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Abstract Various regulatory initiatives (such as the pan-European PRIIP-regula-
tion or the German chance-risk classification for state subsidized pension products)
have been introduced that require product providers to assess and disclose the risk-
return profile of their issued products by means of a key information document.
We will in this context outline a concept for a (forward-looking) simulation-based
approach and highlight its application and advantages. For reasons of comparison,
we further illustrate the performance of approximation methods based on a pro-
jection of observed returns into the future such as the Cornish-Fisher expansion
or bootstrap methods.
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1 Simulation and its Role in Regulatory Issues

The importance of funded private or occupational old age provision will increase
due to demographic changes and the resulting challenges for government-run pay-
as-you-go systems. Retail investors and advisors therefore need reliable method-
ologies to match offered products and investors needs and risk appetite.
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Regulatory issues nowadays typically require the aggregation of the risk of a com-
pany, of an investment strategy, a certificate, a pension product or even a short
living financial product into a single number. This number might be a fully spec-
ified measure such as the variance or the value-at-risk of the final outcome of the
investment (just to name two popular such quantities) or a classification into risk
classes or chance-risk classes.

Examples for this are the calculation of the Solvency Capital Requirement for an
insurance undertaking, the assessment of a product’s risk-return profile for pack-
aged retail and insurance-based investment products (so-called "PRIIPs”), or the
chance-risk classification of pension products from a retail investor’s point of view
by the so-called PIA (?ProduktInformationsstelle Altersvorsorge”) in Germany.

As the terms chance and risk already imply, the outcome of the corresponding
financial transaction is not exactly predictable. Thus, a stochastic modelling of
this outcome is the appropriate task. The full probabilistic information about the
outcome is contained in its probability distribution. However, as the explicit form
of this probability distribution is often unknown, various approximation methods
have been used/suggested in the past such as

e Monte Carlo simulation, i.e. the use of suitably distributed random numbers
to imitate the uncertainty inherent in the capital markets combined with a
suitable transformation or discretization to either achieve or approximate the
aimed distribution,

e approximation via an expansion of the distribution function such as the Delta-
Gamma-method or the Cornish-Fisher expansion,

e boot-strap methods or historical simulation, i.e. the use of past market data
for future predictions of the performance of financial positions.

The purpose of this article is to demonstrate that of all the above mentioned
methods a forward looking Monte Carlo simulation framework is the most appro-
priate concept. For this we will present the necessary steps to set up a simulation
framework, demonstrate its flexibility and performance potential, and compare it
with various approximation methods in real life applications and challenges in the
following sections!.

Before we present the suggested concept in more detail, we will start by comment-
ing on some often raised reservations against the use of Monte Carlo simulation
approaches.

Rumour 1: Simulation is technically involved. Simulation consists of the choice
of an underlying model (including the parameters determining it) followed by the
generation of suitable random numbers. Then, the quantities of interest can be
simulated and the corresponding measures — such as risk or chance measures —
will be inferred from the simulation. To underline this well-structured concept, we
will give a toy example realization of it in the next section followed by a well-
established application for chance-risk classification in Section 3.

Rumour 2: Simulation needs a huge computing infrastructure. It is often

understood that simulations necessary to perform for regulatory issues require the
use of huge computing clusters and then result in endless computing times. While

1 We want to highlight that this article is not an introduction to the Monte Carlo method
itself. For this, we recommend e.g. the monographs Glasserman (2003) or Korn et al. (2010)
that both also contain applications in financial and actuarial models
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this might be true for a naive nested Monte Carlo approach to the calculation
of the Solvency Capital of an insurance company (see e.g. Krah et al. (2018) for
methods and numbers), this definitely is not the case if we consider the risk as-
sessments necessary for PRIIP- or PTA-calculations. There, on one side instead of
an individualized assessment, the calculation is only required for a prototypical
customer and on the other side many parts of the simulation can be done offline.
Further, the number of the underlying variables that correspond to random num-
bers are usually very low. In total, typically not more than an ordinary laptop is
needed. Although it is in general not required for the chance-risk assessment task
in the PITA-calculations, we remark that for particular products a speed-up of the
Monte Carlo simulation can be achieved by e.g. incorporating variance reduction
methods (see e.g. Korn et al. (2010), Chapter 3, for a survey on variance reduction
methods or see Korn et al. (2017) for an example of speeding up Monte Carlo
pricing of a cliquet option that is popular in some insurance products by using the
control variate technique).

Rumour 3: Simulation is not accurate. Although Monte Carlo simulation is
based on a repeated performance of random experiments the law of large num-
bers ensures the strong convergence of Monte Carlo estimators for expectations.
The Glivenko-Cantelli theorem ensures the uniform convergence if the distribution
function of a random event has to be approximated by Monte Carlo simulation. On
top of that the availability of confidence intervals often adds information on the
accuracy of the simulation-based estimates that other methods cannot provide.

Rumour 4: Simulation as a service is costly. The simulation-based chance-risk
classification of German pension products leads to surprisingly low costs per clas-
sified product, typically lower than the sales costs of the corresponding product
for the therein considered four maturities of 12, 20, 30 and 40 years.

