gillings et al. (1981) use a piecewise linear trend
in the modeling of perinatal death rates and Wilmoth (2000) model the maximum age at death
with a piecewise linear trend. Also combinations of these models are possible, e.g. Njenga and
Sherris (2011) use an autoregressive process around a common fixed trend.
O’Hare and Li (2015) test the significance of a trend change with a test for the residuals based on
Ploberger and Krämer (1992) for different parametric mortality models4 in four countries (UK,
US, Netherlands and Australia) and found significant trend changes. Using the Bai and Perron
(1998, 2003) method they also find an optimal trend change around the 1970s in any situation.
The clarity of a trend change in the 1970s is very interesting, but the period effects in Figure 1 in-
dicate further trend changes. Including the possibility of multiple structural changes van Berkum
et al. (2014) allow for multiple trend changes. With the method of Bai and Perron (1998, 2003)
the historical period effects are modelled as a random walk with multiple times changing drift,
i.e. a time dependent drift d = dt with (l − 1) drift changes in t1, . . . , tl:

κt = κt−1 + dk + εt, t ∈ (tk−1, tk].

Although the methods for the identification of historical trend changes vary, the idea for the
projection of future mortality is based on the same assumption: after estimating the historical
change(s), the projection model estimation period is limited to the data after the last trend
change. Both for short-term forecasts and for the long-term best estimate, this trend based on
a limited period seems reasonable. However, the existence of multiple historical trend changes
in almost all applications suggests that trend changes may also be possible in the future. Espe-
cially for long-term forecasts, the assumption of a constant trend is therefore implausible and in
particular inconsistent with the historical calibration.

2.3 Models with changes in the trend process in projections

There are models that address this inconsistency and include trend changes in simulations. Sev-
eral authors propose models with a regime switch. Milidonis et al. (2011) and Lemoine (2014)
propose switches between two fixed regimes in models with Brownian motion and autoregressive
processes, respectively. Here the different regimes appear Markov with transitions in between.
For instance, Hainaut (2012) uses two regimes ηt = 1, 2 with changes in the trend and volatility

4Models of Lee and Carter (1992), Cairns et al. (2006), Plat (2009) and O’Hare and Li (2015)
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for French males and females (κit corresponds to the Lee-Carter model with two dimensions):
(
dκ1

t (ηt)
dκ2

t (ηt)

)
=
(
a1(ηt)
a2(ηt)

)
dt+

(
σ1(ηt)dW 1

t (ηt)
σ2(ηt)dW 2

t (ηt)

)
ηt = 1, 2

where W 1
t and W 2

t are correlated Brownian motions. These two regimes represent two scenarios:
For males the regimes differ mainly in the volatility. For females the regimes differ in trend and
volatility. However, the restriction to two rigid scenarios is not possible in many situations.
Further refining van Berkum et al. (2014)’s approach, Hunt and Blake (2015) include random
changes in the predicted drift. They reformulate the random walk model as:

κt = κt−1 + dt + εt

where dt is the possibly changing drift. If there is a change in the drift from year t − 1 to t the
magnitude of the trend change is modelled with νt, i.e.:

dt =
{
dt−1 + νt , if a trend change occurs
dt−1 , if no trend change occurs

On the basis of optimal historical drifts, Hunt and Blake (2015) assume that the frequency of
changes remains constant over time, e.g. 2 changes in a 64-year period effect would indicate
a trend change probability of 2

64 . In the event of a future drift change, the authors propose a
decomposition of ν into the components sign and absolute magnitude. Both estimates are subject
to significant uncertainty, as only a few historical changes are observable. For simplicity, they
assume that positive drift changes are as likely as negative drift changes. The absolute mag-
nitude of the drift change is modelled with a Pareto distribution. To ensure consistency with
the historical calibration, the authors estimate the threshold parameter as the minimal size of a
statistically significant drift change at a 99% confidence level. Hunt and Blake (2015) argue that
using the ML-estimate (the minimum observed value) would truncate the simulated drift changes
to the smallest observed. However, this seems to be a rather specific issue of the Pareto distribu-
tion and ML-estimators can be used when applying other distributions. The scale parameter of
the Pareto distribution is chosen such that the distribution’s mean coincides the sample mean,
i.e. the historical mean of absolute trend changes. A disadvantage of the Pareto distribution is
certainly that the monotony puts a lot of probability mass to values close to the minimum. With
the constraint of identical means, this may lead to an overestimated variance.

