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Abstract 

Expert knowledge from many different disciplines has the potential to inform on 

developments that could significantly increase or decrease human life expectancy. However, 

such knowledge is typically not considered in longevity risk management, since stochastic 

mortality models are generally only calibrated to historical mortality patterns, i.e., fully data-

driven.  

Following an interdisciplinary approach, we develop a methodology how expert knowledge 

on the (uncertainty of the) future of human life expectancy can be integrated into the 

calibration of stochastic mortality models. We argue that this approach is particularly 

relevant if there are “low probability / high impact” scenarios on the horizon, that are 

considered plausible by experts in their respective field but are “virtually impossible” in 

models calibrated to historical data. Based on current research on treatments that might be 

effective in slowing down ageing, we motivate and propose an exemplary plausible scenario 

for the future development of human life expectancy. We assign a potential impact on life 

expectancy as well as a plausible probability of occurrence to the scenario and present a 

method for calibrating stochastic mortality models so that the resulting projections are in 

line with these parameters. In a case study, we analyse and compare the longevity risk in an 

exemplary annuity portfolio and show that this so-called “driver-driven” calibration can lead 

to a structurally different assessment of longevity risk than the traditional “data-driven” 

approach, especially with regard to tail risks. 
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1 Introduction 

Although human life expectancy has shown relatively steady increases, particularly in the 

20th century (cf. Oeppen and Vaupel, 2002), uncertainty about future developments currently 

appears rather high which is, e.g., illustrated by a strongly shifting view on future mortality 

by the British House of Lords Science and Technology Committee which, back in 2005, was 

optimistic regarding trends in population life expectancy stating that “for each hour spent in 

reading this report, life expectancy will have increased by 12 minutes.1 However, by 2019, 

the same committee reported in a bleaker tone that “the rate of improvements [of life 

expectancy] decreased […]. Reasons for this slowdown are under investigation…2 In line 

with this shifting view, in 2015, BBC News posed the question “Life expectancy: Is the party 

over?”.3 They argued that “increasing obesity or antibiotic resistance might slow or even 

halt the trend to improving life expectancy” and extrinsic factors as varied as air pollution, 

micro-plastics in food and climate change have been postulated as significantly decreasing 

life expectancy with, it should be noted, equally varied evidence bases (cf. Patkee and 

Strange, 2023). On the other hand, population level improvements in lifestyle (cf. Khaw et 

al., 2008) or medical breakthroughs (particularly in the field of slowing down the human 

ageing process – see below) hold the potential to significantly decrease mortality and hence 

increase life expectancy.  

Knowledge about potential scenarios that might impact human mortality exists in many 

different disciplines along with the potential for subject specialists to provide educated 

estimates for the probability of both occurrence and potential impact. This well-founded 

knowledge would be particularly useful whenever mortality risk or longevity risk is being 

quantified, e.g., in risk management of life insurers or pension funds, or in the calculation of 

solvency capital in risk-based frameworks like Solvency II in the European Union. However, 

common stochastic mortality models such as the widely used models of Lee and Carter 

(1992) or Cairns et al. (2006) are typically calibrated in a purely “data-driven” way, without 

incorporating available exogenous expert knowledge. This means that model parameters are 

calibrated to historical mortality data so that the model captures observed past mortality 

patterns and dynamics as closely as possible, cf. e.g., Currie (2016), and extrapolates them 

 
1 House of Lords Science and Technology Committee (2005) Ageing: Scientific Aspects. 1st Report of Session 

2005–06. 

2 House of Lords Science and Technology Select Committee (2020) Ageing: Science, Technology and Healthy 

Living. 1st Report of Session 2019–21. 

3 https://www.bbc.com/news/business-35070410 
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stochastically into the future. This is a suitable approach whenever there is no indication that 

the structure of possible (albeit uncertain) future fluctuations of mortality rates might be 

different than a structure one would estimate from looking at historic data. However, at some 

points in time, there might be a situation where experts in their respective field (e.g., medical 

experts considering a potential future drug on the horizon or biogerontologists considering 

a potential breakthrough with respect to slowing down human ageing) might come to the 

conclusion that there is a significant probability for a rather high future increase in life 

expectancy, whilst at the same time such an increase would be considered “virtually 

impossible” by a model that is solely calibrated to historical data. 

To illustrate this point, imagine the year is 1929, and Alexander Fleming has recently 

published a paper suggesting that “penicillin in regard to infections appears to have some 

advantages over chemical antiseptics. It is a more powerful inhibitory agent…and it can be 

applied to an infected surface undiluted as it is non-irritant and non-toxic“ (Fleming, 1929). 

Contemporary expert judgement would probably have concluded (and indeed did conclude) 

that there was a significant probability that penicillin can be purified and produced at 

sufficient scale to have a high impact on human life expectancy. Although nobody in 1929 

could have exactly predicted the full impact or correctly specified the probability and timing 

of the events, any “educated guess” by experts in the field would have provided a better 

understanding of the uncertainty of (then) future development of human life expectancy than 

a purely data-driven approach. 

In view of current developments in the field of anti-ageing research, we argue that we are 

currently at a similar point in time where uncertainties regarding the future development of 

human life expectancy might be larger than a purely data-driven approach suggests. Hence 

actuaries and risk managers should consider all available information when calibrating 

stochastic mortality models, with a particular emphasis on the inclusion of expert knowledge 

from other areas. 

The idea of thinking in terms of (hypothetical) scenarios is well established in risk 

management, particularly for emerging risks, and has gained increasing prominence in recent 

years, accelerated by developments in areas such as climate research or medical innovation, 

and by the Covid-19 pandemic. In the context of mortality risk management, several authors 

have examined the implications of adverse mortality shocks – such as those induced by 

Covid-19 – on the profitability (cf. Carannante et al., 2022a, 2022b) and risk profile of life 

insurers (cf. Hanika, 2023, and references therein). These studies typically consider 

empirically motivated, adverse mortality developments rather than purely hypothetical 

future scenarios. However, risk management also requires consideration of unprecedented 

emerging risks. For example, Bongiorno et al. (2022) demonstrate how climate scenario 

analysis can serve financial institutions in assessing risks in a forward-looking perspective. 
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In longevity risk management, Gielen and de Waegenaere (2014) analyse the impact of a 

potential cure for cancer in insurers’ solvency situation by examining hypothetical scenarios 

of one-year reductions in death rates of varying intensity. Club Vita (2024) discuss a scenario 

– similar to the one we introduce in Section 2 – in which a potential breakthrough in anti-

ageing medicine leads to a substantial increase in human life expectancy. However, all these 

studies have in common that they focus on deterministic impact assessments rather than 

stochastic analyses and do not assign a specific probability of occurrence to the scenarios, 

which would be needed for calibrating a stochastic model. 

To capture scenarios of extreme or unprecedented mortality developments, several authors 

have developed extensions of stochastic mortality models. Cox et al. (2006) have extended 

the Lee-Carter model by permanent jump effects and Chen and Cox (2009) by transitory 

jump effects to model catastrophe or pandemic risks. These extensions have also been 

applied in a two-population framework (cf. Zhou et al., 2013) and enhanced with a more 

flexible age-specific structure of mortality shocks (cf. Liu and Li, 2015; Schnürch et al., 

2023). Robben and Antonio (2024) present a multi-population mortality model equipped 

with a jump component with variable age-specific impacts, allowing for transitory mortality 

jumps during high-volatility regimes that may persist for several years before mortality 

reverts to its long-term trend.  

While transitory mortality shocks represent the predominant driver of short-term mortality 

risk, potential permanent changes in the long-term morality trend constitute the main driver 

of longevity risk. Therefore, several authors have developed mortality models that explicitly 

capture the risk of random future changes in the long-term mortality trend. One possible 

approach is to allow for switches between regimes characterized by different volatilities (cf. 

Milidonis et al., 2011) and trends (cf. Hainaut, 2012). In these regime-switching models, the 

number of regimes and possible trend changes is typically limited. To allow for more 

variable and potentially unprecedented trend changes, other researchers have equipped the 

trend component in mortality models directly with stochastic elements. In particular, Liu and 

Li (2017) extend the widely used random walk with drift by adding a stochastic drift term, 

while Sweeting (2011) and Börger and Schupp (2018) propose trend-stationary models with 

time-varying trends. In these models, the mortality trend can experience random permanent 

changes in both directions over time. A common limitation of these works is that the model 

calibration is based on historical data only and does not consider potentially available expert 

knowledge. As a result, the calibrated volatility in these models remains in line with 

historical experience, which – as argued above – may no longer be appropriate in times when 

experts anticipate potential developments that could, with a certain probability, lead to 

unprecedented shifts in mortality levels or trends. The driver-driven calibration approach we 
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propose fills this gap in the literature by additionally considering available exogeneous 

expert opinion in the calibration.   