As our guiding — but by far not the only — example where simulation is used in
an efficient way, we have chosen the chance-risk-classification of state subsidized
German pension products performed by PIA. The underlying approach and the
models applied will be introduced in Section 3. However, before considering this
methodology, Section 2 will provide an introduction to the fundamental aspects
of model-based simulation. Section 4 will then be devoted to analyze currently
required approximation methods by the PRIIP-regulation (cf. European Com-
mission (2014) and European Commission (2017)) to assess financial products’
risk-return profiles and highlight their weaknesses compared to an approach based
on (forward-looking) simulation. Finally, Section 5 concludes.

2 Simulation as a universal tool for risk assessment

Model-based simulation always yields an estimation of the distribution function of
the desired object, the so-called empirical distribution. Thus, all kinds of assess-
ment (e.g. a classification into different risk classes) or risk measures (e.g. value-
at-risk, expected shortfall) can be inferred from it. A theoretical justification for
this is the famous Glivenko-Cantelli theorem that states the uniform convergence
of the empirical distribution function towards the distribution function of the sim-
ulated object. Of course, an appropriate choice of the model for the underlying
object is crucial.
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We will below describe the general framework for model-based simulation with
applications to risk assessment. It typically consists of four steps:

Step 1: Choice of the underlying stochastic model. When judging a financial
position, a suitable stochastic model of the underlying capital market is the basis
for model-based simulation. As a toy example, we consider the task of calculating
the value-at-risk of a European call option on a (non-dividend paying) stock with
maturity 7 at time 71 < T.

For this task, the classical model for the underlying market is the Black-Scholes
model. It consists of the evolution of a money market account B(t) with constant
interest rate and of the stock price S(t) given by a geometric Brownian motion.
I.e. we have the two price evolutions

B(t)y=¢€", S(t) = S(o)e(#*%UQ)tJrch(t)

for constants r, 4,0 with o > 0, W(t) a one-dimensional Brownian motion.

Why not a more sophisticated model? Although the Black-Scholes model is a work-
horse of the finance industry, some researchers might question it, particularly for
very short running options with e.g. just some days to maturity. They might
suggest adding jump components to the stock price or looking at more complicated
driving processes than the Brownian motion. While there can be real statistical
evidence for those models to describe the stock price evolution (in the risk-neutral
setting of u = r for reasons of option pricing), there are some fundamental issues
with the choice of a more complicated model:

e Practicality vs. state of the art: The market participants have to be able to
understand and to implement the chosen model. This in particular means that
a typical IT infrastructure is sufficient to come up with accurate results in a
reasonable time.

o Complexity vs. gain in accuracy: A more complex model needs more parameters.
It will only lead to an improvement in accuracy if the additional parameters
can be estimated in an accurate way, a fact that is often not considered when
advertising more complex models.

e Task specific issues. Depending on the task, i.e. pricing, risk assessment or in-
ternal calculations for portfolio optimization, a simple model can be sufficient
or there might be good reasons for using a more sophisticated one.

Who decides on the model to use? And finally, there has to be some institution that
decides on the model choice. Depending on the actual task this can be the finan-
cial entity (e.g. a bank, an insurance company, ...) itself in cases of calculating a
price for a financial product or an official institution (such as e.g. EIOPA or the
European Parliament) in cases such as the Solvency II or the Basel III regulations.

An example where the companies have wide choices is the use of internal models
in the ORSA process. This typically leads to the technically involved and realistic
models on one hand and simplistic rules that are designed to be conservative with
regard to risk issues on the other hand.

Step 2: Calibration — How to obtain the model parameters? This step con-
sists in fully specifying all the parameters that enter into the model. In our Black-
Scholes model example these are the constant riskless rate r, the mean rate of
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stock return p and the stock price volatility o > 0.

One often chooses r as the spot rate, i.e. the equivalent constant interest rate that
delivers the price of a riskless zero bond with maturity 7. u is very hard to esti-
mate. While it is not needed for reasons of pricing, we need it for risk assessment or
portfolio optimization decisions. Using an expert opinion for p is a popular choice.
o is typically calibrated to market prices of at-the-money call and put options (i.e.
those options where the strike is close to the current stock price)?. Ie. we choose
that value of o such that the sum of squared differences between the market prices
of e.g. a set of (European) call options and their theoretical counterparts given by
the Black-Scholes formula is minimized.This procedure is also called calibration of
the volatility (see e.g. Hull (2003), Section 23.14 for a description of a comparable
task).

Step 3: Simulation of the underlying stochastic model. The way the model
is simulated depends on the actual task. In our example, we only need to know
the stock price at time T to obtain the call option price at time T} by the Black-
Scholes formula (see Black & Scholes (1973)), i.e. we only have to simulate a se-
quence Z1, ..., Zn of independent, standard normally distributed random numbers
to obtain the corresponding sequences of stock prices

S® (1) = S(0)elh= 2o TIHVTIZe g N,

From this, we obtain the sequence HD HWM) of corresponding call option prices
at time T7:

H® = s®O(1))¢ (dy(T))) — Ke " T~ (do(T1)),
(k)
In (#) + (r+ Lo®)(T - 1)
oI —t

Remark 1 (Two important comments) a) The stock price evolves over time in the
physical world, i.e. we have to apply the drift parameter p to simulate its price at
time T1. This is then used as an input for the Black-Scholes formula to calculate
the corresponding call option price.

b) The number N of simulation runs depends on the actual task, but should in
general never be below 10.000. The reason for this is that the MC estimator is
unbiased and its standard deviation decreases as 1/v/N. Thus, a choice of N =
10.000 ensures an accuracy of the 1-percent order (see Korn et al. (2010), Chapter
3 for more details).

dl(t) = R dQ(t) = dl(t) —oVvT —1t.

