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Abstract

Expert knowledge from many different disciplines has the potential to inform on
developments that could significantly increase or decrease human life expectancy. However,
such knowledge is typically not considered in longevity risk management, since stochastic
mortality models are generally only calibrated to historical mortality patterns, i.e., fully data-
driven.

Following an interdisciplinary approach, we develop a methodology how expert knowledge
on the (uncertainty of the) future of human life expectancy can be integrated into the
calibration of stochastic mortality models. We argue that this approach is particularly
relevant if there are “low probability / high impact” scenarios on the horizon, that are
considered plausible by experts in their respective field but are “virtually impossible” in
models calibrated to historical data. Based on current research on treatments that might be
effective in slowing down ageing, we motivate and propose an exemplary plausible scenario
for the future development of human life expectancy. We assign a potential impact on life
expectancy as well as a plausible probability of occurrence to the scenario and present a
method for calibrating stochastic mortality models so that the resulting projections are in
line with these parameters. In a case study, we analyse and compare the longevity risk in an
exemplary annuity portfolio and show that this so-called “driver-driven” calibration can lead
to a structurally different assessment of longevity risk than the traditional “data-driven”

approach, especially with regard to tail risks.
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Scanning the horizon: integrating expert knowledge into the calibration of stochastic mortality models

1 Introduction

Although human life expectancy has shown relatively steady increases, particularly in the
20" century (cf. Oeppen and Vaupel, 2002), uncertainty about future developments currently
appears rather high which is, e.g., illustrated by a strongly shifting view on future mortality
by the British House of Lords Science and Technology Committee which, back in 2005, was
optimistic regarding trends in population life expectancy stating that “for each hour spent in
reading this report, life expectancy will have increased by 12 minutes.! However, by 2019,
the same committee reported in a bleaker tone that “the rate of improvements [of life
expectancy] decreased /...]. Reasons for this slowdown are under investigation...? In line
with this shifting view, in 2015, BBC News posed the question “Life expectancy: Is the party
over?”3 They argued that “increasing obesity or antibiotic resistance might slow or even
halt the trend to improving life expectancy” and extrinsic factors as varied as air pollution,
micro-plastics in food and climate change have been postulated as significantly decreasing
life expectancy with, it should be noted, equally varied evidence bases (cf. Patkee and
Strange, 2023). On the other hand, population level improvements in lifestyle (cf. Khaw et
al., 2008) or medical breakthroughs (particularly in the field of slowing down the human
ageing process — see below) hold the potential to significantly decrease mortality and hence
increase life expectancy.

Knowledge about potential scenarios that might impact human mortality exists in many
different disciplines along with the potential for subject specialists to provide educated
estimates for the probability of both occurrence and potential impact. This well-founded
knowledge would be particularly useful whenever mortality risk or longevity risk is being
quantified, e.g., in risk management of life insurers or pension funds, or in the calculation of
solvency capital in risk-based frameworks like Solvency Il in the European Union. However,
common stochastic mortality models such as the widely used models of Lee and Carter
(1992) or Cairns et al. (2006) are typically calibrated in a purely “data-driven” way, without
incorporating available exogenous expert knowledge. This means that model parameters are
calibrated to historical mortality data so that the model captures observed past mortality
patterns and dynamics as closely as possible, cf. e.g., Currie (2016), and extrapolates them

! House of Lords Science and Technology Committee (2005) Ageing: Scientific Aspects. 1st Report of Session
2005-06.

2 House of Lords Science and Technology Select Committee (2020) Ageing: Science, Technology and Healthy
Living. 1st Report of Session 2019-21.

3 https://www.bbc.com/news/business-35070410
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stochastically into the future. This is a suitable approach whenever there is no indication that
the structure of possible (albeit uncertain) future fluctuations of mortality rates might be
different than a structure one would estimate from looking at historic data. However, at some
points in time, there might be a situation where experts in their respective field (e.g., medical
experts considering a potential future drug on the horizon or biogerontologists considering
a potential breakthrough with respect to slowing down human ageing) might come to the
conclusion that there is a significant probability for a rather high future increase in life
expectancy, whilst at the same time such an increase would be considered “virtually
impossible” by a model that is solely calibrated to historical data.

To illustrate this point, imagine the year is 1929, and Alexander Fleming has recently
published a paper suggesting that “penicillin in regard to infections appears to have some
advantages over chemical antiseptics. It is a more powerful inhibitory agent...and it can be
applied to an infected surface undiluted as it is non-irritant and non-toxic* (Fleming, 1929).
Contemporary expert judgement would probably have concluded (and indeed did conclude)
that there was a significant probability that penicillin can be purified and produced at
sufficient scale to have a high impact on human life expectancy. Although nobody in 1929
could have exactly predicted the full impact or correctly specified the probability and timing
of the events, any “educated guess” by experts in the field would have provided a better
understanding of the uncertainty of (then) future development of human life expectancy than
a purely data-driven approach.

In view of current developments in the field of anti-ageing research, we argue that we are
currently at a similar point in time where uncertainties regarding the future development of
human life expectancy might be larger than a purely data-driven approach suggests. Hence
actuaries and risk managers should consider all available information when calibrating
stochastic mortality models, with a particular emphasis on the inclusion of expert knowledge
from other areas.

The idea of thinking in terms of (hypothetical) scenarios is well established in risk
management, particularly for emerging risks, and has gained increasing prominence in recent
years, accelerated by developments in areas such as climate research or medical innovation,
and by the Covid-19 pandemic. In the context of mortality risk management, several authors
have examined the implications of adverse mortality shocks — such as those induced by
Covid-19 — on the profitability (cf. Carannante et al., 2022a, 2022b) and risk profile of life
insurers (cf. Hanika, 2023, and references therein). These studies typically consider
empirically motivated, adverse mortality developments rather than purely hypothetical
future scenarios. However, risk management also requires consideration of unprecedented
emerging risks. For example, Bongiorno et al. (2022) demonstrate how climate scenario
analysis can serve financial institutions in assessing risks in a forward-looking perspective.
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In longevity risk management, Gielen and de Waegenaere (2014) analyse the impact of a
potential cure for cancer in insurers’ solvency situation by examining hypothetical scenarios
of one-year reductions in death rates of varying intensity. Club Vita (2024) discuss a scenario
— similar to the one we introduce in Section 2 — in which a potential breakthrough in anti-
ageing medicine leads to a substantial increase in human life expectancy. However, all these
studies have in common that they focus on deterministic impact assessments rather than
stochastic analyses and do not assign a specific probability of occurrence to the scenarios,
which would be needed for calibrating a stochastic model.

To capture scenarios of extreme or unprecedented mortality developments, several authors
have developed extensions of stochastic mortality models. Cox et al. (2006) have extended
the Lee-Carter model by permanent jump effects and Chen and Cox (2009) by transitory
jump effects to model catastrophe or pandemic risks. These extensions have also been
applied in a two-population framework (cf. Zhou et al., 2013) and enhanced with a more
flexible age-specific structure of mortality shocks (cf. Liu and Li, 2015; Schniirch et al.,
2023). Robben and Antonio (2024) present a multi-population mortality model equipped
with a jump component with variable age-specific impacts, allowing for transitory mortality
jumps during high-volatility regimes that may persist for several years before mortality
reverts to its long-term trend.

While transitory mortality shocks represent the predominant driver of short-term mortality
risk, potential permanent changes in the long-term morality trend constitute the main driver
of longevity risk. Therefore, several authors have developed mortality models that explicitly
capture the risk of random future changes in the long-term mortality trend. One possible
approach is to allow for switches between regimes characterized by different volatilities (cf.
Milidonis et al., 2011) and trends (cf. Hainaut, 2012). In these regime-switching models, the
number of regimes and possible trend changes is typically limited. To allow for more
variable and potentially unprecedented trend changes, other researchers have equipped the
trend component in mortality models directly with stochastic elements. In particular, Liu and
Li (2017) extend the widely used random walk with drift by adding a stochastic drift term,
while Sweeting (2011) and Borger and Schupp (2018) propose trend-stationary models with
time-varying trends. In these models, the mortality trend can experience random permanent
changes in both directions over time. A common limitation of these works is that the model
calibration is based on historical data only and does not consider potentially available expert
knowledge. As a result, the calibrated volatility in these models remains in line with
historical experience, which — as argued above — may no longer be appropriate in times when
experts anticipate potential developments that could, with a certain probability, lead to
unprecedented shifts in mortality levels or trends. The driver-driven calibration approach we
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propose fills this gap in the literature by additionally considering available exogeneous
expert opinion in the calibration.