There are two approaches that model a changing mortality trend as a continuous piecewise
linear trend (see Sweeting (2011) and Börger and Schupp (2018)) and include the possibility of
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future trend changes in their approaches. The underlying trend process net of fluctuations κ̂t
uses the possibly changing trend to be recursively defined as

κ̂t = κ̂t−1 + βt

with βt the possibly changing trend between year t − 1 and t. In the case of a trend change
between t − 1 and t, the slope of the trend changes from βt−1 to βt−1 + λt. If there is no trend
change, the current trend remains, i.e.:

βt =
{
βt−1 + λt , if a trend change occurs
βt−1 , if no trend change occurs.

Sweeting (2011) and Börger and Schupp (2018) estimate the trend change frequency similar to
the approach of Hunt and Blake (2015), i.e. assuming constant frequencies over time. Moreover,
Sweeting (2011) observes a strong dependency between trend changes in the two period effects of
the CBD-model. Börger and Schupp (2018) find no valid evidence for dependencies in the trend
changes of the period effects. Whilst Börger and Schupp (2018) apply a similar decomposition
as Hunt and Blake (2015), Sweeting (2011) uses a normal distribution to simulate the magnitude
of future trend changes. Based on positive and negative historical trend changes this normal
distribution would simulate numerous trend changes close to zero which is contradictory to the
historical estimation, where trend changes close to zero would not have been detected. Börger
and Schupp (2018) use a lognormal distribution for the absolute magnitude of trend changes. In
contrast to the Pareto distribution, this distribution does not require a lower bound for trend
changes, but will assign trend changes near zero a very low probability mass. If the historical
trend changes are rather inhomogeneous, the simulation of future trend changes will no longer be
consistent with the observed historical trend changes as those will be hardly reproduced by the
distribution of future trend changes. We avoid this inconsistency by including the distribution of
future trend changes in the calibration of historical trends in the next section.

3 Calibration of processes with variable drifts and variable trends

In the previous section, we compared different approaches to model the period effects of a para-
metric mortality model with trend processes. We proceed comparing different approaches of
parameter estimation to make forecasts with a trend process. In this section, we first show how
distributional assumptions are included in existing approaches and we illustrate why this is neces-
sary. Then, we present a new calibration technique, that include the distribution of future trend
changes and thus improve consistency of forecasts.
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3.1 Statistical Analysis of historical trend processes

Some historical evolutions of mortality show a few one-year outliers due to extremal events.
A popular example is the Spanish flue in 1918 with massive influence on annual death rates.
Influences like wars, economic depressions or large migrations may affect mortality a few years.
But they have no sustainable influence on a longer perspective trend. Thus, they should not
be included in the trend model used for forecasts. Medical improvements reduced the effects
of years with strong influenza or other diseases with immediate effects on annual death rates.
The countries under consideration also showed an increase in population size. Combining these
medical and statistical effects results in significantly decreasing volatility in annual mortality
rates. The reasons put forward indicate that decreasing volatility seems to be sustainable, which
is why we assume that volatility will not return to earlier levels. We can use statistical tools
to account for outliers (see Grubbs (1951) and Appendix C) or structures in the errors like the
general decrease in volatility, e.g. Börger and Schupp (2018) include a non-parametric CUSUM
test (see Ploberger and Krämer (1992)).

Existing approaches, e.g. Sweeting (2011), Börger and Schupp (2018), and implicitly Hunt
and Blake (2015) use this volatility assumption to subsequently calibrate trends that optimize
the likelihood of the resulting errors. With iterative algorithms it is possible to update these
estimates consecutively. For instance, if we have an estimate of a trend process with k− 1 trend
changes we can use the corresponding errors to estimate a variance for the calibration of k trend
changes. For k = 0 we can start with a constant variance and than update the estimate.

The method of Bai and Perron (1998, 2003) is a fast approach to identify trend changes based
on the sum of squared residuals. With ordered data of length n, the dynamic algorithm performs
estimates for the optimal trend for each possible partition. This can be done a-priori as there are
only n·(n−1)

2 partitions in an ordered sample. For any 1 ≤ i1 < i2 ≤ n the algorithm estimates a
trend, such that the sum of squared residuals gets minimal. With a constant volatility assumption
this is equivalent to a maximum likelihood estimation of normal errors:

l(β, c;κt, t1 + 1, t2) =
t2∑

t=t1+1
(κ̂t(β, c, t1 + 1, t2)− κt)2

where κ̂t(β, c, t1 + 1, t2) = ct1+1,t2 + βt1+1,t2 · t in the case of a linear regression. Any com-
binations of multiple trend changes is a combination of these simple linear trends, therefore
a calibration can be programmed very efficiently. For any trend process with m changes in
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Figure 3: Period effect κ1
t for Swedish males for the ages 50 − 89 (dotted) and a random walk

with changing drift with (right) and without (left) heteroscedasticity (solid lines). The dashed
lines indicate the year of the drift change.

t0 = 0, t1, · · · , tm, tm+1 = n the likelihood optimal trend would be:

m∑
i=0

l(β, c;κt, ti + 1, ti+1).