Step 4: Inferring the final risk assessment. As all the necessary simulations are
performed, we only have to order the obtained option prices at time T} . Then, the
value-at-risk for a given level 0 < o < 1 is obtained as the corresponding a-quantile
of the ordered call option prices.

Ezample 1 To illustrate the performance of the Monte Carlo approach we consider
a European call option with a strike of K = S(0) = 100 and parameters r = 0,
u = 0.03, 0 = 0.2. We want to calculate the 95%-quantile of the call price at

2 These are the most frequently traded options and thus deliver the most recent price infor-
mation.
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time Ty < T for various values of T,Ti. We therefore consider the plain Monte
Carlo method, the so-called Delta-Gamma-approximation (see e.g. Korn et al.
(2010)), both with 10.000 simulation runs and compare it to the exact solution
that we obtain by putting the 95%-quantile of S(T}) as input into the Black-Scholes
formula to obtain the call price at time T7. The results are displayed in Table 1.
The Monte Carlo method shows a remarkable accuracy for just 10.000 simulation

T ; Ty | exact value Monte Carlo value Delta-Gamma approx.
35 2 62.52 63.09 58.67
2;1 40.79 41.12 39.47
1;0.1 14.70 14.77 14.78

Table 1 Comparison of the 95%-quantile of call option prices obtained by different methods.

runs. The Delta-Gamma-approximation performs very good for a small value of
T1, but clearly looses accuracy with increasing 77 .

3 A Simulation Concept for Chance-Risk Classification

As a part of ”pre-contractual” customer information, since 2017 every state sub-
sidized pension product sold in Germany has to be assigned to a so-called chance-
risk class (CRC). By law, the decision for the classification of a particular pension
product has to be based on the simulated contract wealth at the end of the accu-
mulation phase. We will describe this now well-established application of Monte
Carlo simulation methods in detail below.

The choice of the underlying capital market model and the chance and risk mea-
sures, the development of the software concept for the simulation and the actual
computations (including the calibration of the market parameters and the simula-
tion of the contract wealth in all classified products) have been performed by the
Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern, Ger-
many. The final assignment of the CRC is then done by PIA.

Note, an approach similar to the methodology introduced in this section has also
been implemented by the Austrian and German insurance market as ”a robust
and well recognized industry and regulatory standard” in the context of the PRIIP-
regulation (cf. Section 4).

Further, we discuss the specific implementation of the four steps of the previous
section and look at various decisions and alternatives that have to be considered
within the task of CRC assignment step by step.

Step 1: The underlying stochastic market model. The choice of the capital
market model underlying the simulation is a fundamental decision with regard to
the simulation effort, the realism of the simulations and the relevance of the CRC.
As pensions are long-term products and also German life insurers typically invest
a large fraction of the incoming premia into bonds, it is of high relevance to have a
good model for the interest rate evolution. To be able to classify both participating
life insurance contracts and bank savings plans, a two-factor Hull-White model in
the so-called G2+ + variant (see Brigo & Mercurio (2001)) has been chosen. This
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model has the advantage of being well understood by both practitioners and aca-
demics. As a two factor model, it can explain random influences that are relevant
for short-term interest rates and also those that are relevant for long-term rates.
Due to the normally distributed short rate, it can also model negative interest
rates. On top of that, it allows for a perfect fit to the initial yield curve, a fact
that will be explained in detail in Step 2.

The resulting model for the short rate r*(¢) under the risk-neutral measure Q is
given by the following set of equations

dz (t) = —ax (t) dt + odW (¢),
dy (6) = by (§)dt + 1 (pdW1 (£) + /1= p2aW2 (1)),
) =z () +y ) +v ()

with W;(¢) independent one-dimensional Brownian motions. The function
M o? —at 2
b0 = MO0+ g5 (1- )
: 2
+% (1 — e_bt) +p2f (1 — e_at) (1 — e_bt)

contains additional drift parts and the deterministic function f™ (0,t), the so-
called initial market forward yield curve (see Step 2 for details).

As a second basic asset a reference stock index with dynamic evolution given by
a generalized Black-Scholes model is introduced as

t

S (t) = 5(0) exp /r (s) ds + (AS . 0,5052) t+ osW (t)
0

where the Brownian motion W (t) can be correlated to W;(t), i = 1,2.

Of course, there are technically more involved stock price models and interest rate
models available in the literature, but the above choices are a good compromise
between realism, acceptance and accessibility by the insurance market.