The use of expert opinions for the calibration of stochastic risk models is not as uncommon 

as it might seem at first glance. Often, this is done implicitly. For instance, if – for whatever 

purpose – an estimate for future interest rates is required, this is typically derived from 

forward rates based on market prices of bonds or swaps. So, estimates for future interest 

rates are typically not derived by an extrapolation of historical interest rate data but rather 

by prices that depend on expectations of market participants which constitutes some kind of 

expert opinion. The same holds true whenever an implied volatility of stocks is used as a 

risk measure. This is not derived from looking at historical fluctuations but also rather from 

prices that reflect market participants’ opinion on future uncertainty. Since a deep and liquid 

financial market for longevity-linked securities that would allow to derive implied 

volatilities from market prices does not (yet) exist, we need a different way to consider expert 

opinions in risk analyses. One possible methodology to achieve this will be presented in this 

paper.  

Although uncertainty is currently high “in both directions”, i.e., with respect to a potential 

decrease as well as increase of life expectancy, we focus on a potential increase in life 

expectancy since the topic of this paper is on modelling, measuring, and managing longevity 

(as opposed to mortality) risk. But our proposed methodology can of course also be applied 

to incorporate expert scenarios that lead to an increase in mortality, i.e., a decrease of life 

expectancy. 

Also, since the focus of our paper is on risk (i.e., the potential deviation from a best estimate), 

we concentrate on modelling “low probability / high impact” scenarios. We would like to 

mention, however, that expert opinions could of course also be relevant for creating a best 

estimate scenario. This would particularly be relevant if a certain scenario comes with a 

rather high probability or if, for whatever reason, past data is not considered representative 

of the future best estimate trend. For instance, the Institute and Faculty of Actuaries (2023) 

suggests using a driver-driven calibration approach based on forward-looking expert 

judgement for the task of deriving best estimate mortality assumptions in a post-pandemic 

era. 

The remainder of this paper is structured as follows: In Section 2, we derive an exemplary 

plausible scenario for the future development of human life expectancy by an 

interdisciplinary approach. We would like to stress that (although we make sure that our 

considered scenario is plausible and considered realistic by experts in the respective field), 

our intention is not to claim that this is “the correct” or “the most relevant” scenario that 

stochastic mortality models should be calibrated to. Rather, the aim of our paper is to propose 
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a methodology that can be applied for calibration once a modeller has decided that some 

concrete scenario should be used. Such a calibration methodology is introduced in Section 

3. We explain how a purely data-driven calibration of a stochastic mortality model can be 

modified by adjusting the model parameters such that the resulting model is consistent with 

a given expert scenario. In Section 4, we apply this methodology using the scenario from 

Section 2 and analyse the impact of the modified calibration on an insurer’s risk assessment 

in a case study. Finally, Section 5 concludes with a brief discussion of potential future 

extensions of our methodology.  

2 A plausible “low probability / high impact”-scenario 

In this section, we present a concrete expert scenario about how human life expectancy could 

develop in the future. A scenario consists of three components: What might happen? When 

could it happen? How likely is it to occur?  

Note that among these components, specifying the probability of occurrence is the most 

challenging aspect of our driver-driven calibration approach in practice. Addressing this 

requires extensive discussions between modelers and subject-matter experts. Such 

discussions should also ensure a mutual understanding of the respective perspectives and 

underlying reasoning of both sides, as this alignment is essential for deriving meaningful 

and well-founded estimates for the probability of occurrence. We discuss these challenges 

in more detail at the end of Section 2.2. 

2.1 Why consider the field of “anti-ageing medicine”? 

Many potential scenarios could impact human mortality but events with a low impact are 

probably not relevant for our purpose since their effect does not significantly exceed 

“normal” volatility (that is also covered in-data driven approaches). On the other hand, high 

probability events should be considered in the Best Estimate (rather than in a model for 

potential fluctuations around this Best Estimate). Hence, we have chosen to focus on “low 

probability / high impact” events. Those are relevant in any practical applications of life 

insurance and pension funds, where the focus is on the tail of the distribution (i.e., events 

with high impact that are possible but only with rather low probability), e.g., when 

determining risk capital for longevity risk under Solvency II. Therefore, the focus of our 

paper will be the calibration of volatility parameters that control the degree of (long-term) 

uncertainty in the stochastic projection, i.e., making sure that any plausible intensity of 

potential future change of life expectancy is covered by a model with appropriate 

probability. 
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As mentioned in Section 1, we concentrate on longevity risk and hence consider a scenario 

in the direction of an increase of life expectancy. We argue that although the adoption of a 

healthier lifestyle may have a huge impact on an individual’s lifespan, it is very unlikely that 

a large portion of a population changes their lifestyle. Hence this is unlikely to significantly 

change life expectancy in a whole population (or in an insurer’s book of business). We also 

argue that typical medical progress that aims at finding better cures for individual medical 

conditions cannot significantly reduce mortality in the elderly since typical seniors have a 

rather large number of conditions at the same time (cf. Collerton et al., 2009). Curing any 

single disorder is unlikely to significantly reduce overall mortality rates. But without a 

significant reduction of mortality rates of the elderly, life expectancy cannot rise 

significantly (cf., e.g., Olshansky et al., 2024). Therefore, we base our scenarios on research 

into the fundamental biology of ageing because slowing this down will delay all, or at least 

a majority, of age-related diseases and hence has significant potential to reduce even older-

age mortality rates. 

Although ageing is complex, there is now ample evidence from multiple species to support 

the possibility that ageing could be ‘druggable’, resulting in either compressed morbidity or 

extended healthy lifespan (cf., e.g., Partridge et al., 2020; Faragher and Hartley, 2024). 

Considerable progress has been made recently in uncovering major “hallmark” mechanisms 

which significantly improve mammalian health and thus longevity (cf., Lopez-Otin et al., 

2013 and Lopez-Otin et al., 2023). These “hallmarks” include deregulation of nutrient 

sensing, cellular senescence, mitochondrial dysfunction, and loss of proteostasis, and the 

higher-level outputs from multiple biochemical pathways, such as the mammalian target of 

rapamycin (mTOR) axis, each of which in turn is a series of discrete molecular events. 

Rather than being separate mechanisms the hallmarks identified to date appear to be co-

dependent, with increasing evidence that positively or negatively modulating one hallmark 

can influence others in the same direction. 

By way of example of some areas of biogerontology that are moving out of the laboratory 

and in the clinical pipeline, Guarente et al. (2024) review the evidence base and clinical trials 

status for eight drugs or drug classes (metformin, NAD+ precursors, glucagon-like peptide-

1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-

inflammatories) most of which have the potential to modulate hallmark mechanisms. Whilst 

initial data are promising in many instances (cf., e.g., Mannick and Lamming, 2023 and 

Justice et al., 2018) it needs to be kept in mind that the total number of licensed molecules 

(i.e., drugs) available globally is still well below 80004 (a number which includes compounds 

such as aspirin) and the overall rate of failure of clinical trials to phase 3 is of the order of 

 
4 cf. De la Torre and Albericio (2024) as well as go.drugbank.com/stats. 
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90%. However, subsets of clinical trials (particularly those in which drugs are ‘repurposed’ 

for uses other than the one for which they were originally licensed) have much higher success 

rates, sometimes reaching 60%. Although doubts remain in some quarters concerning 

whether a theoretical framework currently exists with sufficient explanatory power for some 

ageing phenomena (cf. Gems et al., 2024) successful outcomes for trials based on hallmarks 

are an established fact. 

Of course, at this stage, nobody can know which interventions will prove most effective, at 

what point in time they will come to the market, and what the effect on human life 

expectancy will be. Hence any expert opinion will naturally be far from a perfect prediction. 

It seems, however, clear that with a probability that is larger than zero, an unprecedented 

change can happen that occurs well within the term of a deferred annuity or pension contract 

taken out by a young person today. Therefore, we argue that, although a model that considers 

a plausible expert opinion in the calibration of its “uncertainty parameters” will not be 

perfect, it will be more meaningful than a model that is calibrated to historic data only – at 

least at points in time, when there are potential medical breakthroughs at the horizon.  