Hunt and Blake (2015) and van Berkum et al. (2014) differentiate period effects to estimate the
optimal partition of a multiple times changing random walk with drift. This is necessary as the
errors are difference stationary. They use BIC (see Burnham and Anderson (2002)) to identify
a parsimony model.Longer period effects often show curious trends. This is mainly caused by
the aforementioned heteroscedasticity in the period effects. Using the likelihood perspective, the
method can be extended straightforwardly by using normed residuals, i.e.:

l(β, c;κt, t1 + 1, t2, σ2
t ) =

t2∑
t=t1+1

(κ̂t(β, c, t1 + 1, t2)− κt)2

σ2
t

(1)

A period effect, that should probably be modelled with a difference stationary trend process
is the period effect of Swedish males aged 50 − 89 (Corr(∆κt,∆κt−1) = −0.11 as outlined
in Section 2). Figure 3 shows the estimated trend processes with and without consideration
of heteroscedasticity. While the approach without heteroscedasticity shows curious effects, the
approach with consideration of heteroscedasticity estimates a convincing trend change in 1979.
In the case of a piecewise linear continuous trend process the method of Bai and Perron (1998,
2003) cannot be applied, as due to the continuity slopes are strongly dependent of each other.
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Therefore, these trend processes require different types of calibration methods.
The method of Muggeo (2003) can be used to estimate an optimal trend process with respect

to the number of trend changes and their positions simultaneously. Börger and Schupp (2018)
transferred this approach to the field of mortality modeling and showed how this approach can be
extended to include the mortality specific structures in volatility. Similar to the extended version
of the Bai-Perron method (see Equation 3.1), the approach estimates optimal historical trends
with a volatility assumption, i.e. l(β, c, τ ;κt, σ2

t ), where the trend changes it’s slope in the years
τ . However, the continuity constraint of piecewise linear trends makes calibration considerably
more difficult.

All presented calibration approaches take the historical trend process as the basis for estimat-
ing the parameters for a simulation. In most cases, there are only a few inhomogeneous trend
changes. Therefore, the simulation of future trend changes will no longer be consistent with the
sparse observed historical trend changes. To tackle this problem, there are basically two options:
Adjusting the projection approach can be a possible solution, e.g. if a simulation only includes
trend changes that would also have been detected within the historical trend calibration. How-
ever, the strong dependencies between trend changes due to the continuity constraint make this a
challenging and not feasible task. The other possibility is to adjust the historical calibration such
that only trends likely to be generated with the projection’s distribution should be calibrated.
In the next subsections, we show how to calibrate the latter and introduce a new calibration
algorithm that leads to more consistent predictive models.

3.2 Combined Calibration based on likelihood

Starting a simulation in t = 0 based on an observed period effect κ−N , . . . , κ0 the log-likelihood
function l of a trend process from the set of trend processes (κ̂−N , . . . , κ̂0) ∈ RN+1 is optimized.
Assuming independent normally distributed errors we get:

max
κ̂−N ,...,κ̂0

l(κ̂−N , . . . , κ̂0) = max
κ̂−N ,...,κ̂0

0∑
i=−N

log fKi(κi|κ̂i, σ2
i ),

where fKi ∼ N (κ̂i|σ2
i ) with known σ2

i . This is the main assumption of the approaches pre-
sented at the beginning of this section. However, forecasts are actually possible without explicit
knowledge about the historical trend. Forecasts require an estimation of the starting value of the
trend process, the starting slope of the trend and the parameters of the distributions used for
forecasts, e.g. in the case of a lognormal distribution θT = (κ̂0, β0, p, σN , σLN , µLN ) is required.
The density function of a random trend process K−N , . . . ,K0 (with random changes in the slope
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at random points in time) can be formulated by:

f(K|θT ) = fN (ε0|σ2
N , κ̂0) · fN (ε−1|σ2

N , κ̂0, β0)

·
∫
RN−1

N∏
s=2

g(λ−s−2|p, σ2
LN , µLN )

· fN (K−s − (κ̂0 − sβ0 +
s−1∑
l=1

l · λ−(s−1−l))|σ2
N , κ̂0, β0)dλ−(N−2), . . . , dλ0,

where we can use a recursive formulation for the trend process:

κ̂−s = κ̂0 − s · β0 +
s−1∑
l=0

l · λ−(s−1−l) ∀s ∈ N.