The use of expert opinions for the calibration of stochastic risk models is not as uncommon
as it might seem at first glance. Often, this is done implicitly. For instance, if — for whatever
purpose — an estimate for future interest rates is required, this is typically derived from
forward rates based on market prices of bonds or swaps. So, estimates for future interest
rates are typically not derived by an extrapolation of historical interest rate data but rather
by prices that depend on expectations of market participants which constitutes some kind of
expert opinion. The same holds true whenever an implied volatility of stocks is used as a
risk measure. This is not derived from looking at historical fluctuations but also rather from
prices that reflect market participants’ opinion on future uncertainty. Since a deep and liquid
financial market for longevity-linked securities that would allow to derive implied
volatilities from market prices does not (yet) exist, we need a different way to consider expert
opinions in risk analyses. One possible methodology to achieve this will be presented in this
paper.

Although uncertainty is currently high “in both directions”, i.e., with respect to a potential
decrease as well as increase of life expectancy, we focus on a potential increase in life
expectancy since the topic of this paper is on modelling, measuring, and managing longevity
(as opposed to mortality) risk. But our proposed methodology can of course also be applied
to incorporate expert scenarios that lead to an increase in mortality, i.e., a decrease of life
expectancy.

Also, since the focus of our paper is on risk (i.e., the potential deviation from a best estimate),
we concentrate on modelling “low probability / high impact” scenarios. We would like to
mention, however, that expert opinions could of course also be relevant for creating a best
estimate scenario. This would particularly be relevant if a certain scenario comes with a
rather high probability or if, for whatever reason, past data is not considered representative
of the future best estimate trend. For instance, the Institute and Faculty of Actuaries (2023)
suggests using a driver-driven calibration approach based on forward-looking expert
judgement for the task of deriving best estimate mortality assumptions in a post-pandemic
era.

The remainder of this paper is structured as follows: In Section 2, we derive an exemplary
plausible scenario for the future development of human life expectancy by an
interdisciplinary approach. We would like to stress that (although we make sure that our
considered scenario is plausible and considered realistic by experts in the respective field),
our intention is not to claim that this is “the correct” or “the most relevant” scenario that
stochastic mortality models should be calibrated to. Rather, the aim of our paper is to propose
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a methodology that can be applied for calibration once a modeller has decided that some
concrete scenario should be used. Such a calibration methodology is introduced in Section
3. We explain how a purely data-driven calibration of a stochastic mortality model can be
modified by adjusting the model parameters such that the resulting model is consistent with
a given expert scenario. In Section 4, we apply this methodology using the scenario from
Section 2 and analyse the impact of the modified calibration on an insurer’s risk assessment
in a case study. Finally, Section 5 concludes with a brief discussion of potential future
extensions of our methodology.

2 A plausible “low probability / high impact”-scenario

In this section, we present a concrete expert scenario about how human life expectancy could
develop in the future. A scenario consists of three components: What might happen? When
could it happen? How likely is it to occur?

Note that among these components, specifying the probability of occurrence is the most
challenging aspect of our driver-driven calibration approach in practice. Addressing this
requires extensive discussions between modelers and subject-matter experts. Such
discussions should also ensure a mutual understanding of the respective perspectives and
underlying reasoning of both sides, as this alignment is essential for deriving meaningful
and well-founded estimates for the probability of occurrence. We discuss these challenges
in more detail at the end of Section 2.2.

2.1  Why consider the field of “anti-ageing medicine”?

Many potential scenarios could impact human mortality but events with a low impact are
probably not relevant for our purpose since their effect does not significantly exceed
“normal” volatility (that is also covered in-data driven approaches). On the other hand, high
probability events should be considered in the Best Estimate (rather than in a model for
potential fluctuations around this Best Estimate). Hence, we have chosen to focus on “low
probability / high impact” events. Those are relevant in any practical applications of life
insurance and pension funds, where the focus is on the tail of the distribution (i.e., events
with high impact that are possible but only with rather low probability), e.g., when
determining risk capital for longevity risk under Solvency Il. Therefore, the focus of our
paper will be the calibration of volatility parameters that control the degree of (long-term)
uncertainty in the stochastic projection, i.e., making sure that any plausible intensity of
potential future change of life expectancy is covered by a model with appropriate
probability.
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As mentioned in Section 1, we concentrate on longevity risk and hence consider a scenario
in the direction of an increase of life expectancy. We argue that although the adoption of a
healthier lifestyle may have a huge impact on an individual’s lifespan, it is very unlikely that
a large portion of a population changes their lifestyle. Hence this is unlikely to significantly
change life expectancy in a whole population (or in an insurer’s book of business). We also
argue that typical medical progress that aims at finding better cures for individual medical
conditions cannot significantly reduce mortality in the elderly since typical seniors have a
rather large number of conditions at the same time (cf. Collerton et al., 2009). Curing any
single disorder is unlikely to significantly reduce overall mortality rates. But without a
significant reduction of mortality rates of the elderly, life expectancy cannot rise
significantly (cf., e.g., Olshansky et al., 2024). Therefore, we base our scenarios on research
into the fundamental biology of ageing because slowing this down will delay all, or at least
a majority, of age-related diseases and hence has significant potential to reduce even older-
age mortality rates.

Although ageing is complex, there is now ample evidence from multiple species to support
the possibility that ageing could be ‘druggable’, resulting in either compressed morbidity or
extended healthy lifespan (cf., e.g., Partridge et al., 2020; Faragher and Hartley, 2024).
Considerable progress has been made recently in uncovering major “hallmark™ mechanisms
which significantly improve mammalian health and thus longevity (cf., Lopez-Otin et al.,
2013 and Lopez-Otin et al., 2023). These “hallmarks” include deregulation of nutrient
sensing, cellular senescence, mitochondrial dysfunction, and loss of proteostasis, and the
higher-level outputs from multiple biochemical pathways, such as the mammalian target of
rapamycin (mTOR) axis, each of which in turn is a series of discrete molecular events.
Rather than being separate mechanisms the hallmarks identified to date appear to be co-
dependent, with increasing evidence that positively or negatively modulating one hallmark
can influence others in the same direction.

By way of example of some areas of biogerontology that are moving out of the laboratory
and in the clinical pipeline, Guarente et al. (2024) review the evidence base and clinical trials
status for eight drugs or drug classes (metformin, NAD+ precursors, glucagon-like peptide-
1 receptor agonists, TORCL1 inhibitors, spermidine, senolytics, probiotics, and anti-
inflammatories) most of which have the potential to modulate hallmark mechanisms. Whilst
initial data are promising in many instances (cf., e.g., Mannick and Lamming, 2023 and
Justice et al., 2018) it needs to be kept in mind that the total number of licensed molecules
(i.e., drugs) available globally is still well below 8000* (a number which includes compounds
such as aspirin) and the overall rate of failure of clinical trials to phase 3 is of the order of

4 cf. De la Torre and Albericio (2024) as well as go.drugbank.com/stats.
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90%. However, subsets of clinical trials (particularly those in which drugs are ‘repurposed’
for uses other than the one for which they were originally licensed) have much higher success
rates, sometimes reaching 60%. Although doubts remain in some quarters concerning
whether a theoretical framework currently exists with sufficient explanatory power for some
ageing phenomena (cf. Gems et al., 2024) successful outcomes for trials based on hallmarks
are an established fact.