When it comes to estimating the three components of a scenario mentioned above (what, 

when, and how likely), we would like to stress one aspect that might seem counterintuitive 

at first glance: If a concrete scenario is discussed between mortality modellers and medical 

experts, one might develop a feeling what a plausible intensity of changes in life expectancy 

could be (e.g., from early clinical trials or results in model organisms). One might also rather 

easily agree on an estimate for the timing (e.g., from experience with the different stages of 

bringing dugs to market). However, assigning a probability is extraordinary tricky: For 

calibrating a stochastic mortality model, one is typically not interested in the probability of 

the very specific scenario but rather in the probability (x%) of anything (maybe a different 

scenario) happening that leads to a life expectancy increase (relative to the current best 

estimate projection) that is at least as high as in the specified scenario. Before we discuss in 

Section 3, how a model can be calibrated such that x% of all random scenarios generated by 

the model lead to a life expectancy increase that is at least as high as the specified scenario, 

we develop such a scenario in the remainder of Section 2.  

2.2 The scenario: senolytics  

We have chosen to base our scenario on the clinical use of senolytics. These are drugs that 

selectively eliminate senescent cells. Such cells are derived from conditional renewal 

populations in tissues (such as the dermal layer of the skin or the liver) where cells are 

regularly lost and must be replaced throughout life. As an anti-cancer mechanism, division 

of any one cell is limited eventually producing populations of cells that cannot replicate but 
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do not die. These cells become agents of sterile inflammation and accumulate in the body 

over time. In rodents, the elimination of such senescent cells considerably extends healthy 

lifespan, and in rare human diseases (especially Werner’s syndrome) their premature 

accumulation causes accelerated ageing. Hence, their elimination in humans (more than 30 

human trials are currently in progress) clearly has the potential to prevent clusters of 

diseases, slow down or even reverse ageing, and increase life expectancy.5 The questions are 

to what extent mortality and hence life expectancy might be affected, within what timeframe 

this might happen, and how likely it is to occur. Recall again that we are interested in “tail 

events”, i.e., “low probability / high impact” scenarios.  

As a starting point, we consider the life expectancy extension caused by senescent cell 

removal in transgenic mice (cf. Baker et al., 2016). This is a maximum of 37% depending 

on genetic background and sex. Direct extrapolation from rodent data into humans is a gross 

oversimplification for a variety of reasons, some of which form the basis of our later “out-

of-the-box”-scenario in Section 2.3, and one key difference is cause of death. Cancer 

prevention mechanisms are far less efficient in rodents than humans and tumours are thus 

the primary cause of death in most laboratory rodent strains (cf. Snyder et al., 2016). 

However although cancer is also a leading cause of death in humans, it kills a lower 

percentage of the population (estimates vary by country but a figure of 16% globally is often 

quoted with higher percentages of 25-30% for first world countries) and thus if, as seems 

probable, much of the lifespan extension effect of senolytics seen in rodents is via tumour 

suppression (perhaps paradoxically whilst senescence is a cell intrinsic tumour suppression 

mechanism senescent cells have a pro-carcinogenic effect on their neighbours if they are not 

removed) then pro-longevity effects could be smaller in humans. One might argue that a 

conservative estimate for the impact on humans would be only a third of the effect size seen 

in mice. 

Conversely, it could be argued that the effect on humans might actually be larger than that 

for several reasons: First, other causes of death in humans (such as cardiovascular disease) 

have a clear senescent cell component and thus a senolytic could achieve large-scale 

improvements in healthy human lifespan by impacting these pathologies. Second, the 

potential for positive modulation of other hallmarks through senolytics exists and should be 

considered alongside. Finally, the extent to which simultaneous modulation of multiple 

Hallmarks (e.g., senolytics combined with modulation of nutrient sensing pathways using 

compounds such as Rapamycin or Everolimus) would allow “stacking” of interventions to 

achieve larger effects has not yet been tested and is thus unknown. This last aspect in 

 
5 Cf., e.g., Di Micco et al. (2021) or Baker et al. (2011).  



 Scanning the horizon: integrating expert knowledge into the calibration of stochastic mortality models 

 

 

 9  
 

particular is a critical knowledge gap within the field considered either from a biological or 

a risk forecasting perspective. 

Accordingly, we have selected an impact on human life expectancy of 25% (approximately 

midway between the 37% observed in mice and the more conservative lower estimate of one 

third of this value). 

When it comes to timing, we use a value of 10 years in our scenario. This consists of two 

years for phase II, another two years for phase III, one extra year for an indication license. 

Hence, off license prescription might be possible in five years. It might then take another 

five years until it reaches sufficient portions of the population to have a permanent and 

significant effect on life expectancy. This is consistent to the 16-year timescale often used 

as a rule of thumb for a drug to pass from phase zero to licensing. 

Finally, we use an exemplary value of 1% for the probability of occurrence and end up with 

our illustrative expert scenario: 25% increase in life expectancy over a time horizon of 10 

years with 1% probability.  

We will use this expert scenario to perform our driver-driven model calibration in Section 4. 

Since the focus of our application is on pensioner mortality, we will consider a 25% increase 

in remaining life expectancy at age 65 (rather than at birth). Of course, a 25% increase in 

life expectancy at birth would result in an even larger absolute gain in years compared to a 

25% increase in remaining life expectancy at age 65. Note that the effect of senolytics has 

also been tested in mice that have already lived through a significant portion of their lifespan, 

see e.g. Yousefzadeh et al. (2018).6  

The potential of senolytics was also recently taken up by Club Vita (2024) who outline a 

possible scenario for the future development of human mortality. In their scenario, they 

assume that the discovery and distribution of a senolytics drug will lead to a 10-year increase 

in remaining life expectancy at the age of 65 over the next 20 years. Unlike us, however, 

they refrain from specifying a probability of occurrence for their scenario so that their 

scenario cannot readily be used for calibrating the volatility parameters of a stochastic 

mortality model. Also, their analysis was not specifically focussed on low probability/high 

impact scenarios. Hence although their scenario is somewhat less extreme than ours, this is 

not necessarily inconsistent if a higher probability than 1% were to be assigned to their 

scenario. 

 
6 They administered the senolytic fisetin to mice which were already 20 months of age (approximately 80% 

lifespan completed).  
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2.3 Out of the box: the killifish scenario  

Due to the long-term nature of pension risks it might make sense to also consider scenarios 

over longer time horizons than 10 years. Also, since annuity and pension providers need to 

be able to meet their obligations even in very extreme scenarios, it is prudent to consider 

rather extreme scenarios, i.e., very low probability events. 

We therefore look at an “out-of-the-box”-scenario which is highly improbable but not 

biologically impossible. The line of argument is based on the evolutionary biology of ageing, 

the life history of humans as a species, and analogies drawn between this and the modulation 

of ageing in the only other species currently known to have followed a similar evolutionary 

trajectory to mankind.   

In evolutionary terms, ageing evolved early in the history of life on Earth in populations of 

organisms exposed to high extrinsic mortality (a feature of the biosphere to this day). This 

results in a combination of selection for genetic variations that enhance reproductive success 

early in life regardless of their deleterious effects later on in time (antagonistic pleiotropy or 

AP) coupled with the inability of natural selection to remove fitness neutral deleterious 

mutations (mutation accumulation or MA). However, unlike most species, humans have 

undergone at least one and possibly more extended evolutionary bottlenecks (essentially 

everyone alive on Earth today descends from a population of less than 1,000 individuals, cf. 

Zhivotovsky et al. (2003) and Hu et al. (2023)).  

Although fitness neutral mutation frequencies are insensitive to natural selection (by 

definition) they are acutely sensitive to genetic drift. Drift rates in turn are an inverse function 

of the effective population size (Ne) and thus the exceptionally high drift rates resulting from 

the human genetic bottleneck may have dramatically altered the balance between AP and 

MA. This may be one factor underling the difficulties the biomedical field currently has in 

producing rodent models that are representative of human ageing pathologies.  