The density function g represents the random trend changes, i.e. g(λi) = (1−p) in the case of no
trend change (λi = 0) and g(λi) = p

2 · fLN (|λi|) in the case of a trend change (λi 6= 0), where p/2
represents the probability of observing a positive or negative trend change. fLN is the lognormal
density function and represents the absolute magnitude of the trend change5. Consequently we
can use this density to derive a likelihood formulation:

l(θT |κ) = log(f(κ|θT )).

In the case of a random walk with changing drift, forecasts require a slidely different set of
parameters, namely the starting drift d0 instead of starting slope and starting value: θD =
(d0, p, σN , σLN , µLN ). Here, the density function of reformulates to:

f(K|θD) = fN (ε−1|σ2
N , d0)

·
∫
RN−1

N∏
s=2

g(λ−s−2|p, σ2
LN , µLN )

· fN (K−s − (κ−s+1 − d0 +
s−1∑
l=1

λ−(s−1−l))|σ2
N , d0)dλ−(N−2), . . . , dλ0,

where we can use d−s = d0 −
∑s−1
l=1 λ−(s−1−l).

By maximizing this function we could estimate the parameters for a joint distribution which
has the highest likelihood of observing the period effect for one specific realization. However, this

5Note that the distributional assumptions can be modified, e.g. use a Pareto distribution for the trend changes
magnitude.
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high-dimensional integral can’t be calculated analytically. Numerical techniques or Monte-Carlo
techniques to calculate integrals failed due to the dominating pole of the symmetric function
g around zero. The likelihood function of this variable trend model can be derived in an ele-
gant mathematical way. However, with the available methods, convergence can’t be achieved.
Therefore, we propose to use a simplified Pseudo Maximum Likelihood approach, which has the
essential advantages of this model and can be calibrated efficiently.

3.3 Combined Calibration based on Pseudo Likelihood

The structure of g, namely the dependencies between errors and trend changes on realized period
effects made a calibration so difficult. If we look on historical period effects, there seems to be
no evidence for a dependence between errors and trend changes. Therefore, we combine two
likelihoods independently:

1. Likelihood of observing a specific process with k changes in the trend.

2. Likelihood of observing the error structure compared to the period effect under considera-
tion given the specific process realization from 1.

Combining these two likelihoods, we get an alternative Pseudo Maximum Likelihood estimation
to calibrate optimal historical trend processes with k ∈ N trend changes:

l̃(β, c, τ ;κt, σ2
t , µLN , σLN , p) = lN (β, c, τ ;κt, σ2

t ) + lLN (β;µLN , σLN ) + lB(p). (2)

By independently combining the two likelihoods, we change the range of optimal trend processes
to choose from with the information criteria from a pure error analysis as in the approaches of
Hunt and Blake (2015) or Börger and Schupp (2018) to a combined error-inference analysis. This
was also the purpose of the infeasible full likelihood approach. Nevertheless, this is no longer a
pure likelihood optimization, nor a comparison of likelihood optimal trends for different numbers
of trend changes. Instead, we compare and estimate ’optimal’ realizations (errors and trend
changes) from a combined but complex distribution.

This modification allows to estimate the parameters efficiently again. Again, we can apply
the Muggeo (2003) algorithm to solve this optimization. For a fixed number of k trend changes,
we can optimize:

l̃(β, γ, c;κt, τ (0), σ2
t , µLN , σLN , p) =

k∑
j=1

log (fLN (|βj |;µLN , σLN )) + l(β, γ, c;κt, τ (0), σ2
t ).

As the simulation parameters θT are an intrinsic part of the calibration it is necessary to include
their estimation within the iterative calibration. Instead of updating only the error’s volatility
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Figure 4: Historical period effects κ1
t (left) and κ2

t (right) for English and Welsh males (dotted).
Pseudo Maximum Likelihood estimated best possible realization of underlying trend process (solid
lines)

iteratively we include the parameters of the trend change distribution (p, µLN , σ2
LN ) in the iter-

ative scheme (see Appendix D).
The number of parameters to be estimated for a trend process realization with k trend changes
is (3k + 3). Therefore, the BIC can be used to compare optimal realizations uk for different k:

BIC = −2 · (lN (β, c, τ ;κt, σ2
t ) + lLN (β;µLN , σLN ) + lB(p)) + (3k + 3) ln(n).