Of course, at this stage, nobody can know which interventions will prove most effective, at
what point in time they will come to the market, and what the effect on human life
expectancy will be. Hence any expert opinion will naturally be far from a perfect prediction.
It seems, however, clear that with a probability that is larger than zero, an unprecedented
change can happen that occurs well within the term of a deferred annuity or pension contract
taken out by a young person today. Therefore, we argue that, although a model that considers
a plausible expert opinion in the calibration of its “uncertainty parameters” will not be
perfect, it will be more meaningful than a model that is calibrated to historic data only — at
least at points in time, when there are potential medical breakthroughs at the horizon.

When it comes to estimating the three components of a scenario mentioned above (what,
when, and how likely), we would like to stress one aspect that might seem counterintuitive
at first glance: If a concrete scenario is discussed between mortality modellers and medical
experts, one might develop a feeling what a plausible intensity of changes in life expectancy
could be (e.g., from early clinical trials or results in model organisms). One might also rather
easily agree on an estimate for the timing (e.g., from experience with the different stages of
bringing dugs to market). However, assigning a probability is extraordinary tricky: For
calibrating a stochastic mortality model, one is typically not interested in the probability of
the very specific scenario but rather in the probability (x%) of anything (maybe a different
scenario) happening that leads to a life expectancy increase (relative to the current best
estimate projection) that is at least as high as in the specified scenario. Before we discuss in
Section 3, how a model can be calibrated such that x% of all random scenarios generated by
the model lead to a life expectancy increase that is at least as high as the specified scenario,
we develop such a scenario in the remainder of Section 2.

2.2 The scenario: senolytics

We have chosen to base our scenario on the clinical use of senolytics. These are drugs that
selectively eliminate senescent cells. Such cells are derived from conditional renewal
populations in tissues (such as the dermal layer of the skin or the liver) where cells are
regularly lost and must be replaced throughout life. As an anti-cancer mechanism, division
of any one cell is limited eventually producing populations of cells that cannot replicate but
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do not die. These cells become agents of sterile inflammation and accumulate in the body
over time. In rodents, the elimination of such senescent cells considerably extends healthy
lifespan, and in rare human diseases (especially Werner’s syndrome) their premature
accumulation causes accelerated ageing. Hence, their elimination in humans (more than 30
human trials are currently in progress) clearly has the potential to prevent clusters of
diseases, slow down or even reverse ageing, and increase life expectancy.® The questions are
to what extent mortality and hence life expectancy might be affected, within what timeframe
this might happen, and how likely it is to occur. Recall again that we are interested in “tail
events”, i.e., “low probability / high impact” scenarios.

As a starting point, we consider the life expectancy extension caused by senescent cell
removal in transgenic mice (cf. Baker et al., 2016). This is a maximum of 37% depending
on genetic background and sex. Direct extrapolation from rodent data into humans is a gross
oversimplification for a variety of reasons, some of which form the basis of our later “out-
of-the-box-scenario in Section 2.3, and one key difference is cause of death. Cancer
prevention mechanisms are far less efficient in rodents than humans and tumours are thus
the primary cause of death in most laboratory rodent strains (cf. Snyder et al., 2016).
However although cancer is also a leading cause of death in humans, it kills a lower
percentage of the population (estimates vary by country but a figure of 16% globally is often
quoted with higher percentages of 25-30% for first world countries) and thus if, as seems
probable, much of the lifespan extension effect of senolytics seen in rodents is via tumour
suppression (perhaps paradoxically whilst senescence is a cell intrinsic tumour suppression
mechanism senescent cells have a pro-carcinogenic effect on their neighbours if they are not
removed) then pro-longevity effects could be smaller in humans. One might argue that a
conservative estimate for the impact on humans would be only a third of the effect size seen
in mice.

Conversely, it could be argued that the effect on humans might actually be larger than that
for several reasons: First, other causes of death in humans (such as cardiovascular disease)
have a clear senescent cell component and thus a senolytic could achieve large-scale
improvements in healthy human lifespan by impacting these pathologies. Second, the
potential for positive modulation of other hallmarks through senolytics exists and should be
considered alongside. Finally, the extent to which simultaneous modulation of multiple
Hallmarks (e.g., senolytics combined with modulation of nutrient sensing pathways using
compounds such as Rapamycin or Everolimus) would allow “stacking” of interventions to
achieve larger effects has not yet been tested and is thus unknown. This last aspect in

5 Cf., e.g., Di Micco et al. (2021) or Baker et al. (2011).
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particular is a critical knowledge gap within the field considered either from a biological or
a risk forecasting perspective.

Accordingly, we have selected an impact on human life expectancy of 25% (approximately
midway between the 37% observed in mice and the more conservative lower estimate of one
third of this value).

When it comes to timing, we use a value of 10 years in our scenario. This consists of two
years for phase Il, another two years for phase Il1, one extra year for an indication license.
Hence, off license prescription might be possible in five years. It might then take another
five years until it reaches sufficient portions of the population to have a permanent and
significant effect on life expectancy. This is consistent to the 16-year timescale often used
as a rule of thumb for a drug to pass from phase zero to licensing.

Finally, we use an exemplary value of 1% for the probability of occurrence and end up with
our illustrative expert scenario: 25% increase in life expectancy over a time horizon of 10
years with 1% probability.

We will use this expert scenario to perform our driver-driven model calibration in Section 4.
Since the focus of our application is on pensioner mortality, we will consider a 25% increase
in remaining life expectancy at age 65 (rather than at birth). Of course, a 25% increase in
life expectancy at birth would result in an even larger absolute gain in years compared to a
25% increase in remaining life expectancy at age 65. Note that the effect of senolytics has
also been tested in mice that have already lived through a significant portion of their lifespan,
see e.g. Yousefzadeh et al. (2018).¢

The potential of senolytics was also recently taken up by Club Vita (2024) who outline a
possible scenario for the future development of human mortality. In their scenario, they
assume that the discovery and distribution of a senolytics drug will lead to a 10-year increase
in remaining life expectancy at the age of 65 over the next 20 years. Unlike us, however,
they refrain from specifying a probability of occurrence for their scenario so that their
scenario cannot readily be used for calibrating the volatility parameters of a stochastic
mortality model. Also, their analysis was not specifically focussed on low probability/high
impact scenarios. Hence although their scenario is somewhat less extreme than ours, this is
not necessarily inconsistent if a higher probability than 1% were to be assigned to their
scenario.

® They administered the senolytic fisetin to mice which were already 20 months of age (approximately 80%
lifespan completed).
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2.3 Out of the box: the killifish scenario

Due to the long-term nature of pension risks it might make sense to also consider scenarios
over longer time horizons than 10 years. Also, since annuity and pension providers need to
be able to meet their obligations even in very extreme scenarios, it is prudent to consider
rather extreme scenarios, i.e., very low probability events.

We therefore look at an “out-of-the-box”-scenario which is highly improbable but not
biologically impossible. The line of argument is based on the evolutionary biology of ageing,
the life history of humans as a species, and analogies drawn between this and the modulation
of ageing in the only other species currently known to have followed a similar evolutionary
trajectory to mankind.

In evolutionary terms, ageing evolved early in the history of life on Earth in populations of
organisms exposed to high extrinsic mortality (a feature of the biosphere to this day). This
results in a combination of selection for genetic variations that enhance reproductive success
early in life regardless of their deleterious effects later on in time (antagonistic pleiotropy or
AP) coupled with the inability of natural selection to remove fitness neutral deleterious
mutations (mutation accumulation or MA). However, unlike most species, humans have
undergone at least one and possibly more extended evolutionary bottlenecks (essentially
everyone alive on Earth today descends from a population of less than 1,000 individuals, cf.
Zhivotovsky et al. (2003) and Hu et al. (2023)).