However, Nothobranchius furzeri (the African turquoise killifish) is an extensively 

genetically bottlenecked vertebrate with an average lifespan of six months, and a physiology 

that recapitulates multiple signs of mammalian ageing at the molecular, cellular, organ and 

behavioural levels. It is also a species which shows a remarkable increase in life expectancy 

of 60% in response to resveratrol, the highest known impact of a single intervention in any 

species’ life expectancy so far. Hence, to produce our “out-of-the-box” scenario we consider 

the possibility that a similarly high increase in life expectancy could occur in humans through 

a simple, but as yet undiscovered, intervention. Whilst an effect on human lifespan as large 

as resveratrol in killifish is highly unlikely, the idea that a simple (yet unknown) intervention 

might have a huge impact on human life expectancy is not implausible. For example, the 

macrolide antibiotic Rapamycin was first purified in the early 1970s and licensed for clinical 
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use in the late 1990s; however, it was not until 2009 that it was discovered through the NIA 

Intervention Testing Program that it could increase rodent lifespan by up to 14% when given 

to old mice (cf. Harrison et al. 2009).7 

Of course, a 60% increase in life expectancy at birth would mean a significantly higher 

increase in remaining life expectancy at age 65, which is our reference figure in our 

application in Section 4. Hence, we use an illustrative scenario of an increase in remaining 

life expectancy of 100%. We also use a rather long-time horizon arguing that if something 

exists that works on humans like Resveratrol works on the Killifish, then it has not yet been 

discovered – so it is not an existing drug and would need a long term to get to the market. 

We therefore use a time horizon of 30 years. Since the estimation of a probability of 

occurrence is quite difficult, as already mentioned in Section 2.1, we refrain from specifying 

the probability of occurrence at this point. Instead, we will use this “out-of-the-box” scenario 

in Section 4 to test the plausibility of the model calibration resulting from the senolytics-

scenario with regard to its projected long-term uncertainty. Arguably, a plausible model 

should assign a probability of occurrence to the killifish scenario that is well below the 1% 

of our senolytics-scenario to reflect its extremity, but also above 0% so that it is not 

considered “virtually impossible”. 

3 Calibration methodology 

In this section, we propose a methodology on how expert knowledge on the future of human 

life expectancy expressed in the form of an expert scenario can be considered in the 

calibration of stochastic mortality models. 

3.1 Specification of an expert scenario 

Having presented an expert scenario for the future development of mortality in the previous 

section, we now discuss how such an expert scenario can be translated into a mathematical 

framework. An expert scenario consists of the following four components describing what 

might happen to a reference figure, when might it happen, and how likely it is to occur: 

• The reference figure (𝑅𝑥,𝑡) is the underlying quantity the expert scenario refers to. It 

is an 𝐹𝑡-measurable random variable, i.e., a stochastic quantity as of points in time 

before 𝑡 but known at time 𝑡. Such a figure might for instance be the mortality rate 

 
7 Recent findings by Gkioni et al. (2025) show that a combination treatment with rapamycin and trametinib 

increased median lifespan by 35% in females and 27% in males, also increasing maximum lifespan by 26% 

(males) and 32% (females). 
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at a certain age 𝑥 in calender year 𝑡, or the remaining life expectancy in calendar year 

𝑡 for a certain reference age 𝑥 or at birth. 

• The impact (𝐼) describes the effect the scenario might have on the reference figure 

in the form of a relative change compared to the current best estimate. 

• The time period (𝜏) indicates the time period over which the expert scenario might 

unfold.  

• The quantile (Q) describes the probability that this scenario – or anything else that 

might have an impact of at least 𝐼 on 𝑅𝑥,𝑡 over the time period 𝜏 – will occur.  

A stochastic mortality model is considered consistent with an expert scenario, if  

ℙ(𝑅𝑥,𝜏 ≥ (1 + 𝐼) ⋅ 𝔼[𝑅𝑥,𝜏]) = 𝑄,          (1) 

i.e., if the probability that the reference figure 𝑅𝑥,𝜏 will exceed its current (time zero) best 

estimate by at least the factor of (1 + 𝐼) is equal to 𝑄.  

3.2 Choice of reference figure 

The specific choice of a suitable reference figure is of course closely related to the nature of 

the underlying expert scenario. If, for example, the expert scenario makes a statement about 

changes in mortality for a certain age range, a natural choice would be the corresponding 

one-year probability of death 𝑞𝑥,𝜏, possibly averaged over a given age range. If the scenario 

– like our scenario discussed in the previous section – refers to the future development of 

(remaining) human life expectancy, a suitable reference figure would be the expected 

remaining lifetime of an individual aged 𝑥 at time 𝜏, that is, 

𝑅𝑥,𝜏 = 𝔼(𝑇𝑥,𝜏|𝐹𝜏) = ∑ ℙ( 𝑇𝑥,𝜏 ≥ 𝑡|𝐹𝜏)

 

𝑡≥1

+  0.5. 

It corresponds to the remaining life expectancy of an individual aged 𝑥 in year 𝜏 taking into 

account the current (as of time 𝜏) best estimate survival rates8 including the current best 

estimate mortality trend9 assuming that people die – on average – in the middle of the year.  

 
8 In our numerical applications, we derive best estimate survival rates at future points in time by following the 

deterministic central path of mortality given by the prevailing mortality trend. This pragmatic approach is 

common in actuarial practice, see e.g., Cairns and El Boukfaoui (2021) or Freimann (2021), to avoid 

computationally burdensome nested simulations. 

9 In practice, this requires the estimation of the current mortality trend based on the most recently observed 

mortality pattern, which involves the risk of misspecifying the trend since it can be blurred by “normal” 
… to be continued on next page. 
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The remaining cohort life expectancy represents a suitable reference figure for our 

application for several reasons. First of all, it is an intuitive quantity that is widely known 

and easily understood by professionals from other disciplines without the need for in-depth 

actuarial knowledge. It is therefore well suited for interdisciplinary communication. In 

contrast to the period life expectancy, which is solely based on mortality rates in a particular 

calendar year without taking into account future mortality improvements, cohort life 

expectancy represents the current best estimate for the actual remaining lifetime of an 

individual. Furthermore, it provides a natural aggregation of mortality rates for all ages 

above the reference age, which allows to focus on the most relevant age range for the 

longevity risk of pension funds and insurers.  

3.3 Driver-driven calibration procedure 

In this section, we provide guidance on how to incorporate expert knowledge in form of a 

single expert scenario into the calibration a stochastic mortality model. Of course, in 

principle, also multiple scenarios – for instance over different reference time periods – could 

be considered simultaneously. We will discuss this and other possible extensions in Section 

5 and only consider the case of a single expert scenario in this section. A concise step-by-

step description of the procedure is given in Appendix B. 

Given an expert scenario (𝑅𝑥,𝜏, 𝐼, 𝜏, 𝑄), the aim of the driver-driven calibration is to find a 

reasonable model parametrization that is consistent with the expert scenario in terms of 

Equation (1) and produces plausible forecasts. Typically, the solution to this optimization 

problem is not unique as mortality models generally have several projection parameters. For 

instance, when relying on a (multivariate) random walk with drift for mortality projections 

in a parametric mortality model with two period effects, like the standard CBD model, a total 

of five parameters is required: two parameters for the drift – primarily determining the 

central projection – and three parameters for the two-dimensional covariance matrix – 

primarily determining the volatility. Obviously, further specifications are needed in addition 

to the given expert scenario to obtain a complete model parametrization. 

To this end, all available information should be used and sensibly combined. In addition to 

the given expert scenario, this naturally also includes empirical values from historical 

mortality patterns. In general, we recommend the following four-stage procedure: 

 
annual fluctuations around the trend, see Börger et al. (2021). For simplicity, we assume that the mortality 

trend is observable for the calculation of remaining life expectancies at any future point in time. 
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1. Starting point: data-driven calibration 

As long as no reliable expert scenarios are available, values derived from historical data 

generally represent the best and most objective basis. Even if a certain expert scenario is 

available, it generally only relates to a certain time horizon, age range, and quantile of the 

probability distribution. For other time horizons, age ranges, or parts of the probability 

distribution, however, empirical values from historical data might still represent the only 

source of reliable information. Therefore, an objective data-driven calibration generally 

constitutes a reasonable starting point and provides an initial estimate for all model 

parameters. 

2. Separation of “location parameters” and “volatility parameters” 

The projection parameters of a stochastic mortality model can broadly be classified into two 

categories: “location parameters” that primarily determine the location of the central 

projection and “volatility parameters” that primarily control the degree of (long-term) 

uncertainty in the stochastic projection. Depending on the type of expert scenario, it may be 

appropriate to modify either “location parameters” or “volatility parameters” and to adopt 

the remaining parameters from the data-driven calibration. For example, if the considered 

expert scenario makes a statement about the median (𝑄 = 50%), the “location parameters” 

need to be adjusted accordingly, while the “volatility parameters” can remain unchanged. If, 

as in our example, the scenario is concerned with the evolution of future mortality in the tail 

of the distribution, it seems appropriate to only adjust the “volatility parameters”.  