Step 2: Parameter calibration. We will need different methods to obtain all
required model parameters. As a first step, we consider the initial market forward
rate curve fM (0,t) which in theory has the task to ensure equality between the
initial model prices P(0,t) for zero bonds and the observed market prices PM (0, ).
As this is only possible theoretically, a popular parameterization in terms of the
the Nelson-Siegel-Svensson (cf. Svensson (1994)) is applied. We obtain its actual
form at time 0 by

710,6) = o+ 612 (1-e7/)

O (1 _ /6 2 O2 (1 _ —t/62 2
P2 <1 e <1+61>>+/33t (1 e 1-1-92

for parameters By, 51, 82,601,602 with 6; > 0 and 02 > 0 that are publicly available
from the German Bundesbank. The advantage of this choice is obvious as the
German Bundesbank is a neutral and respected institution.
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The remaining parameters a,b,n,0 > 0 and p € [-1,1] are also obtained from
market prices. As the bond prices are already used to obtain the Nelson-Siegel-
Svensson curve, we calibrate a,b,n,o and p to market prices of interest rate caps
and interest rate swaptions. I.e. we choose those values such that the sum of
squared deviations of market prices of interest rate caps and swaptions from their
theoretical counterparts at time 0 are minimal.

As the simulations for classification purposes have to be performed under a real-
world measure P, we have to add a suitable risk premium (not necessarily a positive
one!) to obtain the final short rate process r(¢) under P. For reasons of conceptual
compatibility, we want to stay in the G24++ model class, and modify x; and y; by
introducing additional drift parameters A; and A\, to obtain

dz(t) = a (Az — z(t)) dt + odW1(t), z(0) =0,
dy(t) = by — y(t) dt +n (pdWi (1) + /T = p2aWa(t)) , 4(0) =0.

and where for simplicity of notation we kept the names of the two Brownian
motions, i.e. we now assume that they are Brownian motions under P. To determine
the risk premia Az, Ay, one needs predictions of the future evolution of the short
rate. For this, we use the annual predictions by the OECD on the expected future
development of the interest rate market.

To specify the parameters Ag and og of the evolution of a stock index, we choose yet
another approach. As the Euro area is an attractive market for German insurance
companies, the EuroStoxx 50 is a relevant reference index. From historical time
series data, the choice of ¢ = 0.2 is a reasonable value. As we only perform relative
comparisons in the classification task, there is no need to obtain a pseudo accuracy
(such as 0 = 0.19867) in this case. Historical data also suggest the use of a risk
premium of Ag = 0.04.

To simulate another index or a stock that has a volatility of o, we assign it a risk
premium A via the relation

A:Asé.

Remark 2 (More assets.) If one wants to introduce diversification effects on the
stock side, one can introduce a second stock price S(t) with log-returns that are
correlated (but not linearly dependent!) to those of the first stock, a volatility of
oz and a risk premium of Az. Of course, the introduction of this second stock
comes along with uncertainty about the volatility and the risk premium of the
second stock and the correlation —1 < pgz < 1 of the log-returns of the stocks.

Another issue arises to simulate assets of a mixed type. An example for this is a
defaultable bond which typically contains characteristics of both (riskless) bonds
and stocks. To deal with those assets a mapping approach can be introduced that
uses a portfolio of riskless bonds (of a certain duration) and a stock (of a certain
volatility) as a model for assets of mixed type.

Step 3: Simulation of the capital market and of the contract values. We
simulate 10.000 paths of the short rate process and of the basic stock index price
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for e.g. 40 years. More precisely, we use a monthly discretization and first simulate
2™ ((+1)/12) = a (A = 2N (i/12)) 12+ 0y/171220 i+ 1), oP(0) =0,
y P+ 1)/12) =6 (A -y (5/12)) /12
+ V1712 (p2 0 4+ 1)+ V1= 220+ 1), 5™ (0) =0

for k = 1,...,10.000, i = 0,...,479. Here, (2 (i), Z*)(i)) are independent pairs
of independent standard normally distributed random variables. From these sim-
ulated paths, we directly obtain the 10.000 short rate paths, but can also derive
values of zero bond prices or yield curve dynamics over time.

For the simulation of the basic stock index fund we use the generated short rate
paths (k) (i/12) and obtain the corresponding stock price paths via

B (1LY _ oo (L k) (i+1 _ 2\ 1
S ( 12 >—S <12>exp<<r ( 12 + s —0,509 12

P o5 5 .

The standard normally distributed and independent random variables ZM® (1)
are also independent from the Z- and Z-variables.

Remark 3 (Simulation basis) It is worth to point out that this is already the full
simulation of the basic capital market. The evolution of all (!) other possible in-
gredients (such as stocks, bonds, defaultable bonds, ...) are now a consequence of
the simulated paths of the z-,y- and S-processes.

Remark 4 (The prototypical customer) The next task is the actual simulation of the
evolution of a customer’s contract value over time. To standardize this, one has
introduced a prototypical customer that contributes 100 Euro at the beginning of
each month until the end of the accumulation phase. In particular, it is assumed
that the customer survives the accumulation phase.

We now have the basis for generating the paths of the evolution of the prototypical
customer’s contract value by additionally including the different types of costs and
the way that profits are generated, assigned and shared between the policy holders
and the insurer.

Remark 5 (Product specific simulation) For each (!) product classified in Germany,
there exists a corresponding implementation to perform the required simulation
task. However, this simulation is only performed once a year assuming the proto-
typical customer and not per individualized constellation. The latter would have
resulted in an enormous simulation effort.