Although fitness neutral mutation frequencies are insensitive to natural selection (by
definition) they are acutely sensitive to genetic drift. Drift rates in turn are an inverse function
of the effective population size (Ne) and thus the exceptionally high drift rates resulting from
the human genetic bottleneck may have dramatically altered the balance between AP and
MA. This may be one factor underling the difficulties the biomedical field currently has in
producing rodent models that are representative of human ageing pathologies.

However, Nothobranchius furzeri (the African turquoise Killifish) is an extensively
genetically bottlenecked vertebrate with an average lifespan of six months, and a physiology
that recapitulates multiple signs of mammalian ageing at the molecular, cellular, organ and
behavioural levels. It is also a species which shows a remarkable increase in life expectancy
of 60% in response to resveratrol, the highest known impact of a single intervention in any
species’ life expectancy so far. Hence, to produce our “out-of-the-box” scenario we consider
the possibility that a similarly high increase in life expectancy could occur in humans through
a simple, but as yet undiscovered, intervention. Whilst an effect on human lifespan as large
as resveratrol in killifish is highly unlikely, the idea that a simple (yet unknown) intervention
might have a huge impact on human life expectancy is not implausible. For example, the
macrolide antibiotic Rapamycin was first purified in the early 1970s and licensed for clinical

10
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use in the late 1990s; however, it was not until 2009 that it was discovered through the NIA
Intervention Testing Program that it could increase rodent lifespan by up to 14% when given
to old mice (cf. Harrison et al. 2009).”

Of course, a 60% increase in life expectancy at birth would mean a significantly higher
increase in remaining life expectancy at age 65, which is our reference figure in our
application in Section 4. Hence, we use an illustrative scenario of an increase in remaining
life expectancy of 100%. We also use a rather long-time horizon arguing that if something
exists that works on humans like Resveratrol works on the Killifish, then it has not yet been
discovered — so it is not an existing drug and would need a long term to get to the market.
We therefore use a time horizon of 30 years. Since the estimation of a probability of
occurrence is quite difficult, as already mentioned in Section 2.1, we refrain from specifying
the probability of occurrence at this point. Instead, we will use this “out-of-the-box” scenario
in Section 4 to test the plausibility of the model calibration resulting from the senolytics-
scenario with regard to its projected long-term uncertainty. Arguably, a plausible model
should assign a probability of occurrence to the killifish scenario that is well below the 1%
of our senolytics-scenario to reflect its extremity, but also above 0% so that it is not
considered “virtually impossible”.

3  Calibration methodology

In this section, we propose a methodology on how expert knowledge on the future of human
life expectancy expressed in the form of an expert scenario can be considered in the
calibration of stochastic mortality models.

3.1  Specification of an expert scenario

Having presented an expert scenario for the future development of mortality in the previous
section, we now discuss how such an expert scenario can be translated into a mathematical
framework. An expert scenario consists of the following four components describing what
might happen to a reference figure, when might it happen, and how likely it is to occur:

e The reference figure (R, ) is the underlying quantity the expert scenario refers to. It
is an F,-measurable random variable, i.e., a stochastic quantity as of points in time
before t but known at time t. Such a figure might for instance be the mortality rate

" Recent findings by Gkioni et al. (2025) show that a combination treatment with rapamycin and trametinib
increased median lifespan by 35% in females and 27% in males, also increasing maximum lifespan by 26%
(males) and 32% (females).

11
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at a certain age x in calender year t, or the remaining life expectancy in calendar year
t for a certain reference age x or at birth.

e The impact (I) describes the effect the scenario might have on the reference figure
in the form of a relative change compared to the current best estimate.

e The time period (7) indicates the time period over which the expert scenario might
unfold.

e The quantile (Q) describes the probability that this scenario — or anything else that
might have an impact of at least  on R, , over the time period T — will occur.

A stochastic mortality model is considered consistent with an expert scenario, if

P(Ry. = (1+1)-E[R..]) =@, (1

i.e., if the probability that the reference figure R, will exceed its current (time zero) best
estimate by at least the factor of (1 + I) is equal to Q.

3.2 Choice of reference figure

The specific choice of a suitable reference figure is of course closely related to the nature of
the underlying expert scenario. If, for example, the expert scenario makes a statement about
changes in mortality for a certain age range, a natural choice would be the corresponding
one-year probability of death g, ., possibly averaged over a given age range. If the scenario
— like our scenario discussed in the previous section — refers to the future development of
(remaining) human life expectancy, a suitable reference figure would be the expected
remaining lifetime of an individual aged x at time 7, that s,

Ryr = E(Tuel ) = ) P(Tep 2 tIF) + 05.
t=1
It corresponds to the remaining life expectancy of an individual aged x in year t taking into
account the current (as of time ) best estimate survival rates® including the current best
estimate mortality trend® assuming that people die — on average — in the middle of the year.

8 In our numerical applications, we derive best estimate survival rates at future points in time by following the
deterministic central path of mortality given by the prevailing mortality trend. This pragmatic approach is
common in actuarial practice, see e.g., Cairns and El Boukfaoui (2021) or Freimann (2021), to avoid
computationally burdensome nested simulations.

® In practice, this requires the estimation of the current mortality trend based on the most recently observed

mortality pattern, which involves the risk of misspecifying the trend since it can be blurred by “normal”
... to be continued on next page.
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The remaining cohort life expectancy represents a suitable reference figure for our
application for several reasons. First of all, it is an intuitive quantity that is widely known
and easily understood by professionals from other disciplines without the need for in-depth
actuarial knowledge. It is therefore well suited for interdisciplinary communication. In
contrast to the period life expectancy, which is solely based on mortality rates in a particular
calendar year without taking into account future mortality improvements, cohort life
expectancy represents the current best estimate for the actual remaining lifetime of an
individual. Furthermore, it provides a natural aggregation of mortality rates for all ages
above the reference age, which allows to focus on the most relevant age range for the
longevity risk of pension funds and insurers.

3.3 Driver-driven calibration procedure

In this section, we provide guidance on how to incorporate expert knowledge in form of a
single expert scenario into the calibration a stochastic mortality model. Of course, in
principle, also multiple scenarios — for instance over different reference time periods — could
be considered simultaneously. We will discuss this and other possible extensions in Section
5 and only consider the case of a single expert scenario in this section. A concise step-by-
step description of the procedure is given in Appendix B.

Given an expert scenario (R, 1,7, Q), the aim of the driver-driven calibration is to find a
reasonable model parametrization that is consistent with the expert scenario in terms of
Equation (1) and produces plausible forecasts. Typically, the solution to this optimization
problem is not unique as mortality models generally have several projection parameters. For
instance, when relying on a (multivariate) random walk with drift for mortality projections
in a parametric mortality model with two period effects, like the standard CBD model, a total
of five parameters is required: two parameters for the drift — primarily determining the
central projection — and three parameters for the two-dimensional covariance matrix —
primarily determining the volatility. Obviously, further specifications are needed in addition
to the given expert scenario to obtain a complete model parametrization.

To this end, all available information should be used and sensibly combined. In addition to
the given expert scenario, this naturally also includes empirical values from historical
mortality patterns. In general, we recommend the following four-stage procedure:

annual fluctuations around the trend, see Bérger et al. (2021). For simplicity, we assume that the mortality
trend is observable for the calculation of remaining life expectancies at any future point in time.
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1. Starting point: data-driven calibration

As long as no reliable expert scenarios are available, values derived from historical data
generally represent the best and most objective basis. Even if a certain expert scenario is
available, it generally only relates to a certain time horizon, age range, and quantile of the
probability distribution. For other time horizons, age ranges, or parts of the probability
distribution, however, empirical values from historical data might still represent the only
source of reliable information. Therefore, an objective data-driven calibration generally
constitutes a reasonable starting point and provides an initial estimate for all model
parameters.