To identify the appropriate model parameters for the driver-driven calibration with respect 

to a given expert scenario, a careful analysis of the underlying model structure and the impact 

of each model parameter is recommended. The goal is to determine which parameter most 

closely aligns with the characteristics of the expert scenario at hand. 

Most stochastic mortality models are generalized age-period-cohort models, where mortality 

is parametrized by a static age function, one or more age-period effects, and optionally cohort 

effects (cf. Villegas et al., 2018). In these models, the volatility of future mortality is 

determined by the stochastic processes driving the period and cohort effects, which are often 

modelled as ARIMA processes with normally distributed innovations. For such models, the 

following high-level procedure is recommended:  

• In the typical case, expert judgment concerns the uncertainty in the overall (age-

independent) level of mortality. Here, the relevant parameter clearly is the volatility 

parameter of the stochastic process for the projection of the period effect that captures 

the movements in the overall mortality level. This is typically either the only period 

effect (like in the Lee-Carter model) or the first period effect (as e.g. in the Cairns-
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Blake-Dowd model). When relying on an ARIMA process, the relevant model 

parameter for the driver-driven calibration is the variance of the normally distributed 

innovations associated with the first period effect. In absence of further expert 

information, any correlations between multiple period effects should remain 

unaltered from the data-driven calibration. 

• When expert knowledge refers to uncertainty in age-specific mortality developments, 

the period effects that correspond to the affected age ranges should be targeted. 

• Only in (probably rather rare) cases, where expert knowledge concerns the mortality 

development of specific cohorts, it would be natural to consider a driver-driven 

calibration of the volatility parameters of the cohort process. 

• If expert judgment relates to the probability of abrupt deteriorations in mortality (e.g., 

with respect to catastrophe or pandemic risk), a model with a jump component should 

be used, like the model of Chen and Cox (2009). In this situation, the parameter 

governing the intensity of mortality jumps should be calibrated accordingly.  

Of course, there are also more complex model structures beyond the family of age-period-

cohort models, where the identification of a suitable model parameter for the driver-driven 

calibration might not be straightforward. In such cases, a sensitivity analysis of the reference 

figure with respect to changes in selected model parameters is recommended to obtain 

insights into the role of individual parameters. 

3. Specification of a scaling method with a single degree of freedom  

Next, a relative scaling factor 𝑆 is introduced that acts on all model parameters that have 

been selected in the previous step. In many cases, it may be sufficient to select a single model 

parameter to avoid complexity. If multiple parameters are selected, a further adjustment 

might be required to ensure consistency between the scaling of different parameters, in 

particular when they are not of the same type. This can certainly be achieved in several ways, 

where the optimal choice depends on the specific mortality model at hand.10 Finally, the 

optimal scaling factor 𝑆 is derived numerically so that the resulting model calibration fulfills 

Equation (1). 

4. Validation 

Ultimately, the resulting model calibration should be thoroughly validated, which should of 

course also be the standard procedure for a purely data-driven calibration. For a driver-driven 

 
10 For instance, one possible method might be multivariate normalized exponential tilting, see Freimann (2021) 

for a related application. 
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calibration, particularly key figures, time periods, and quantiles other than those of the given 

expert scenarios should be checked for plausibility. This is important to rule out the 

possibility that the resulting model parametrization – even if it matches the given expert 

scenario – leads to implausible results elsewhere. 

4 Application 

In this section, we apply the presented driver-driven calibration approach to a concrete 

stochastic mortality model and compare the results to a purely data-driven calibration. We 

rely on our senolytics-scenario from Section 2.2 to perform the driver-driven calibration and 

use the “out-of-the-box”-scenario from Section 2.3 to test the plausibility of the longer-term 

uncertainty predicted by the resulting model. Further, we use historical mortality data from 

the Human Mortality Database for the male civilian population of England and Wales as an 

example. The details of this data set can be found in Appendix A.1. For the numerical 

applications, we perform Monte-Carlo simulations with 50,000 sample paths. 

4.1 Considered stochastic mortality model 

We consider a mortality model with stochastic trend changes as proposed by Börger and 

Schupp (2018). In this model, the long-term mortality trend can experience changes of 

random direction and magnitude at random future points in time according to a given trend 

change probability. The interested reader is referred to Börger and Schupp (2018) or 

Freimann (2021) for detailed explanations of the methodological aspects of the model and 

its simulation. 

The structure of the model builds upon the well-established Cairns-Blake-Dowd (CBD) 

model of Cairns et al. (2006). In the CBD model structure, the logit of the one-year 

probabilities of death is modelled as  

𝑙𝑜𝑔𝑖𝑡(𝑞𝑥,𝑡) = 𝑙𝑜𝑔 (
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝜅𝑡

(1)
+ 𝜅𝑡

(2)(𝑥 − 𝑥̅), 

where 𝑥̅ denotes the middle of the considered calibration age range. The first period effect 

𝜅𝑡
(1)

 models the development of the general (age-independent) mortality level over time, 

whereas the second period effect 𝜅𝑡
(2)

 models the steepness of the mortality curve. For 

stochastic mortality projections, these two time-dependent processes need to be projected 

into the future. 

To this end, Cairns et al. (2006) rely on a two-dimensional random walk with constant drift, 

which represents the prevailing (estimated) trend in mortality improvements. In the 
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following section, we will use this model as a reference point as this is a popular choice in 

practice.  

However, as argued by several authors11, the assumption of a constant mortality trend over 

the whole projection horizon does not seem appropriate, especially over longer time 

horizons. In particular, it ignores the risk that the mortality trend might change again at future 

points in time, for instance as a result of a medical breakthrough as discussed in Section 2. 

Since the risk of a future acceleration of the mortality trend represents the main driver of 

long-term longevity risk, it should be adequately modelled. 

Therefore, Börger and Schupp (2018) suggest a trend-change model, which we will also 

consider in what follows. They model the period effects as trend-stationary stochastic 

processes, where the underlying mortality trend can experience random changes in both 

directions at random future points in time. Specifically, the period effects are modelled as 

random fluctuations around an underlying stochastic process 𝜅̂𝑡
(𝑖)

, i.e., 

𝜅𝑡
(𝑖)

= 𝜅̂𝑡
(𝑖)

+ 𝜖𝑡
(𝑖)

, 𝑖 = 1, 2, 

with 𝜖𝑡 = (𝜖𝑡
(1)

, 𝜖𝑡
(2)

) being a a two-dimensional normal vector with mean zero and 

covariance matrix Σ. It represents transitory “normal” annual fluctuations in mortality 

around the prevailing long-term trend, e.g., due to a flue wave. The underlying processes 

𝜅̂𝑡
(𝑖)

, 𝑖 = 1, 2 are assumed to be continuous and piecewise linear, where their slopes 𝑑̂𝑡
(𝑖)

, 𝑖 =

1, 2 are interpreted as the prevailing mortality trend at time 𝑡. The two processes are 

projected independently from each other by following the prevailing mortality trend, i.e., 

𝜅̂𝑡
(𝑖)

= 𝜅̂𝑡−1
(𝑖)

+ 𝑑̂𝑡
(𝑖)

, 𝑖 = 1, 2. 

In each projection year 𝑡, the mortality trend may experience a permanent change with 

probability of occurrence 𝑝(𝑖), 𝑖 = 1, 2, where 𝑆𝑡
(𝑖)

∈ {−1,1} denotes the direction (i.e., the 

sign) and 𝑀𝑡
(𝑖)

> 0, 𝑖 = 1, 2 the magnitude of the trend change. Specifically,  

𝑑̂𝑡
(𝑖)

= 𝑑̂𝑡−1
(𝑖)

+ 𝑂𝑡
(𝑖)

𝑆𝑡
(𝑖)

𝑀𝑡
(𝑖)

, 𝑖 = 1, 2, 

where  

• 𝑂𝑡
(𝑖)

 is Bernoulli-distributed with parameter 𝑝(𝑖), 

• 𝑆𝑡
(𝑖)

 is a discrete and uniformly distributed random variable on the set {−1,1}, 

 
11 See, among others, Börger and Schupp (2018) and Liu and Li (2017). 
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• and  𝑀𝑡
(𝑖)

is modeled as a lognormal distribution with parameters 𝜇𝑀
(𝑖)

 and 𝜎𝑀
(𝑖)2

. 