Step 4: Calculating the chance and risk measures and assigning the CRC.
Having simulated 10.000 contract values V*)(T) for a pension product hold by the
prototypical customer at the end of the accumulation phase T', T' € {12, 20, 30, 40},
we get the chance measure as the (largest) solution C(T') of the equation

12T
k=1
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Ie. C(T) is the constant interest rate such that a riskless investment of the contri-
butions of the prototypical customer leads to a wealth at time T that equals the
mean of the above simulated 10.000 final contract values.

To obtain the risk measure R(T), we order the contract values at the end of the
accumulation phase, take the smallest 2.000 of the values, and solve the corre-
sponding version of Equation (1). It is clear that we have

R(T) < C(T) .

Note further that a lower value of R(T') indicates a higher risk (for a bad perfor-
mance) of the pension product.

Based on the performance of five benchmark portfolios without costs, a decom-
position of R? in five areas is calculated®. The CRC of a product is then a direct
consequence of the above calculated pair (C(T), R(T)). In addition, there are nec-
essary side constraints for CRC 1 and 2 (a money back guarantee for CRC 2, and a
money back guarantee plus a strictly increasing value process after costs for CRC
1). The decomposition of R? is time dependent which allows for different CRC for
the same product for different durations of the accumulation phase. Details on the
form of the benchmark portfolios are publicly available to the product providers.

Remark 6 (Annual recalculation and calibration) To be in line with actual market
developments, the market coefficients are recalibrated annually. As this leads to
a change of the pairs (C(T), R(T)) and the decomposition of R? that defines the
different CRC, there is an annual reclassification.

4 Simulation vs. approximation methods: Some explicit examples in the
context of PRIIPs

Since 15 of January 2018, providers of packaged retail and insurance-based invest-
ment products (so-called PRIIPs) have to disclose a key-information document
(so-called KID) following regulation EU 1286/2014 issued by the European Com-
mission (cf. European Commission (2014)). This key information document has
to be provided to the customer in good time before the actual purchase of the
considered product and contains among others an indication of products’

e risk by means of a summary risk indicator,
e return by means of so-called performance scenarios,
e costs by means of a summary cost indicator.

For deriving the required figures on risk, return and costs, the European Commis-
sion issued additional regulatory technical standards (RTS) by European Com-
mission (2017) and assigns each product subject to the PRIIP-regulation to one of
four different product categories which are briefly summarized as follows: Category 1
comprises derivative-like products, products with a less than monthly price assess-
ment and products where the retail investor may loose more than their invested
premiums. Further, Category 2 covers products which provide a linear exposure to
their underlying assets whereas Category 8 encompasses products with non-linear

3 Details on and justification of the form of this decomposition can be found in Korn &
Wagner (2018)
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exposure to their underlying investments. Finally, Category 4 contains products
whose “walues depend in part on factors not observed in the market” (cf. European
Commission (2017)) and especially includes insurance-based investment products
that are equipped with some profit participation which is generally not directly
observed in the market.

In this section, we will focus on the performance scenarios which — following Eu-
ropean Commission (2017) — shall represent a ”stress scenario, an unfavourable
scenario, a moderate scenario and a favourable scenario.” Further, the unfavourable,
moderate and favourable scenario shall correspond to the 10t"-, 50*2- and 90*:-
percentile of the PRIIP’s probability distribution of returns.*

For deriving these percentiles European Commission (2017) proposes different cal-
culation methodologies for the different product categories considered. A so-called
Cornish-Fisher approzimation (cf. Cornish & Fisher (1938)) shall be applied for
products of Category 2, whereas a simulation by means of a bootstrap shall be
performed for Category 3 type products. Concerning products of Category 4, no
actual methodology is defined, but a ”robust and well recognized industry and regu-
latory standard” (e.g. the one introduced in Section 3) shall be applied instead to
derive the required figures. For products of Category 1, no calculations concerning
the performance-scenarios shall be performed at all, but the possible derivative-
like structure of this type of products (such as e.g. a call-option) shall be indicated
graphically instead.

We will now analyze how the different methodologies — especially those for Cate-
gory 2 and 3 — perform. For doing so, we will assume a simple Black-Scholes model
equipped with drift x4 and volatility o and analyze the results when the Cornish-
Fisher approximation and the bootstrap methodology as required by European
Commission (2017) are applied to this model. Both proposed methodologies es-
sentially build on the considered underlying assets’ historically observed returns®
and then basically project these returns into the future. Note, assuming a Black-
Scholes model as an underlying model for the considered time series, we are able
to derive analytical solutions for the true performance scenarios, i.e. the true 10tP-
, 501 and 90*P-percentile of returns and are hence able to compare the results
obtained by the Cornish-Fisher approximation and the bootstrap methodology to
the true values actually provided by the model.

These analyses will show that an application of the currently proposed method-
ologies for Category 2 or 3 which essentially projects observed past returns into
the future, may yield very unintended results since the product’s true performance
potential may be significantly under- respectively overestimated. Therefore, an ap-
proach based on (forward-looking) simulations as e.g. introduced in Section 3 may
in our view yield much more stable results when the product’s probability distribu-
tion of (future) returns is assessed for a disclosure of the required key information
document.