2. Separation of “location parameters” and “volatility parameters”

The projection parameters of a stochastic mortality model can broadly be classified into two
categories: “location parameters” that primarily determine the location of the central
projection and “volatility parameters” that primarily control the degree of (long-term)
uncertainty in the stochastic projection. Depending on the type of expert scenario, it may be
appropriate to modify either “location parameters” or “volatility parameters” and to adopt
the remaining parameters from the data-driven calibration. For example, if the considered
expert scenario makes a statement about the median (Q = 50%), the “location parameters”
need to be adjusted accordingly, while the “volatility parameters” can remain unchanged. If,
as in our example, the scenario is concerned with the evolution of future mortality in the tail
of the distribution, it seems appropriate to only adjust the “volatility parameters”.

To identify the appropriate model parameters for the driver-driven calibration with respect
to a given expert scenario, a careful analysis of the underlying model structure and the impact
of each model parameter is recommended. The goal is to determine which parameter most
closely aligns with the characteristics of the expert scenario at hand.

Most stochastic mortality models are generalized age-period-cohort models, where mortality
Is parametrized by a static age function, one or more age-period effects, and optionally cohort
effects (cf. Villegas et al., 2018). In these models, the volatility of future mortality is
determined by the stochastic processes driving the period and cohort effects, which are often
modelled as ARIMA processes with normally distributed innovations. For such models, the
following high-level procedure is recommended:

e In the typical case, expert judgment concerns the uncertainty in the overall (age-
independent) level of mortality. Here, the relevant parameter clearly is the volatility
parameter of the stochastic process for the projection of the period effect that captures
the movements in the overall mortality level. This is typically either the only period
effect (like in the Lee-Carter model) or the first period effect (as e.g. in the Cairns-
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Blake-Dowd model). When relying on an ARIMA process, the relevant model
parameter for the driver-driven calibration is the variance of the normally distributed
innovations associated with the first period effect. In absence of further expert
information, any correlations between multiple period effects should remain
unaltered from the data-driven calibration.

e When expert knowledge refers to uncertainty in age-specific mortality developments,
the period effects that correspond to the affected age ranges should be targeted.

e Only in (probably rather rare) cases, where expert knowledge concerns the mortality
development of specific cohorts, it would be natural to consider a driver-driven
calibration of the volatility parameters of the cohort process.

o Ifexpert judgment relates to the probability of abrupt deteriorations in mortality (e.g.,
with respect to catastrophe or pandemic risk), a model with a jJump component should
be used, like the model of Chen and Cox (2009). In this situation, the parameter
governing the intensity of mortality jumps should be calibrated accordingly.

Of course, there are also more complex model structures beyond the family of age-period-
cohort models, where the identification of a suitable model parameter for the driver-driven
calibration might not be straightforward. In such cases, a sensitivity analysis of the reference
figure with respect to changes in selected model parameters is recommended to obtain
insights into the role of individual parameters.

3. Specification of a scaling method with a single degree of freedom

Next, a relative scaling factor S is introduced that acts on all model parameters that have
been selected in the previous step. In many cases, it may be sufficient to select a single model
parameter to avoid complexity. If multiple parameters are selected, a further adjustment
might be required to ensure consistency between the scaling of different parameters, in
particular when they are not of the same type. This can certainly be achieved in several ways,
where the optimal choice depends on the specific mortality model at hand.*® Finally, the
optimal scaling factor S is derived numerically so that the resulting model calibration fulfills
Equation (1).

4. Validation

Ultimately, the resulting model calibration should be thoroughly validated, which should of
course also be the standard procedure for a purely data-driven calibration. For a driver-driven

10 For instance, one possible method might be multivariate normalized exponential tilting, see Freimann (2021)
for a related application.

15



Scanning the horizon: integrating expert knowledge into the calibration of stochastic mortality models

calibration, particularly key figures, time periods, and quantiles other than those of the given
expert scenarios should be checked for plausibility. This is important to rule out the
possibility that the resulting model parametrization — even if it matches the given expert
scenario — leads to implausible results elsewhere.

4 Application

In this section, we apply the presented driver-driven calibration approach to a concrete
stochastic mortality model and compare the results to a purely data-driven calibration. We
rely on our senolytics-scenario from Section 2.2 to perform the driver-driven calibration and
use the “out-of-the-box”-scenario from Section 2.3 to test the plausibility of the longer-term
uncertainty predicted by the resulting model. Further, we use historical mortality data from
the Human Mortality Database for the male civilian population of England and Wales as an
example. The details of this data set can be found in Appendix A.l. For the numerical
applications, we perform Monte-Carlo simulations with 50,000 sample paths.

4.1  Considered stochastic mortality model

We consider a mortality model with stochastic trend changes as proposed by Borger and
Schupp (2018). In this model, the long-term mortality trend can experience changes of
random direction and magnitude at random future points in time according to a given trend
change probability. The interested reader is referred to Borger and Schupp (2018) or
Freimann (2021) for detailed explanations of the methodological aspects of the model and
its simulation.

The structure of the model builds upon the well-established Cairns-Blake-Dowd (CBD)
model of Cairns et al. (2006). In the CBD model structure, the logit of the one-year
probabilities of death is modelled as

logit(qy.) = log <1z;c;> = Kgl) + ng) (x — %),
x,t

where x denotes the middle of the considered calibration age range. The first period effect
K§1> models the development of the general (age-independent) mortality level over time,

whereas the second period effect ;ct(z) models the steepness of the mortality curve. For

stochastic mortality projections, these two time-dependent processes need to be projected
into the future.

To this end, Cairns et al. (2006) rely on a two-dimensional random walk with constant drift,
which represents the prevailing (estimated) trend in mortality improvements. In the
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following section, we will use this model as a reference point as this is a popular choice in
practice.

However, as argued by several authors, the assumption of a constant mortality trend over
the whole projection horizon does not seem appropriate, especially over longer time
horizons. In particular, it ignores the risk that the mortality trend might change again at future
points in time, for instance as a result of a medical breakthrough as discussed in Section 2.
Since the risk of a future acceleration of the mortality trend represents the main driver of
long-term longevity risk, it should be adequately modelled.

Therefore, Borger and Schupp (2018) suggest a trend-change model, which we will also
consider in what follows. They model the period effects as trend-stationary stochastic
processes, where the underlying mortality trend can experience random changes in both

directions at random future points in time. Specifically, the period effects are modelled as

random fluctuations around an underlying stochastic process ;%gi), ie.,

D=0 =1,

with €, = (et(l),et(z)) being a a two-dimensional normal vector with mean zero and

covariance matrix X. It represents transitory “normal” annual fluctuations in mortality

around the prevailing long-term trend, e.g., due to a flue wave. The underlying processes

z%ﬁ‘),i = 1, 2 are assumed to be continuous and piecewise linear, where their slopes a®,i =

1,2 are interpreted as the prevailing mortality trend at time t. The two processes are
projected independently from each other by following the prevailing mortality trend, i.e.,

(D =D 4 d® =12
In each projection year t, the mortality trend may experience a permanent change with

probability of occurrence p®,i = 1,2, where St(i) € {—1,1} denotes the direction (i.e., the

sign) and Mt(i) > 0,i = 1, 2 the magnitude of the trend change. Specifically,
d¥ =d® +0PsPmM®,  i=1,
where
0% is Bernoulli-distributed with parameter p(®,

° St(i) is a discrete and uniformly distributed random variable on the set {—1,1},

11 See, among others, Borger and Schupp (2018) and Liu and Li (2017).
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e and Mt(i)is modeled as a lognormal distribution with parameters y,(‘? and 0,5;')2.

Bdérger and Schupp (2018) recommend using the same parameters for upward and downward
changes, which leads to a symmetric distribution. This is a reasonable assumption in many
cases, in particular in a purely data-driven calibration, as it assures that the prevailing
mortality trend at any point in time represents the best estimate of the future trend. However,
in cases where one-sided information is available, it may make sense to relax this assumption
and to use different parameters for upward and downward trend changes, i.e., to model the

conditional distribution Mt(i)|5t(i). Such a situation is, in particular, present in our case, in
which only expert scenarios are considered that make a statemant about one side of the
probability distribution, i.e., an increase in life expectancy, and no scenario that provides
information on adverse developments. We will further discuss this in Section 4.3.1.