Börger and Schupp (2018) recommend using the same parameters for upward and downward 

changes, which leads to a symmetric distribution. This is a reasonable assumption in many 

cases, in particular in a purely data-driven calibration, as it assures that the prevailing 

mortality trend at any point in time represents the best estimate of the future trend. However, 

in cases where one-sided information is available, it may make sense to relax this assumption 

and to use different parameters for upward and downward trend changes, i.e., to model the 

conditional distribution 𝑀𝑡
(𝑖)

|𝑆𝑡
(𝑖)

. Such a situation is, in particular, present in our case, in 

which only expert scenarios are considered that make a statemant about one side of the 

probability distribution, i.e., an increase in life expectancy, and no scenario that provides 

information on adverse developments. We will further discuss this in Section 4.3.1.  

4.2 Starting point: data-driven calibration 

As a first step, we carry out a purely data-driven calibration for both considered models (i.e., 

for the random walk with drift, as well as for the trend change model) for the male population 

of England and Wales. All rather technical details including the resulting model parameters 

can be found in Appendix A. For both models, we consider two variants: one that accounts 

for parameter uncertainty, i.e., the risk of not being able to reliably estimate the “true” model 

parameters from historical data of limited length, and one that does not. We compare the 

resulting model parametrizations by looking at quantile charts for the remaining cohort life 

expectancy at age 65, which are shown in Figure 1.  

We start by comparing the variants that do not incorporate parameter uncertainty (top 

figures). It is immediately apparent that both models provide a structurally different form of 

uncertainty. The random walk with drift produces rather narrow confidence intervals with 

light tails that widen only slowly over time. It has been claimed by several authors including 

Börger and Schupp (2018) and Liu and Li (2017) that this tends to underestimate long-term 

longevity risk. The trend change model, on the other side, generates confidence intervals 

with much more pronounced tails that widen at considerably faster rates in line with the 

growing uncertainty in long-term mortality trends. 

When parameter uncertainty is taken into account (bottom figures), the uncertainty for both 

models increases. However, the incorporation of parameter uncertainty appears to have a 

stronger impact on the random walk with drift than on the trend change model for our 

exemplary calibration date. The reason for this is that the uncertainty in the starting trend for  
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the trend change model is rather low in our example calibration (cf. figures and tables in 

Appendix A.3), whereas the uncertainty in the estimator for the drift is typically quite 

pronounced when using a calibration window of 20 years. The results of a data-driven 

calibration clearly depend heavily on the specific calibration date and the assumptions made 

in the calibration process, particularly with regard to the consideration of parameter 

uncertainty and the length of the calibration window when relying on the random walk with 

drift. 

For these reasons, one should not expect a clear picture of the prevailing uncertainty in future 

mortality from a purely data-driven calibration – without any further expert judgement. 

Therefore, data-driven calibrations should always be thoroughly validated. For this, expert 

scenarios can provide valuable points of reference.  

The red crosses in Figure 1 show the impact of our expert scenarios from Section 2. 

Obviously, for all four considered models, the expert scenarios lie outside the considered 

confidence intervals. Table 1 shows the resulting quantiles, i.e., the exceedance probabilities, 

for our two expert scenarios resulting from the four considered data-calibrated models. For 

the random walk with drift without parameter uncertainty, increases in life expectancy as 

considered in our scenarios are “virtually impossible”. When parameter uncertainty is taken 

into account, such increases are within the realm of possibility, but are significantly less 

likely than the 1% predicted for the senolytics-scenario. This is not surprising as a model 

𝐌𝐨𝐝𝐞𝐥 Senolytics ℙ(%) Killifish ℙ(%) 

RWD w. param. uncertainty (data-driven) 0.25% 0.07% 

RWD w/o param. uncertainty (data-driven) 0% 0% 

Trend w. param. uncertainty (data-driven) 0.31% 0.20% 

Trend w/o param. uncertainty (data-driven) 0.13% 0.11% 

Table 1  Resulting quantiles for the expert scenarios under a data-driven calibration. 
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with constant drift does not structurally fit a scenario in which there is a future fundamental 

and permanent change in mortality dynamics. The stochastic trend model, on the other side, 

is structurally better suited for this purpose. This is particularly evident in the shape of the 

confidence intervals, which are much more consistent with the assumption that uncertainty 

increases strongly over time which is also consistent to our two expert scenarios. 

Nevertheless, the resulting quantiles in Table 1 also remain significantly below the expert 

assessment of 1% for the senolytics-scenario. In view of these results, the uncertainty 

implied by the four data-calibrated models appears too low. 

In the following section, we therefore apply our proposed driver-driven calibration 

procedure to adjust the trend change model (with allowance for parameter uncertainty) so 

that it exactly matches the 1% probability of occurrence from our senolytics-scenario. For 

the sake of brevity, we will focus on the trend change model in our subsequent discussions 

and no longer consider the random walk with drift, since the structure of its projected long-

term uncertainty does not match that of our expert scenarios. 

Figure 1  Data-driven calibration: resulting remaining cohort life expectancy for age 65. 

Left: random walk with drift; Right: trend change model. 

Top: without parameter uncertainty; Bottom: with parameter uncertainty. 
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4.3 Driver-driven calibration 

Building on the data-driven calibration from the previous section, we now apply our driver-

driven calibration procedure from Section 3.3 to the trend change model. As expert scenario, 

we consider the senolytics-scenario introduced in Section 2.2, i.e., an increase in remaining 

life expectancy at age 65 of at least 25% with a probability of occurrence of 1%. A concise 

step-by-step description of the driver-driven calibration procedure is given in Appendix B.  

4.3.1 Discussion of model parameters 

As our scenario is concerned with the future of human life expectancy in a rather extreme 

scenario, i.e., in the tail of the distribution, the driver-driven calibration should target the 

model’s “volatility parameters”. Since the trend change model has several such parameters, 

it first needs to be determined which one should be targeted. In our model, the uncertainty 

in future life expectancy is jointly driven by the two period effects, whose future volatility 

is controlled by the following parameters (cf. Section 4.1): 

• The noise term 𝜖𝑡 reflects annual fluctuations around the prevailing mortality trend 

resulting from transitory effects, such as a stronger or weaker seasonal flue wave. It 

therefore models short-term volatility rather than long-term volatility. 

• The trend change probability 𝑝(𝑖) indicates the probability that the mortality trend 

𝜅̂𝑡
(𝑖)

 will undergo a permanent change from one year to the next. Obviously, a higher 

frequency of trend changes increases long-term volatility. 

• Finally, the parameters 𝜇𝑀
(𝑖)

 and 𝜎𝑀
(𝑖)

 of the lognormally distributed trend change 

intensities jointly determine the magnitude and volatility of future mortality trend 

changes and are therefore a main driver of long-term uncertainty. 

In cases like this, where the model structure contains several “volatility parameters”, it seems 

reasonable to choose the model parameter for scaling that is structurally best suited to the 

character of the expert scenario at hand. Since our scenario makes a statement about general 

(rather than age-specific) population mortality, it seems appropriate to scale a parameter 

belonging to the first period effect 𝜅𝑡
(1)

, that drives the overall age-independent mortality 

development, rather than a parameter for the second period effect. Further, as our scenario 

makes a statement about long-term uncertainty, a parameter controlling the future dynamics 

of mortality trends (rather than transitory fluctuations in mortality) should be chosen. From 

the remaining set of eligible parameters (𝑝(1), 𝜇𝑀
(1)

, 𝜎𝑀
(1)

), we have considered two variants:  

• a driver-driven variant with respect to the trend change probability 𝑝(1) and  
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• a driver-driven variant with respect to the trend change intensity 𝜇𝑀
(1)

, where the 

parameter is only adjusted for trend changes that point in the direction of an increase 

in life expectancy. For trend changes in the other direction, we leave the data-driven 

parameter unchanged. As already noted in Section 4.1, this is in line with the 

character of our expert scenario, that makes a statement only about one side of the 

probability distribution, i.e., about a potential increase in life expectancy. 

When validating the resulting models with regard to various key figures, projection horizons, 

and quantiles, the one-sided variant based on 𝜇𝑀
(1)

 turned out to yield the most plausible 

results.12 We show and discuss these results for this variant in the next section. 

 

12 In particular, it turned out that in the first variant the annual trend change probability 𝑝(1) would have to be 

scaled up quite drastically to an implausibly high value of more than 10% in order to reach the expert 

scenario’s prediction after ten projection years. 