4 In contrast, depending on the product’s maturity considered, the stress scenario addi-
tionally imposes some stressed assumptions and then refers to either the 15*-percentile for a
maturity less than one year or the 5*P-percentile when higher maturities are considered. In the
remainder of this paper, we will solely focus on the unfavourable, moderate and favourable
performance scenario, but our results similarly hold for the stress scenario as well.

5 European Commission (2017) requires observed daily returns of the past five years (if
available) to be applied in the different methodologies.
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4.1 Sketch of the Cornish-Fisher approximation and the bootstrap methodology

The Cornish-Fisher approximation and the bootstrap methodology as introduced
by European Commission (2017) base their projection of the required performance
scenarios on (preferably daily) observed log-returns over the last five years of the
underlying time series considered.®

Therefore, let {r;,i =1,... Mp} denote a collection of My historically observed
daily log-returns over the period of the last five years. The Cornish-Fisher ap-
proximation (cf. Section 4.1.1) provides an analytical assessment of the future
performance scenarios based on some estimation of the moments of {r;} whereas
the bootstrap methodology (cf. Section 4.1.2) builds on sampling future returns
from the historically observed ones to assess the required performance scenarios.

4.1.1 Cornish-Fisher approximation

We use the notation as introduced in European Commission (2017) in what follows
to describe the application introduced by Cornish & Fisher (1938) to estimate
percentiles of a distribution based on its (centralized) moments. Considering {r;}
we obtain an estimate for

e the expected return or first moment M,

My = MLO Zm
i=1
e the jth—centralized moment M;,j=,2,...,4
1 ;
M;j = M;(n — M)

e the wolatility

o:=+\/M>

e the skewness

My
M1 P
o the excess kurtosis
My
p2 = —r —3
o

Let us consider a product with a maturity” of T years and further assume N
trading days within this period. The annualized log-returns in the unfavourable,
moderate and favourable performance scenario are then given as (cf. European
Commission (2017)):

6 Note, a shorter period of observation or less than daily returns are to some extent also
permitted by European Commission (2017).

7 European Commission (2017) would require product providers to define some recommended
holding period for the product. In this paper, we apply the terms maturity and recommended
holding period as synonyms.
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e unfavourable scenario

1 B 1 H2 B 52
T (M1N+0’\/N< 1.28+0.017\/N +0.0724N 0.0611 N 0.506°N

e moderate scenario

(MlN - a% - 0.502N)

Nl

e favourable scenario

1 o 12 BEY 52
T <M1N+O’\/N <1.28+0.017\/N 0.0724N +O.O611N 0.56°N

Note, Graf (2019) shows that these formulae contain technical errors — that is the
term —0.502 N should actually be removed — and hence postulates modified versions
of the unfavourable, moderate and favourable performance scenario as

e modified unfavourable scenario

1 _ i 2 i
T (MlN + a\/ﬁ( 1.28 + 0'017\/ﬁ +0.0724 N~ 0061175

e modified moderate scenario

e modified favourable scenario

1 g o724t2 ui
- (MlN +oVN (1.28 + 0.017\@ 0.0724°% +0.0611

Remark 7 (When will the Cornish-Fisher approzimation fail?) Note, the Cornish-
Fisher approximation introduced here might fail to accurately estimate the prod-
uct’s true unfavourable, moderate or favourable scenario for at least two reasons:

e The assumptions underlying the original expansion as introduced by Cornish
& Fisher (1938) prove to be wrong (cf. Jaschke (2001) for some more insight
how wrong the assumptions and their impact could be).

e The actual estimates for M1, o, u1, ue derived from the observed returns of the
last five years prove to be inaccurate. Section 4.2 shows how inaccurate these
estimates can actually be, even when the Cornish-Fisher-approximation should
— if its parameters were correctly known — provide an accurate estimate for the
required performance scenarios in this setup.
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4.1.2 Bootstrap methodology

Whereas the Cornish-Fisher approximation as introduced in the previous section
provides an analytical approximation of the performance scenarios by a parametric
approach based on the observed returns {r;,i = 1,..., My}, the bootstrap method-
ology required for products of Category 3 relies on re-sampling these observed
returns to assess the future performance potential. Note, in a practical applica-
tion for products of Category 3 {r;} would not resemble the observed returns of
the actual product itself, but rather the observed returns of the product’s underly-
ing assets. When products of Category 3 are considered, a non-linear relationship
between the product’s and its underlying performance is generally assumed and
hence a bootstrapping methodology on the underlying returns is proposed. How-
ever, in order to assess if the bootstrap approach delivers appropriate results, we
directly assess the underlying and neglect any further non-linear relationships to
the performance potential of the considered product.

In order to derive the unfavourable, moderate and favourable performance sce-
nario for a product with maturity 7" years and N trading days within this period,
the bootstrap methodology as stated by European Commission (2017) proposes
the following approach:

e Project one future trajectory of the product by
1. sample the product’s daily (log-)return by randomly picking
rs € {Ti,i = 17...,]\/[0}7
2. add this return to the product’s total return so far,
3. repeat N times.
e Repeat this projection at least 10.000 times.
e Estimate the required percentiles (IOth—,SOth—,QOth — percentile) from the
simulated trajectories.