4.2  Starting point: data-driven calibration

As a first step, we carry out a purely data-driven calibration for both considered models (i.e.,
for the random walk with drift, as well as for the trend change model) for the male population
of England and Wales. All rather technical details including the resulting model parameters
can be found in Appendix A. For both models, we consider two variants: one that accounts
for parameter uncertainty, i.e., the risk of not being able to reliably estimate the “true” model
parameters from historical data of limited length, and one that does not. We compare the
resulting model parametrizations by looking at quantile charts for the remaining cohort life
expectancy at age 65, which are shown in Figure 1.

We start by comparing the variants that do not incorporate parameter uncertainty (top
figures). It is immediately apparent that both models provide a structurally different form of
uncertainty. The random walk with drift produces rather narrow confidence intervals with
light tails that widen only slowly over time. It has been claimed by several authors including
Baérger and Schupp (2018) and Liu and Li (2017) that this tends to underestimate long-term
longevity risk. The trend change model, on the other side, generates confidence intervals
with much more pronounced tails that widen at considerably faster rates in line with the
growing uncertainty in long-term mortality trends.

When parameter uncertainty is taken into account (bottom figures), the uncertainty for both
models increases. However, the incorporation of parameter uncertainty appears to have a
stronger impact on the random walk with drift than on the trend change model for our
exemplary calibration date. The reason for this is that the uncertainty in the starting trend for

18



Scanning the horizon: integrating expert knowledge into the calibration of stochastic mortality models

the trend change model is rather low in our example calibration (cf. figures and tables in
Appendix A.3), whereas the uncertainty in the estimator for the drift is typically quite
pronounced when using a calibration window of 20 years. The results of a data-driven
calibration clearly depend heavily on the specific calibration date and the assumptions made
in the calibration process, particularly with regard to the consideration of parameter
uncertainty and the length of the calibration window when relying on the random walk with
drift.

Model Senolytics P(%) Killifish P(%)
RWD w. param. uncertainty (data-driven) 0.25% 0.07%
RWD w/o param. uncertainty (data-driven) 0% 0%
Trend w. param. uncertainty (data-driven) 0.31% 0.20%
Trend w/o param. uncertainty (data-driven) 0.13% 0.11%

Table 1  Resulting quantiles for the expert scenarios under a data-driven calibration.

For these reasons, one should not expect a clear picture of the prevailing uncertainty in future
mortality from a purely data-driven calibration — without any further expert judgement.
Therefore, data-driven calibrations should always be thoroughly validated. For this, expert
scenarios can provide valuable points of reference.

The red crosses in Figure 1 show the impact of our expert scenarios from Section 2.
Obviously, for all four considered models, the expert scenarios lie outside the considered
confidence intervals. Table 1 shows the resulting quantiles, i.e., the exceedance probabilities,
for our two expert scenarios resulting from the four considered data-calibrated models. For
the random walk with drift without parameter uncertainty, increases in life expectancy as
considered in our scenarios are “virtually impossible”. When parameter uncertainty is taken
into account, such increases are within the realm of possibility, but are significantly less
likely than the 1% predicted for the senolytics-scenario. This is not surprising as a model
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Random walk without parameter uncertainty Trend change model without parameter uncertainty

Remaining Cahort LE at age 65
Remaining Cahort LE at age 65

Random walk with parameter uncertainty

Remaining Cohort LE at age 65
Remaining Cohorl LE at age 65

Figure 1 Data-driven calibration: resulting remaining cohort life expectancy for age 65.
Left: random walk with drift; Right: trend change model.
Top: without parameter uncertainty; Bottom: with parameter uncertainty.

with constant drift does not structurally fit a scenario in which there is a future fundamental
and permanent change in mortality dynamics. The stochastic trend model, on the other side,
is structurally better suited for this purpose. This is particularly evident in the shape of the
confidence intervals, which are much more consistent with the assumption that uncertainty
increases strongly over time which is also consistent to our two expert scenarios.
Nevertheless, the resulting quantiles in Table 1 also remain significantly below the expert
assessment of 1% for the senolytics-scenario. In view of these results, the uncertainty
implied by the four data-calibrated models appears too low.

In the following section, we therefore apply our proposed driver-driven calibration
procedure to adjust the trend change model (with allowance for parameter uncertainty) so
that it exactly matches the 1% probability of occurrence from our senolytics-scenario. For
the sake of brevity, we will focus on the trend change model in our subsequent discussions
and no longer consider the random walk with drift, since the structure of its projected long-
term uncertainty does not match that of our expert scenarios.
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4.3 Driver-driven calibration

Building on the data-driven calibration from the previous section, we now apply our driver-
driven calibration procedure from Section 3.3 to the trend change model. As expert scenario,
we consider the senolytics-scenario introduced in Section 2.2, i.e., an increase in remaining
life expectancy at age 65 of at least 25% with a probability of occurrence of 1%. A concise
step-by-step description of the driver-driven calibration procedure is given in Appendix B.

4.3.1 Discussion of model parameters

As our scenario is concerned with the future of human life expectancy in a rather extreme
scenario, i.e., in the tail of the distribution, the driver-driven calibration should target the
model’s “volatility parameters”. Since the trend change model has several such parameters,
it first needs to be determined which one should be targeted. In our model, the uncertainty
in future life expectancy is jointly driven by the two period effects, whose future volatility
is controlled by the following parameters (cf. Section 4.1):

e The noise term ¢, reflects annual fluctuations around the prevailing mortality trend
resulting from transitory effects, such as a stronger or weaker seasonal flue wave. It
therefore models short-term volatility rather than long-term volatility.

e The trend change probability p® indicates the probability that the mortality trend

;eg” will undergo a permanent change from one year to the next. Obviously, a higher
frequency of trend changes increases long-term volatility.

e Finally, the parameters y,(v? and a,(v,i) of the lognormally distributed trend change
intensities jointly determine the magnitude and volatility of future mortality trend
changes and are therefore a main driver of long-term uncertainty.

In cases like this, where the model structure contains several “volatility parameters”, it seems
reasonable to choose the model parameter for scaling that is structurally best suited to the
character of the expert scenario at hand. Since our scenario makes a statement about general
(rather than age-specific) population mortality, it seems appropriate to scale a parameter
belonging to the first period effect ;ct(l), that drives the overall age-independent mortality
development, rather than a parameter for the second period effect. Further, as our scenario
makes a statement about long-term uncertainty, a parameter controlling the future dynamics
of mortality trends (rather than transitory fluctuations in mortality) should be chosen. From

the remaining set of eligible parameters (p», #1(\41), o,fj)), we have considered two variants:

e adriver-driven variant with respect to the trend change probability p* and
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Figure 2 Driver-driven calibration of the trend change model: resulting remaining cohort life expectancy

for age 65.

e a driver-driven variant with respect to the trend change intensity u,(v}), where the
parameter is only adjusted for trend changes that point in the direction of an increase
in life expectancy. For trend changes in the other direction, we leave the data-driven
parameter unchanged. As already noted in Section 4.1, this is in line with the
character of our expert scenario, that makes a statement only about one side of the
probability distribution, i.e., about a potential increase in life expectancy.

When validating the resulting models with regard to various key figures, projection horizons,

and quantiles, the one-sided variant based on u

turned out to yield the most plausible

results.?2 We show and discuss these results for this variant in the next section.

121 particular, it turned out that in the first variant the annual trend change probability p® would have to be
scaled up quite drastically to an implausibly high value of more than 10% in order to reach the expert

scenario’s prediction after ten projection years.
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4.3.2 Resulting calibration and validation

The driver-driven calibration yields an optimal value for the parameter /2,(\41) of -4.24644
compared to its data-driven estimate of -4.61589, which increases the intensity of future
mortality trend changes. When applying the model, it should be addressed whether the
driver-driven estimate is used for the entire projection horizon or just for a limited projection
period. Since our senolytics-scenario only makes a statement about the mortality evolution
over the course of the first ten projection years and no statement about mortality dynamics
thereafter, it seems reasonable to return to the data-driven estimate after the tenth projection
year. Consequently, our calibrated model contains two regimes:

e a “stressed” driver-driven regime for the first ten projection years using ng;) =

—4.24644 and

A

e a‘“normal” data-driven regime using yfwl) = —4.61589 thereafter.