Figure 2  Driver-driven calibration of the trend change model: resulting remaining cohort life expectancy 

for age 65.  
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4.3.2 Resulting calibration and validation 

The driver-driven calibration yields an optimal value for the parameter 𝜇̂𝑀
(1)

 of -4.24644 

compared to its data-driven estimate of -4.61589, which increases the intensity of future 

mortality trend changes. When applying the model, it should be addressed whether the 

driver-driven estimate is used for the entire projection horizon or just for a limited projection 

period. Since our senolytics-scenario only makes a statement about the mortality evolution 

over the course of the first ten projection years and no statement about mortality dynamics 

thereafter, it seems reasonable to return to the data-driven estimate after the tenth projection 

year. Consequently, our calibrated model contains two regimes:  

• a “stressed” driver-driven regime for the first ten projection years using 𝜇̂𝑀
(1)

=

−4.24644 and  

• a “normal” data-driven regime using 𝜇̂𝑀
(1)

= −4.61589 thereafter.  

The latter is consistent with the principle that a data-driven estimate is always the most 

objective and sensible starting point as long as no further information is available.13  

The resulting quantile chart for the remaining cohort life expectancy at age 65 is shown in 

Figure 2. As intended, the model’s predictions after ten years correspond exactly to the 

prediction of the senolytics-scenario with an exceedance probability of 1%.  Compared to 

the data-driven results in Figure 1 in Section 4.2, the confidence intervals are now wider 

reflecting an increase in short- and thus also in long-term uncertainty.   

To check the resulting long-term uncertainty for plausibility, a comparison with our “out-of-

the-box” expert scenarios from Section 2.3 can provide a valuable point of reference. The 

resulting exceedance probability is 0.43% which seems plausible, given that it is 

significantly less likely than the 1% from our senolytics-scenario reflecting its extremeness, 

but is still above zero, meaning that the scenario is not considered “virtually impossible” by 

the model.  

For validation purposes, Figure 3 shows the 99%-quantile of the survival curve for age 65 

for the driver-driven calibration in comparison to the median and the data-driven calibration. 

The survival curve for age 65 is given by  

𝑆65+𝑡,𝑡 ≔ ∏(1 − 𝑞65+𝑢,𝑢)

𝑡−1

𝑢=0

, 

 
13 The driver-calibrated parameter could of course also be used for the entire projection horizon, which would 

lead to a model with an even higher long-term uncertainty. 
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where 𝑞65+𝑢,𝑢 denotes the realized mortality rate of a person aged 65 + 𝑢 in year 𝑢 and is a 

random variable due to the uncertainty in future mortality. The displayed median and 99%-

quantile is derived from a Monte Carlo simulation by generating 10,000 sample paths from 

our stochastic mortality model based on our data-driven and driver-driven calibration, 

respectively.  

As expected, the 99%-quantile of the survival probability under the driver-driven calibration 

lies significantly above its purely data-driven counterparty. Nevertheless, the results appear 

plausible overall, given that the shape of the survival curve is not structurally distorted, and 

the results are not too extreme.  

Overall, we conclude that the model provides a reasonable depiction of the uncertainty in 

future mortality, particularly in the long run, and constitutes a valuable alternative to purely 

data-calibrated models. 

 

𝐑𝐢𝐬𝐤 𝐌𝐞𝐚𝐬𝐮𝐫𝐞 𝜶 = 𝟗𝟎% 𝜶 = 𝟗𝟗. 𝟓% 

Value-at-Risk at level 𝛼 13% 33% 

Tail-Value-at-Risk at level 𝛼 31% 46% 

Table 2  Relative increase in risk for the insurer when using the driver-driven calibration compared to the 

purely data-driven calibration under different risk measures. 

 

Figure 3  99%-quantile of the survival curve for age 65 for the driver-driven calibration in comparison to 

the median and the data-driven calibration. 
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4.4  Risk analysis 

Finally, we take a look at how an insurer's assessment of longevity risk differs between our 

driver-calibrated and the purely data-calibrated trend change model in a simplified case 

study. 

We consider an insurer holding a stylized portfolio of life annuity contracts that is closed to 

new business. These contracts pay a constant benefit of one currency unit at the beginning 

of each year for as long as the beneficiary lives. Regarding the initial structure of the 

portfolio, we assume that this portfolio has been built up over the past 50 years by selling 

the exact same type of contract to the same number of customers with an initial age of 65 at 

the beginning of each year. The age structure of the portfolio at the start of the simulation 

thus results naturally from the realized survival rates in the past. For simplicity, we assume 

that deaths occur according to realized mortality and disregard idiosyncratic small sample 

risk that arises in portfolios of limited size since it is typically much less relevant compared 

to mortality trend risk. 

Following the standard approach for quantifying longevity risk in annuity portfolios, we look 

at the probability distribution of the centred random present value of future liabilities 𝐿 −

𝔼(𝐿). It is defined as   

𝐿 ≔ ∑ ∑ (1 + 𝑟)−𝑡𝑆𝑥0+𝑡,𝑡

 

𝑥0≥65

 

𝑡>0

 

based on the number of survivors 𝑆𝑥0+𝑡,𝑡 in the portfolio of age 𝑥0 + 𝑡 at time 𝑡. This can be 

derived from the initial number of individuals in the portfolio at time zero, combined with a 

projection according to realized mortality from the stochastic simulation, that is, 

𝑆𝑥0+𝑡,𝑡 ≔ 𝑆𝑥0,0 ∏(1 − 𝑞𝑥0+𝑢,𝑢)

𝑡−1

𝑢=0

, 

where 𝑞𝑥0+𝑢,𝑢 denotes the realized mortality rate of a person aged 𝑥0 + 𝑢 in year 𝑢. To keep 

the focus on longevity risk, we use a constant annual interest rate of 𝑟 = 2% for discounting. 

We quantify longevity risk by means of the risk measures Value-at-Risk and Tail-Value-at-

Risk at threshold probabilities of 90% and 99.5%. The resulting increase in the insurer’s risk 

when using the driver-calibrated model compared to the purely data-driven model is shown 

in Table 2.  

The increase in 𝑉𝑎𝑅99.5% of 33% and in 𝑇𝑉𝑎𝑅99.5% of 46%, respectively, show that the 

driver-calibrated model leads to a significantly higher assessment of longevity risk than the 

purely data-driven reference model. The fact that the increase in risk is more pronounced at 
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the 99.5% threshold than at the 90% threshold shows that the differences are primarily due 

to a different assessment of tail risks. Since the adequate assessment of tail risks is of 

particular relevance for pension funds and insurers, especially in the context of risk-based 

solvency regimes like Solvency II, the driver-driven method we propose offers a valuable 

addition to established purely data-driven approaches. 

5 Conclusion 

The future of human life expectancy is currently marked by significant uncertainty in both 

directions, in particular due to environmental effects, multi-resistant germs, and lifestyle 

factors in one direction and due to recent advancements in anti-ageing research in the other 

direction. When modelling and managing longevity risks, it is important that stochastic 

mortality models provide an adequate picture of the prevailing uncertainty. Expert insights 

from other disciplines can help to get a more meaningful impression of the prevailing 

uncertainty than a look in the “data rearview mirror”. Yet, such knowledge is typically not 

considered in longevity risk management as stochastic mortality models are typically 

calibrated in a purely data-driven way.  

To close this gap, we have proposed a novel “driver-driven” approach for the calibration of 

stochastic mortality models. The core idea is to calibrate the volatility parameters of a 

stochastic mortality model such that its projection matches a given expert scenario with a 

given probability of occurrence. The methodology presented is, in principle, applicable to 

any mortality model and to expert scenarios with respect to increasing or decreasing 

mortality. Our work offers guidelines which calibration steps should be performed in order 

to achieve an adequate and plausible model calibration. Using exemplary (but plausible) 

scenarios from the field of anti-ageing research, we have demonstrated that such a “driver-

driven” calibration can lead to a plausible and structurally different assessment of longevity 

risk than traditional “data-driven” approaches, especially with regard to tail risks. 

Such a driver-driven calibration is of course not without limitations and should be viewed as 

a complement to, rather than a substitute for a data-driven calibration. In particular, it offers 

a valuable addition to traditional purely data-driven approaches in times when there are “low 

probability / high impact” scenarios on the horizon, that are considered plausible by experts 

in their respective field but are “virtually impossible” in models calibrated to historical data 

only.  