Applied to the period effects of English and Welsh males aged 60− 109 we observe four changes
in the BIC-optimal trend process realization for κ1

t and five changes in the BIC-optimal trend
process realization for κ2

t (see Figure 4). For fixed parameters (σ2
t , µLN , σ

2
LN , p), it can be shown,

that the Pseudo Likelihood part of the BIC is in expectation typically not constant. For instance,

ELLN (β) = k · 1
2
√
πσ2
LN

exp(−µLN + σ2
LN
4 )

is monotonically increasing in k. In this situation, the BIC is not only used to balance between
under- and overfitting due to randomness. In addition, the BIC compensates systematic growth
in the Pseudo Likelihood part with increasing numbers of trend changes. In most of the period
effects studied, the BIC seemed capable of doing so. However, there are also cases where the BIC is
unable to compensate for this systematic effect. With a normalized Pseudo Maximum Likelihood
approach this systematic effect can be avoided. Therefore, we normalize the optimisation such
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Figure 5: Historical period effects κ1
t (left) and κ2

t (right) for English and Welsh males (dotted).
Normed Pseudo Maximum Likelihood estimated best possible realization of underlying trend
process (solid lines)

that it is directly comparable for different numbers of trend changes, i.e. we replace Equation 2
by:

l̃(β, c, τ ;κt, σ2
t , µLN , σLN , p) = lN (β, c, τ ;κt, σ2

t )+lLN (β;µLN , σLN )+lB(p)−log(ELN ·ELLN ·ELB).
(3)

Applied again to the period effects of English and Welsh males (see Figure 5), we observe basically
identical optimal trend process realizations for κ1

t . For κ2
t we observe an optimal realization

with only three trend changes. However, also the realization with five trend changes still has a
significant probability.

4 Parameter Uncertainty

The parameter estimation approaches presented in the previous section include a significant esti-
mation risk. In this section, we show an efficient way to account for parameter uncertainty. The
estimation risk of these models can be divided into two main categories (see Börger and Schupp
(2018)): The uncertainty in the trend change parameters (p, µ, σ2). Exemplary an overestimation
(underestimation) of these parameters result in unrealistically wide (narrow) long-term predic-
tion intervals. Secondly, the uncertainty in the starting values (κ̂0, β0 (trend stationary) or d0

(difference stationary)) affects especially short-term estimates directly. This uncertainty can vary
extremely when comparing different countries and period effects as it is dominantly driven by
the latest observations.
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Some approaches to account for parameter uncertainty are computationally intensive and are
therefore often disadvantageous in a practical use. With the assumption of deaths following a
Poisson or Binomial distribution, Koissi et al. (2006) propose to recalibrate the period effects first
and then re-estimate the parameters used for forecasts. In the situation of trend stationary period
effects, the optimal historical realization needs to be recalibrated with the iterative scheme for
each simulated period effect. Clearly, this is computationally expensive. Moreover, approaches
based on recalibration can only comprehend the uncertainty in the starting values partially as
the potential additional change would not have been detected simply due to the limited data
afterwards and not due to random effects captured with the Poisson/Binomial distribution.
The approaches of the previous section estimate optimal realizations of trend processes by com-
paring estimates for different numbers of trend changes. The main uncertainty is about the actual
number of trend changes. Due to random effects, it is possible that the optimal estimate overes-
timates or underestimates the number of trend changes. As a side-product of the calibration we
already have estimates of the trend change parameters for different numbers of trend changes k
denoted by ζk = (pk, µk, σ2

k) and ηk = (κ̂0,k, β0,k). The uncertainty in the starting values mainly
arises due to limited data after the last trend change. For instance, the last trend in κ1

t only
includes a few years and also a starting value and slope without that last trend change should be
included in a simulation.