The latter is consistent with the principle that a data-driven estimate is always the most
objective and sensible starting point as long as no further information is available.*?

The resulting quantile chart for the remaining cohort life expectancy at age 65 is shown in
Figure 2. As intended, the model’s predictions after ten years correspond exactly to the
prediction of the senolytics-scenario with an exceedance probability of 1%. Compared to
the data-driven results in Figure 1 in Section 4.2, the confidence intervals are now wider
reflecting an increase in short- and thus also in long-term uncertainty.

To check the resulting long-term uncertainty for plausibility, a comparison with our “out-of-
the-box™ expert scenarios from Section 2.3 can provide a valuable point of reference. The
resulting exceedance probability is 0.43% which seems plausible, given that it is
significantly less likely than the 1% from our senolytics-scenario reflecting its extremeness,
but is still above zero, meaning that the scenario is not considered “virtually impossible” by
the model.

For validation purposes, Figure 3 shows the 99%-quantile of the survival curve for age 65
for the driver-driven calibration in comparison to the median and the data-driven calibration.
The survival curve for age 65 is given by

t—1
Ses+tt = 1_[(1 - q65+u,u)'
u=0

13 The driver-calibrated parameter could of course also be used for the entire projection horizon, which would
lead to a model with an even higher long-term uncertainty.
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Figure 3 99%-quantile of the survival curve for age 65 for the driver-driven calibration in comparison to
the median and the data-driven calibration.

where ggs.44,,, denotes the realized mortality rate of a person aged 65 + w in year u and is a
random variable due to the uncertainty in future mortality. The displayed median and 99%-
quantile is derived from a Monte Carlo simulation by generating 10,000 sample paths from
our stochastic mortality model based on our data-driven and driver-driven calibration,
respectively.

As expected, the 99%-quantile of the survival probability under the driver-driven calibration
lies significantly above its purely data-driven counterparty. Nevertheless, the results appear
plausible overall, given that the shape of the survival curve is not structurally distorted, and
the results are not too extreme.

Overall, we conclude that the model provides a reasonable depiction of the uncertainty in
future mortality, particularly in the long run, and constitutes a valuable alternative to purely
data-calibrated models.

Risk Measure a=90% a=99.5%
Value-at-Risk at level a 13% 33%
Tail-Value-at-Risk at level « 31% 46%

Table 2 Relative increase in risk for the insurer when using the driver-driven calibration compared to the
purely data-driven calibration under different risk measures.
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4.4 Risk analysis

Finally, we take a look at how an insurer's assessment of longevity risk differs between our
driver-calibrated and the purely data-calibrated trend change model in a simplified case
study.

We consider an insurer holding a stylized portfolio of life annuity contracts that is closed to
new business. These contracts pay a constant benefit of one currency unit at the beginning
of each year for as long as the beneficiary lives. Regarding the initial structure of the
portfolio, we assume that this portfolio has been built up over the past 50 years by selling
the exact same type of contract to the same number of customers with an initial age of 65 at
the beginning of each year. The age structure of the portfolio at the start of the simulation
thus results naturally from the realized survival rates in the past. For simplicity, we assume
that deaths occur according to realized mortality and disregard idiosyncratic small sample
risk that arises in portfolios of limited size since it is typically much less relevant compared
to mortality trend risk.

Following the standard approach for quantifying longevity risk in annuity portfolios, we look
at the probability distribution of the centred random present value of future liabilities L —

E(L). Itis defined as
L= Z Z 1+ r)_th0+t,t

t>0 x0265

based on the number of survivors S, . in the portfolio of age x, + ¢ at time ¢. This can be
derived from the initial number of individuals in the portfolio at time zero, combined with a
projection according to realized mortality from the stochastic simulation, that is,

t-1
Sx0+t,t = Sxo,O | |(1 - qx0+u,u)'
u=0

where gy, 4+, denotes the realized mortality rate of a person aged x, + u in year u. To keep
the focus on longevity risk, we use a constant annual interest rate of r = 2% for discounting.
We quantify longevity risk by means of the risk measures Value-at-Risk and Tail-Value-at-
Risk at threshold probabilities of 90% and 99.5%. The resulting increase in the insurer’s risk
when using the driver-calibrated model compared to the purely data-driven model is shown
in Table 2.

The increase in VaRgg 50, 0f 33% and in TVaRgg 50, Of 46%, respectively, show that the
driver-calibrated model leads to a significantly higher assessment of longevity risk than the
purely data-driven reference model. The fact that the increase in risk is more pronounced at

25



Scanning the horizon: integrating expert knowledge into the calibration of stochastic mortality models

the 99.5% threshold than at the 90% threshold shows that the differences are primarily due
to a different assessment of tail risks. Since the adequate assessment of tail risks is of
particular relevance for pension funds and insurers, especially in the context of risk-based
solvency regimes like Solvency II, the driver-driven method we propose offers a valuable
addition to established purely data-driven approaches.

5 Conclusion

The future of human life expectancy is currently marked by significant uncertainty in both
directions, in particular due to environmental effects, multi-resistant germs, and lifestyle
factors in one direction and due to recent advancements in anti-ageing research in the other
direction. When modelling and managing longevity risks, it is important that stochastic
mortality models provide an adequate picture of the prevailing uncertainty. Expert insights
from other disciplines can help to get a more meaningful impression of the prevailing
uncertainty than a look in the “data rearview mirror”. Yet, such knowledge is typically not
considered in longevity risk management as stochastic mortality models are typically
calibrated in a purely data-driven way.

To close this gap, we have proposed a novel “driver-driven” approach for the calibration of
stochastic mortality models. The core idea is to calibrate the volatility parameters of a
stochastic mortality model such that its projection matches a given expert scenario with a
given probability of occurrence. The methodology presented is, in principle, applicable to
any mortality model and to expert scenarios with respect to increasing or decreasing
mortality. Our work offers guidelines which calibration steps should be performed in order
to achieve an adequate and plausible model calibration. Using exemplary (but plausible)
scenarios from the field of anti-ageing research, we have demonstrated that such a “driver-
driven” calibration can lead to a plausible and structurally different assessment of longevity
risk than traditional “data-driven” approaches, especially with regard to tail risks.

Such a driver-driven calibration is of course not without limitations and should be viewed as
a complement to, rather than a substitute for a data-driven calibration. In particular, it offers
a valuable addition to traditional purely data-driven approaches in times when there are “low
probability / high impact” scenarios on the horizon, that are considered plausible by experts
in their respective field but are “virtually impossible” in models calibrated to historical data
only.

Finally, we would like to mention several possible extensions of our approach that we leave
for future research. First, it would be interesting to jointly consider multiple expert scenarios
in the calibration. For instance, one could consider different scenarios that relate to different
time periods, different quantiles, different directions (increase and decrease of mortality) and
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combinations thereof. Since a model can generally not exactly match multiple expert
scenarios at the same time, this would require some kind of optimization criteria which
naturally comes at the cost of higher complexity. Second, it would be worthwhile to take a
closer look at expert scenarios that are of structurally different type than the scenarios we
considered. Particularly relevant could be the exploration of scenarios that anticipate the
possibility of sudden “jump-like” shifts in future mortality levels. This is especially relevant
when considering scenarios where conditions remain stable for an extended period, followed
by an event that leads to a sudden drastic shift in mortality. In such cases, it should be
critically examined whether models that include a jump component would be more suitable
than typical stochastic mortality models. In this sense, it would be interesting to apply the
driver-driven calibration approach to a broader range of mortality models.
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Appendix
A. Model calibration

A.l. Data

For our data-driven calibrations, we use data of the civilian male population of England and
Wales for the years 1841 — 2021 over the age range of 60 — 109 years from the Human
Mortality Database (data downloaded on 01 July 2024 from:_http://www.mortality.org). We
calibrate the CBD model structure via a standard maximum likelihood estimation approach
based on the assumption of binomially distributed deaths, see Villegas et al. (2018).