Remark 8 (When will the bootstrap methodology fail?) Compared to the Cornish-
Fisher approach introduced previously, the bootstrap methodology may fail to
accurately estimate the products true unfavourable, moderate or favourable sce-
nario if the observed returns {r;} fail to appropriately reproduce the underlying’s
true probability distribution of returns. Since, naturally the bootstrap approach
will only apply those returns that have actually been observed in the past again
and just rearrange them somehow.

4.2 Numerical analyses of the Cornish-Fisher approximation and the bootstrap
methodology and comparison with a Monte Carlo simulation

After a brief sketch of the Cornish-Fisher approximation and the bootstrap method-
ology, we will now analyze whether these approaches are able to appropriately
estimate the future performance scenarios in case we do know the true underlying
probability distribution and further compare results obtained by means of Monte
Carlo.

We assume S(t) to follow a Black-Scholes model with drift x4 and volatility o, i.e.
S(t) = =20 HaW (D) with W (¢) denoting a Brownian motion in what follows.
This model will on the one side be used as a data-generating model for the re-
quired time series of observed returns. Thus, we will sample five years of realized
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log-returns (ln %) on a daily basis, assuming 252 trading days per year and

hence set At = ﬁ On the other side, the model will also be the underlying
of our considered product for which the future performance scenarios should be
estimated. Since S(t) follows a log-normal distribution its probability distribution
of returns is easily assessed in closed form.

Assuming p = 0.06 and o = 0.2 we consider a product with maturity 7' = 20 years
and hence obtain the true future performance scenarios in terms of annualized
log-returns as summarized in Table 2.

Scenario | unfavourable moderate favourable
Return —1.73% 4.00% 9.73%

Table 2 True log-returns (p.a.) for the different performance scenarios.

Next, we analyze how the Cornish-Fisher approximation and the bootstrap metho-
dology perform when observations of daily log-returns of the considered model
serve as the required historical basis {r;}. For doing so, we generate 10.000 streams
of observed daily log-returns from the underlying model, i.e. we obtain a set

R:={r,k=1,...,10.000 with ry := {ry;,i=1,...,Mo}}

of five-year observed log-returns with My = 5-252. Then, we analyze the results of
the Cornish-Fisher approximation and the bootstrap methodology if we set the un-
derlying time series of observed returns tory,k = 1,...,10.000. For each ry € R, we
estimate My, o, p1, p2 for the Cornish-Fisher approximation and perform a boot-
strap re-sampling (based on 10.000 trajectories each) vice versa. These calculations
finally provide us with 10.000 realizations of the projected performance scenarios
when both proposed methodologies are applied. The Monte Carlo simulation also
builds on 10.000 trajectories ("inner simulations”) of the underlying Geometric
Brownian motion assuming a monthly time step. From this inner simulations we
then estimate the unfavourable, moderate and favourable scenario as respective
percentiles. This procedure is then repeated 10.000 times (”outer simulations”)
which allows to derive an estimate for the empirical probability distribution of the
different performance scenarios for the Monte Carlo exercise as well.

Figure 1, Figure 2 and Figure 3 show the results of the empirical probabil-
ity distributions of projected performance scenarios by depicting some estimated
percentiles. First, it is worthwhile noting that in this case the Cornish-Fisher
approximation should be able to accurately estimate the underlying probability
distribution — when the parameters were known — since the log-returns are nor-
mally distributed and hence perfectly fit to the Cornish-Fisher approximation’s
assumptions. However, taking the results of Figure 1 into account, the considered
approach might tremendously over- respectively underestimate the product’s true
performance scenarios even when a corrected version of the Cornish-Fisher for-
mulae (cf. modified results) is applied. The Cornish-Fisher approximation only on
average delivers appropriate estimates of the performance scenarios and hence is
subject to a very high parameter risk. This issue is reasoned with the fact that it
is very hard (if not impossible) to derive an appropriate estimate for the required
parameters (especially regarding the expected return Mj) from just one realized
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path of observation.®

Taking the parameter risk of the Cornish-Fisher approximation into account, it
is not surprising that the bootstrap methodology is generally prone to the same
issues and may — due to good or bad luck observed in the considered time series —
yield to a severe over- respectively underestimation of the product’s true perfor-
mance potential (cf. Figure 2).

Finally, Figure 3 in our view clearly shows the advantage of the Monte Carlo
method both taking bias and a possible variability into account.

Distribution of projected returns applying the Cornish-Fisher approximation
40%

30% —

1%-99%
5%-95%
= 10%-90%
u25%-75%
= Median
< Mean
O True Value

10%

0%

-10%

-30%

unfavourable moderate favourable unfavourable moderate favourable
(modified) (modified) (modified)

Fig. 1 Performance scenarios’ estimated log-returns (p.a.) applying the Cornish-Fisher ap-
proximation.

Further, Table 3 and Table 4 show percentiles of the unfavourable respectively
favourable performance scenario for the different methodologies when our sample
R of observed time series and the outer Monte Carlo simulations are considered.