Börger and Schupp (2018) propose to adopt Bayesian weights to compare different param-
eter sets. We expand this approach, such that the uncertainty in the trend change parame-
ters, in the starting values and in the volatility structure are covered jointly. The calibration
provides parameter sets for different numbers of trend changes that can be used straightfor-
wardly to assign probabilities to θk and ηk. Using the optimization in Equation 3 and let
l̃(·, k) = l̃(β, c, τ ;κt, σ2

t , µLN , σLN , p) denote the Pseudo Maximum Likelihood for k trend changes:

P(k trend changes) = wk = exp(l(·, k)− l(·, k̂)∑n
i=1 exp(l(·, i)− l(·, k̂))

,

where l(·, k̂) is the overall optimal value of all possible k. This approach can also be applied to
other optimizations based on Maximum Likelihood, i.e. also to approaches based on information
criteria as in the approaches of Hunt and Blake (2015) or van Berkum et al. (2014).
We can use these weights to assign probabilities for the trend change parameters to account for
the unclear number of actual trend changes, i.e.:

P(ζ = ζk) = wk and P(η = ηk) = wk
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Figure 6: Historical and forecast 90% prediction intervals (dashed lines) and median (solid lines)
for remaining period life expectancy of 65-year old males in England & Wales

Focussing on forecasts, the uncertainty in the error structure Σ2
t has a very small influence. The

general decline in volatility seems to be permanent and therefore the covariance matrix of the
errors is assumed to be constant in forecasts. Moreover, the trend stationary structure of a trend
process involves only a year-by-year influence of errors in forecasts. Also the uncertainty around
the central estimate is rather small as the estimate is based on significantly bigger sample as in
the case of the trend changes. Therefore, it seems appropriate to forego this uncertainty. We
estimate covariances from the variance estimate and the historical errors from each period effect
combination κ1

t with k trend changes and κ2
t with m trend changes denoted by Σk,m. We combine

different numbers of trend changes again, by assigning weights, i.e. with the associated weights
w

(1)
k for κ1

t and w(2)
m for κ2

t we deduce the following probabilities:

P (Σ = Σk,m) = w
(1)
k · w

(2)
m .

With these specification we first draw in each simulation path (ζ, η,Σ) = θT and second simulate
the future evolutions of the period effects. Figure 6 shows the 90% prediction intervals of the
period life expectancy for English and Welsh males for the ages 60 − 109 forecasted with and
without parameter uncertainty. If forecasts are based on one optimal historical realization only,
the uncertainty would be underestimated. This is especially visible at the upper tail. Here,
uncertainty is generated by the possibility that the latest slowdown in mortality improvements
only was random and not the beginning of an ongoing different trend. Scenarios, where the
recent slowdown in mortality improvements was not sustainable are taken in 7% of all simulation
paths. Thus, both scenarios, a flattening and a persistence of the recent trends in mortality
improvements, are well included in the prediction intervals.
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5 Conclusion

Throughout the recent years a variety of stochastic mortality models have been developed and
most of these models use one or more time dependent period effect. Forecasting these period
effect(s) requires to analyse the historical shapes, where we can observe changes in the improve-
ments of mortality rates in most countries.
In this work we have analysed approaches that account for a trend process with changing trend
component. Existing methods for the calibration of a mortality model with trend changes use
historical trends solely to derive the parameters for forecasts. If the historical trend changes were
rather inhomogeneous, the simulation of future trend changes would be no longer consistent with
the observed historical trend changes as those would hardly be reproducible by the distribution
of future trend changes. We avoided this inconsistency as we included the distribution of future
trend changes in the calibration of historical trends. We presented an alternative calibration
approach that adjusted the historical calibration such that only trends likely to be generated
with the projection’s distribution are calibrated. With a full likelihood based approach, we have
introduced a convoluted density for the process with variable trend. However, the numerical
optimization failed due to the complexity of this function. Therefore, we have developed an esti-
mation of the parameters that combines the the two likelihoods of observing a specific realization
of a trend process with the likelihood of the resulting errors. By merging these two perspec-
tives, we have outlined a procedure for calibrating consistent trend processes, that can be used
straightforwardly in forecasts.