A.2. Data-driven calibration for the random walk with drift

For the calibration of the RWD to this data, we follow Cairns et al. (2006) and calibrate the
drift and covariance matrix to the most recent 20 years of data using a standard maximum
likelihood estimation approach. The two coronavirus years 2020 and 2021 are treated as
outliers and omitted in order to avoid an overestimation of long-term volatility. To ensure
consistency of the central projection between the RWD and the trend change model, the drift
estimate is set equal to the expected starting trend of the trend process, which is specified in
the following section. This yields the following estimates:

L o _ (6.02923 x 10™* 1.97495 x 1075
A = (=0.007386,0.000142), 2 = (1.97495 x 1075 1.12944 x 10—6)'

Following Cairns et al. (2006), we account for parameter uncertainty using the standard
approach in the literature, by sampling the drift vector and the covariance matrix from a joint
Normal-Inverse-Wishart distribution. This is motivated by the fact that the Normal-Inverse-
Wishart distribution arises as the posterior distribution under a Jeffreys non-informative
prior. Specifically, given n = 20 calibration data points, one realisation of the covariance
matrix X is obtained by first sampling its inverse =~ from the Wishart-distribution with n —
1 degrees of freedom and scale matrix n=*%~1, and then inverting it. Conditional on the
sampled covariance matrix X, the drift vector u is drawn from a multivariate normal
distribution with mean /i and covariance matrix n~1%. For details on how to generate
scenarios from this distribution, we refer to Appendix B in Cairns et al. (2006).

A.3. Data-driven calibration for the trend change model

For the calibration of the trend change model to historical data, we follow Borger et al.
(2019) and apply an iterative pseudo maximum likelihood estimation approach. We refer to
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Figure 4 Period effects for English and Welsh males (dotted), optimal realizations for the actual trend

processes given different numbers of trend changes k (colored dashed lines) for KS) (upper

panel) and for Kt(z) (lower panel).

this paper for technical details. Since data on mortality trend changes are sparse, we account
for parameter uncertainty in the starting values as well as in the trend change parameters.
For a given number of trend changes in the time series (k), the calibration algorithm aims
to find the historical mortality trend with the highest likelihood, where the trend is assumed
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to be continuous and piecewise linear with k trend changes over time. Each value of k is
then assigned a relative probability corresponding to the resulting goodness of fit. Parameter
uncertainty in the starting values for the trend processes is accounted for by sampling the
initial values from this discrete probability distribution.

k 7D a P(%)  Trend change years

2 —2.36149 —0.01883  1.59856 1930, 1982

3 —2.30558 —0.00907  0.20882 1931, 1984, 2011

4 —2.30645 —0.00733  95.62285 1929, 1978 1996, 2011

5 —2.29494 —0.00586  1.52582 1893, 1930, 1977, 1998, 2009

6 N/A N/A 0 N/A

7 —2.27184 0.00303 1.04395 1869, 1883, 1901, 1930, 1979, 1996, 2013

Table 3 Optimal historical trend changes and empirical distributions for the starting trend for Kgl).

k ﬁﬁ)o aﬁ)o P(%) Trend change years
4 0.11216 —0.00021 0.14402 1900, 1930, 1975, 2012

5 0.11399 0.00014 99.52092 1900, 1929, 1969, 1988, 2007
6 0.11408 0.00020 0.33506 1844, 1899, 1933, 1966, 1988, 2006

Table 4  Optimal historical trend changes and empirical distributions for the starting trend for K,fz).

Figure 4 shows the historical period effects ;ct(i),i = 1,2 and the optimal realizations of the
underlying trend processes found by the calibration algorithm for different numbers (k) of
historical trend changes. The corresponding parameter estimates and their likelihood are

given in Table 3 for Kgl) and in Table 4 for K§2>, respectively, where only values of k with a
relative likelihood of at least 0.1% are considered.

Furthermore, the algorithm provides the following estimates for the trend change
parameters:

(3@, 4, 6) = (0.02242, -4.61589,0.381)
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(15(2), A, 51542)) = (0.02795,~7.37,0.16348)

with corresponding covariance matrices of standard errors of

1.53153 x 10~% —5.9467 x 10~®  1.80779 x 10~°
SEMW = _59467 x 107® 5.48394 x 10~3  —2.54425 x 1075 |,
1.80779 x 107® —2.54425x 107> 2.68535 x 1073

1.28927 x 107*  —3.82315x 107°> 8.81788 x 10~°
SE® = (—3.82315 x 1075 3.83876 x 1072  —2.4198 X 10-3).

8.81788 x 107> —2.4198 x 1073 2.40788 x 1072
We account for parameter uncertainty in the trend change parameters as suggested by Borger
et al. (2019): At the start of each simulation path, a multivariate normal random vector is
generated with mean equal to the estimated trend change parameters and covariance matrix
SE®. Then, the the first component is transformed to a beta distribution with same mean
and variance to obtain a reasonable range for the trend change probabilities between zero
and one. Analogously, the third component is transformed into a corresponding gamma
distribution to ensure positivity for the volatility parameters.

Note that in contrast to the treatment of parameter uncertainty in the random walk with drift,
which is based on a Bayesian approach, the applied method of Borger et al. (2019) relies on
externally specified distributional properties. We adopt this approach as it represents the
established standard in the literature for addressing parameter uncertainty in trend-change
models.

Finally, the covariance matrix for annual fluctuations around the actual underlying mortality
trend is estimated as

_ (9.09578 X 107* 2.85244 x 10-5)
2.85244 x 1075 220712 x 107¢/'

No)
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B. Step-by-step description of the driver-driven calibration procedure

For a given expert scenario (R,.,1,7,Q) as defined in Section 3.1., the driver-driven
calibration proceeds as follows.

1) Starting point: data-driven calibration

Begin with a data-driven calibration of the model, e.g., as described in Appendix A.

2) ldentification of a suitable volatility parameter for recalibration

Analyse the model structure to determine which parameter or parameters should be adjusted

to reflect the given expert scenario (see Section 3.3 for guidance). In our trend-change model

for example, we argue that the parameter ﬁ,(v}), which drives the intensity of trend changes in

the first period effect towards higher life expectancy, is structurally suitable for the
characteristics of our senolytics-scenario (see Section 4.3.1).

3) Specification of the scaling method and execution of the driver-driven calibration

The objective is to find a scaling factor S (to be applied to the parameter selected in the
previous step) such that the model satisfies Eq. (1), i.e., P(Ryr = (1 +1) - E[R,.]) = Q.
Define P[S] := P(R,, = (1 +I) - E[R,.]) for the model with the scaled parameter. If more

than one parameter has been selected in the previous step, see Section 3.3 for guidance on
how to simultaneously scale these parameters.

The scaling factor S is derived numerically, e.g., via a bi-section routine. For our trend-
change model, the algorithm proceeds as follows:

e Initialise bounds S; and Sy (e.g., 0.1 and 10) such that P[S;] > Q and P[Sy] < Q.

(Note: In the trend-change model, smaller values of S increase P[S], since ﬁ,(‘}) <0.)

e Iterate until convergence:

o Simulate 50,000 scenarios over the first T projection years using S'ﬁfwl)
(applied to downward trend changes only).

o Compute R, , in each scenario and evaluate P[S].
o If P[S] < Q, update Sy = S; otherwise set S; = S.

e The resulting scaling factor is the midpoint of the converged interval [S;,Sy]. For
the senolytics-scenario in our trend-change model, we obtain S = 0.91996.

4) Model validation
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Assess the plausibility of the resulting calibration by reviewing key figures across multiple
time horizons (see Section 4.3.2).
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