Method 100 25t 500 75th 90th
Cornish-Fisher —15.3% —-9.8% —-3.9% 2.0% 7.5%
Cornish-Fisher (modified) | —13.3% -78% —1.9% 4.0% 9.5%
Bootstrap —-132% -78% —-1.9% 4.3% 9.9%
Monte Carlo —1.8% —-1.8% —-1.7% -1.7% -1.6%

Table 3 Percentiles of estimated log-returns (p.a.) for the unfavourable performance scenario.

8 Note, this caveat can also be not overcome if the required historical time frame was further
increased to e.g. more than 5 years.
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Distribution of projected returns applying the bootstrap methodology

40%

30% S

20%

1%-99%
5%-95%
u 10%-90%
u 25%-75%
=Median
< Mean
O True Value

10%

0%

-10%

-20%

-30%
unfavourable moderate favourable

Fig. 2 Performance scenarios’ estimated log-returns (p.a.) via the bootstrap methodology.

Distribution of projected returns applying Monte Carlo simulation

12%

10% ——

8%

1%-99%
6% 5%-95%

u 10%-90%
u25%-75%
=Median

< Mean
OTrue Value

4%

2%

0%

2%

4%
unfavourable moderate favourable

Fig. 3 Performance scenarios’ estimated log-returns (p.a.) via Monte-Carlo simulation.

Note, taking the true performance scenarios of the underlying model into ac-
count (cf. Table 2), there is — due to the mentioned parameter risk — a chance of
25% (10%) that the approximated unfavourable scenario delivers higher returns
than the actually true moderate (favourable) performance scenario. In contrast,
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Method 10%  25th  poth 75th 90%h

Cornish-Fisher —-3.9% 1.6% 75% 13.4% 19.0%
Cornish-Fisher (modified) | —1.9% 3.6% 9.5% 15.4% 21.0%
Bootstrap —1.7% 3.7% 9.5% 15.8% 21.4%
Monte Carlo 9.6% 9.7% 9.7%  9.8% 9.8%

Table 4 Percentiles of estimated log-returns (p.a.) for the favourable performance scenario.

there also is a chance of 25% (10%) that the approximated favourable scenario
gives lower returns than the actually true moderate (unfavourable) performance
scenario. Further, very high projections for the favourable scenario (e.g. twice as
high as the actual true value) may also be observed with a significant probability.

Of course a forward-looking simulation as e.g. the one introduced in Section 3 will
still only constitute a modelling approach and hence should not claim to exactly
produce or deliver the true probability distribution of future returns. However,
such an approach if appropriately calibrated does not suffer from the above issues
and therefore provides stable instead of rather random results on the assessment
of possible future performance scenarios for different financial products (cf. Table
3 and Table 4).

5 Conclusion

In this work we have presented some basics of simulation approaches and a fully
developed simulation framework in detail that is successfully used in Germany
for chance-risk classification of pension products. We have further highlighted
some disadvantages of the use of moment based approximations such as the Delta-
Gamma-method or the Cornish-Fisher expansion on the one side and also on boot-
strapping historically observed returns on the other side and especially commented
on their application in the PRIIPs regulatory framework. Their performance is par-
ticularly bad for assessing the risk-return profile of long-term financial products,
even for much simpler ones than typical pension products.

In contrast to the performance of these approximations, simulation approaches
can be tailored to an actual application such that any degree of desired accuracy
can be obtained. However, to make use of their full potential in a general setting,
it needs a clear and detailed concept for their application. As the chance-risk clas-
sification approach in Germany — which also serves as a basis for some ”"robust and
well recognized industry and requlatory standards” used in the context of PRIIPs —
has shown this can be done in a satisfying way for insurance companies, customers
and political decision makers.

As a conclusion of the examples and concepts presented in our work, we want to
summarize some important advantages of simulation methods for risk assessment:

Flexibility. Simulation approaches can easily be modified to deal with tasks that
have not been present at the time of their conception. Examples are the risk as-
sessment of novel products or of novel risk mitigation techniques and investment
strategies.

Accuracy. Given a good model choice, simulation approaches can deliver every
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desired degree of accuracy via increasing the number of simulation runs.

Past and future — Using the best of both worlds. Simulation approaches use
the essential information of the past data to calibrate the model parameters, but
allow for much more possible future scenarios as just repeating what has been
observed in the past. Thus, even economic scenarios that have been unexpected
given past performance can enter the result of the simulations. This mainly avoids
being caught by surprise.

Customer relevant information by a forward looking approach. Simulation
approaches are forward looking, i.e. the simulations of future evolutions are based
on parameters inferred from the actual market situation. They therefore provide
relevant information for the customer, a feature that static approaches solely based
on historic data do not have. This is especially true when markets have changed
recently as is the case with the current low interest rate environment.

Raising the standards. Our experience has shown that the presence of a model-
based simulation approach has forced the providers to actually deal with this
approach. This then also leads to a more detailed understanding of the own prod-
uct’s properties. Further, the simulation approach also proved to be beneficial for
product design.

Summing up all the conceptual considerations and examples presented above, we
believe that there are convincing arguments for considering a well-specified model-
based Monte Carlo simulation concept as a highly suitable tool for risk assessment
in various applications, especially those related to pension products.
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