Finally, we have discussed parameter uncertainty in models with variable trend processes.
The main uncertainty in the estimation of the parameters of a trend processes is certainly the
possibility of underestimating or overestimating the actual number of historical trend changes
due to noisy data. This uncertainty can be taken into account by considering optimal realizations
for different numbers of trend changes in a simulation. Also realizations with (without) the last
optimal trend change are included in forecasts, if there is a significant uncertainty about the
starting values. The limited amount of data after a possible last trend change in the historical
trend results in a considerable uncertainty about the last trend change. There could be an un-
detected additional change in the trend afterwards. Just as well it may be possible that the last
detected trend change was only mistakenly accepted and only a result of random noise. Only
with further observations of this trend, we can be sure about the actual development. For now,
however, it is important to consider all possibilities in simulations. Existing approaches based on
recalibration can not fully reflect this uncertainty.
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We therefore conclude that the presented features allow to calibrate a mortality model with
consistent variable trend processes. On the other hand, the presented methods with variable
mortality trend represent significant improvements in several aspects over existing approaches
and therefore constitute a valuable alternative.
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Appendix

A Cairns-Blake-Dowd Model

The Cairns-Blake-Dowd (CBD) model (see Cairns et al. (2006)) is a broadly used parametric
mortality model with two time dependent period effects describing the basic characteristics of
mortality over age and time. Where the first period effect (κ1

t ) describes the general level of
mortality over time, the second period effect (κ2

t ) describes the evolution for different ages. The
formula of the standard CBD model transforms the logit of death probabilities into the two period
effects:

logit(qx,t) = κ1
t + (x− x̄) · κ2

t ,

where x̄ is the mean of the considered age range, e.g. 84.5 when the age range under consideration
is 60−109. The period effects can be estimated with generalized (non-) linear models (see Villegas
et al. (2015) and Currie (2016)) in an effective way. Let dx,t be the observed number of x-year
old individuals died in year t which is considered as a realization of the random variable Dx,t,
where

Dx,t ∼ Poisson(mx,t · ex,t)

with given exposure ex,t and central mortality ratemx,t. The corresponding Maximum Likelihood
(ML) problem can be formulated as:

L(dx,t, d̂x,t) =
∑
x

∑
t

dx,t · log d̂x,t − d̂x,t − log dx,t!,

see, e.g. Villegas et al. (2015), where we can use the link function g(E(Dx,t

Ex,t
)) = κ1

t + (x− x̄) · κ2
t

to estimate the number of deaths for a given set (κ1
t , κ

2
t ) of period effects:

d̂x,t = ex,t · g−1
(
κ1
t + (x− x̄) · κ2

t

)
.

Although we focus on the CBD model, the findings derived in this paper can be used for any
parametric mortality model with period effects.
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B Summaries - specification and calibration of trend processes

Trend Stationarity Forecasting Model Reference
Constant d-Difference historical drift ARIMA(p,d,q) Chan et al. (2014),

Richards et al.
(2014)

Variable
Difference historical drift RWD van Berkum et al.

(2014),
Booth et al. (2002),
Coelho and Nunes
(2011)

regime switch Brownian motion Milidonis et al.
(2011),
Lemoine (2014),
Hainaut (2012)

changing drift RWD Hunt and Blake
(2015)

Trend historical trend Trend Model O’Hare and Li
(2015), Gillings et
al. (1981),
Wilmoth (2000)

historical trend Trend Model with jumps Li et al. (2011)
changing trend Trend Model Sweeting (2011),

Börger and Schupp
(2018)

Table 1: Variants of models with trend processes
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C Accounting for Outliers

One-year outliers in data with normally distributed errors can be identified with Grubbs (1951)’
test statistic

G = maxi∈N |Yi − Y |
S

.

The relevant null hypothesis is H0 : no outliers in the normal distributed error data. Given H0

the statistic G is tN−2 distributed. We propose to apply this approach iteratively on all sets of
eleven adjacent data points. In the case of a rejection of H0 (i.i.d errors) at the 1% significance
level, we mark the outlier and assign a weight of zero. We analysed several period effects choosing
seven to fifteen adjacent data points and only observed marginal differences. Hence, the choice
of eleven seems to be very robust.

D Trend process Calibration

Muggeo (2003) proposes a method to fit a continuous and piecewise linear trend process to a time
series with optimality criteria, with respect to the number of trend changes and their positions.
First, a linear curve without any trend changes, i.e. a straight line, is fitted with a simple linear
regression. The trend process with k > 0 trend changes is rewritten as:

κ̂t = κ̂0 +
t∑
i=1

βt

= κ̂0 + β′ · (t · I− τ)+

with changes in the slope β′ = (β0, ..., βk) in the years τ = (t0, τ1, ..., τk)′ and starting value κ̂0 of
the trend process, i.e.:

βt =


β0, τ0 ≤ t < τ1

β0 + β1, τ1 ≤ t < τ2
...∑k−1

j=0 βj , τk−1 ≤ t < τk


The estimation of the parameters τ , β, and κ̂0, is a non-linear optimization problem. Muggeo
(2003) suggests to use a Taylor expansion around τ (0) = (t0, τ (0)

1 , ..., τ
(0)
k )′ to simplify the opti-

mization by iteratively solving a series of linear problems that converge to the solution of the
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non-linear problem. An expansion τ (0), yields:

κ̂t = κ̂0 + β′ · (t · I− τ)+

≈ κ̂0 + β′ · (t · I− τ (0))+ − β′ ·∆(0)
τ · 1(t · I > τ (0))

= κ̂0 + β′ · (t · I− τ (0))+ − γ′ · 1(t · I > τ (0)),

where ∆(0)
τ is a (k+1)× (k+1)-dimensional matrix with entries (t0− t0), (τ1−τ (0)

1 ), ..., (τk−τ
(0)
k )

on its diagonal and γ′ = β′ ·∆(0)
τ . With this transformation, the resulting optimization problem

is linear in β, γ, and κ̂0 and can be solved by maximizing the log-likelihood function

l(β, γ, c;κt, τ (0)) = −1
2

tn∑
t=t0

(
log(2πσ2

t ) + κt − κ̂0 − β′ · (t · I− τ (0))+ + γ′ · 1(t · I > τ (0))
σt

)2

.

(4)
Once the optimal parameter values β(0), γ(0), and c(0) are estimated, the years τ can be updated:

τ
(1)
i = τ

(0)
i + γ

(0)
i

β
(0)
i

, i = 1, ..., k.

Obviously, the β(0)
i need to be different from zero which is almost surely the case in practical

applications (see Muggeo (2003)). The new estimate for τ can then be used for another Taylor
expansion, and the estimation of β, γ, and c can be repeated. This iterative optimization stops
as soon as the changes in the estimates for γ from one iteration to the next become insignificant.
More precisely |γ(j)

i − γ
(j−1)
i | < 10−4, i = 1, ..., k for a stop after j iterations. The final param-

eter estimates for β, γ, and κ̂0 can depend on the initial values τ (0) for the Taylor expansion.
Therefore, in order to minimize the risk of running into local optima, it is advantageous to use
multiple starting values. Therefore, we generated 1000 sets of evenly distributed seeds. With this
approach it is possible to estimate trend processes for different numbers of trend changes. Again,
Different numbers of trend changes can be evaluated with information criteria. The parameters
of the distribution can be updated after each estimate which led to an improvement in the like-
lihood. Starting with i.i.d. weights for the trend without a break, we can update the variance
estimates according to a CUSUM test, i.e. the variance estimate of the optimal trend process
with k trend changes can be used to estimate the variance of k + 1 trend changes.

1. Determine initial estimates for the variances σ2
t of the normally distributed residuals by

fitting a straight line and apply a CUSUM test to estimate constant levels of variance.

2. Determine an initial trend with one trend change assuming N(0, σ2
t )-distributed residuals

23



and update the estimate of σ2
t .

3. Determine an initial trend with two trend changes assuming N(0, σ2
t )-distributed residuals.

4. Update the variance estimates σ2
t and the parameters of trend changes µLN , σ2

LN , p based
on the trends from (3).

5. Increase the number of trend changes by one, i.e. from N to N + 1 for these steps.

6. Create an evenly distributed set S of starting values with dimS = 1000. For each s ∈ S
proceed these steps:

(a) Determine the optimal continuous and piecewise linear trend curve for N + 1 trend
changes based on the method proposed by Muggeo (2003) with starting values s using
the optimization function under consideration (can be Equation 2, or Equation 3.

i. Estimate an optimal trend process for τ (0) = s based on l̃(β, γ, c;κt, τ (0)).
ii. Update breakpoints according to

τ
(j)
i = τ

(j−1)
i + γ

(j−1)
i

β
(j−1)
i

, i = 1, ..., k

iii. If |γ(j)
i −γ

(j−1)
i | < 0.0001, i = 1, . . . , N +1 assume the current trend change points

are optimal; otherwise return to (i) with τ (j−1) replaced by τ (j).

(b) Update the parameter estimates for σ2
t , µLN , σ

2
LN , p based on the trend from (a) if the

trend is better with respect to the optimization function than the previous trends.

7. Compare the optimal trends for N , N − 1, N − 2 and N + 1 trend changes. If the value
of the information criteria for N + 1 trend changes is higher than max(N,N − 1, N − 2),
return to (5); otherwise assume the trend process for N−2 trend changes to be the optimal
trend process.
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