Finally, we would like to mention several possible extensions of our approach that we leave 

for future research. First, it would be interesting to jointly consider multiple expert scenarios 

in the calibration. For instance, one could consider different scenarios that relate to different 

time periods, different quantiles, different directions (increase and decrease of mortality) and 
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combinations thereof. Since a model can generally not exactly match multiple expert 

scenarios at the same time, this would require some kind of optimization criteria which 

naturally comes at the cost of higher complexity. Second, it would be worthwhile to take a 

closer look at expert scenarios that are of structurally different type than the scenarios we 

considered. Particularly relevant could be the exploration of scenarios that anticipate the 

possibility of sudden “jump-like” shifts in future mortality levels. This is especially relevant 

when considering scenarios where conditions remain stable for an extended period, followed 

by an event that leads to a sudden drastic shift in mortality. In such cases, it should be 

critically examined whether models that include a jump component would be more suitable 

than typical stochastic mortality models. In this sense, it would be interesting to apply the 

driver-driven calibration approach to a broader range of mortality models.   
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Appendix 

A. Model calibration 

A.1. Data 

For our data-driven calibrations, we use data of the civilian male population of England and 

Wales for the years 1841 – 2021 over the age range of 60 – 109 years from the Human 

Mortality Database (data downloaded on 01 July 2024 from: http://www.mortality.org). We 

calibrate the CBD model structure via a standard maximum likelihood estimation approach 

based on the assumption of binomially distributed deaths, see Villegas et al. (2018).  

A.2. Data-driven calibration for the random walk with drift 

For the calibration of the RWD to this data, we follow Cairns et al. (2006) and calibrate the 

drift and covariance matrix to the most recent 20 years of data using a standard maximum 

likelihood estimation approach. The two coronavirus years 2020 and 2021 are treated as 

outliers and omitted in order to avoid an overestimation of long-term volatility. To ensure 

consistency of the central projection between the RWD and the trend change model, the drift 

estimate is set equal to the expected starting trend of the trend process, which is specified in 

the following section. This yields the following estimates: 

𝜇̂ = (−0.007386, 0.000142),   Σ̂ = (6.02923 × 10−4 1.97495 × 10−5

1.97495 × 10−5 1.12944 × 10−6). 

Following Cairns et al. (2006), we account for parameter uncertainty using the standard 

approach in the literature, by sampling the drift vector and the covariance matrix from a joint 

Normal-Inverse-Wishart distribution. This is motivated by the fact that the Normal-Inverse-

Wishart distribution arises as the posterior distribution under a Jeffreys non-informative 

prior. Specifically, given 𝑛 = 20 calibration data points, one realisation of the covariance 

matrix Σ is obtained by first sampling its inverse Σ−1 from the Wishart-distribution with 𝑛 −

1 degrees of freedom and scale matrix 𝑛−1Σ̂−1, and then inverting it. Conditional on the 

sampled covariance matrix Σ, the drift vector 𝜇 is drawn from a multivariate normal 

distribution with mean 𝜇̂ and covariance matrix 𝑛−1Σ. For details on how to generate 

scenarios from this distribution, we refer to Appendix B in Cairns et al. (2006). 

A.3. Data-driven calibration for the trend change model 

For the calibration of the trend change model to historical data, we follow Börger et al. 

(2019) and apply an iterative pseudo maximum likelihood estimation approach. We refer to 
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this paper for technical details. Since data on mortality trend changes are sparse, we account 

for parameter uncertainty in the starting values as well as in the trend change parameters. 

For a given number of trend changes in the time series (𝑘), the calibration algorithm aims 

to find the historical mortality trend with the highest likelihood, where the trend is assumed 

Figure 4  Period effects for English and Welsh males (dotted), optimal realizations for the actual trend 

processes given different numbers of trend changes 𝑘 (colored dashed lines) for 𝜅𝑡
(1)

 (upper 

panel) and for 𝜅𝑡
(2)

 (lower panel). 
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to be continuous and piecewise linear with 𝑘 trend changes over time. Each value of 𝑘 is 

then assigned a relative probability corresponding to the resulting goodness of fit. Parameter 

uncertainty in the starting values for the trend processes is accounted for by sampling the 

initial values from this discrete probability distribution. 

 

𝒌 𝜿̂𝒕=𝟎
(𝟏)

  𝒅̂𝒕=𝟎
(𝟏)

 ℙ(%) Trend change years  

2 −2.36149  −0.01883 1.59856 1930, 1982 

3 −2.30558  −0.00907 0.20882 1931, 1984, 2011 

4 −2.30645  −0.00733 95.62285 1929, 1978 1996, 2011 

5 −2.29494  −0.00586 1.52582 1893, 1930, 1977, 1998, 2009 

6 𝑁/𝐴  𝑁/𝐴 0 𝑁/𝐴 

7 −2.27184  0.00303 1.04395  1869, 1883, 1901, 1930, 1979, 1996, 2013 

Table 3  Optimal historical trend changes and empirical distributions for the starting trend for 𝜅𝑡
(𝟏)

. 

𝒌 𝜿̂𝒕=𝟎
(𝟐)

  𝒅̂𝒕=𝟎
(𝟐)

 ℙ(%) Trend change years  

4 0.1121694  −0.00021 0.14402  1900, 1930, 1975, 2012 

5 0.1139960  0.00014  99.52092  1900, 1929, 1969, 1988, 2007 

6 0.1140805  0.00020  0.33506 1844, 1899, 1933, 1966, 1988, 2006 

Table 4  Optimal historical trend changes and empirical distributions for the starting trend for 𝜅𝑡
(𝟐)

. 

Figure 4 shows the historical period effects 𝜅𝑡
(𝑖)

, 𝑖 = 1,2 and the optimal realizations of the 

underlying trend processes found by the calibration algorithm for different numbers (𝑘) of 

historical trend changes. The corresponding parameter estimates and their likelihood are 

given in Table 3 for 𝜅𝑡
(1)

 and in Table 4 for 𝜅𝑡
(2)

, respectively, where only values of 𝑘 with a 

relative likelihood of at least 0.1% are considered. 

Furthermore, the algorithm provides the following estimates for the trend change 

parameters: 

(𝑝̂(1), 𝜇̂𝑀
(1)

, 𝜎̂𝑀
(1)

) = (0.02242, −4.61589, 0.381) 
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(𝑝̂(2), 𝜇̂𝑀
(2)

, 𝜎̂𝑀
(2)

) = (0.02795, −7.37, 0.16348) 

with corresponding covariance matrices of standard errors of 

𝑆𝐸(1) = (
1.53153 × 10−4 −5.9467 × 10−6 1.80779 × 10−6

−5.9467 × 10−6 5.48394 × 10−3 −2.54425 × 10−5

1.80779 × 10−6 −2.54425 × 10−5 2.68535 × 10−3

), 

𝑆𝐸(2) = (
1.28927 × 10−4   −3.82315 × 10−5 8.81788 × 10−5

−3.82315 × 10−5 3.83876 × 10−2 −2.4198 × 10−3

8.81788 × 10−5 −2.4198 × 10−3 2.40788 × 10−2

). 

We account for parameter uncertainty in the trend change parameters as suggested by Börger 

et al. (2019): At the start of each simulation path, a multivariate normal random vector is 

generated with mean equal to the estimated trend change parameters and covariance matrix 

𝑆𝐸(𝑖). Then, the the first component is transformed to a beta distribution with same mean 

and variance to obtain a reasonable range for the trend change probabilities between zero 

and one. Analogously, the third component is transformed into a corresponding gamma 

distribution to ensure positivity for the volatility parameters.  

Note that in contrast to the treatment of parameter uncertainty in the random walk with drift, 

which is based on a Bayesian approach, the applied method of Börger et al. (2019) relies on 

externally specified distributional properties. We adopt this approach as it represents the 

established standard in the literature for addressing parameter uncertainty in trend-change 

models.  

Finally, the covariance matrix for annual fluctuations around the actual underlying mortality 

trend is estimated as  

Σ̂ = (9.09578 × 10−4 2.85244 × 10−5

2.85244 × 10−5 2.20712 × 10−6). 
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B. Step-by-step description of the driver-driven calibration procedure 

For a given expert scenario (𝑅𝑥,𝜏, 𝐼, 𝜏, 𝑄) as defined in Section 3.1., the driver-driven 

calibration proceeds as follows. 

1) Starting point: data-driven calibration 

Begin with a data-driven calibration of the model, e.g., as described in Appendix A.  

2) Identification of a suitable volatility parameter for recalibration 

Analyse the model structure to determine which parameter or parameters should be adjusted 

to reflect the given expert scenario (see Section 3.3 for guidance). In our trend-change model 

for example, we argue that the parameter 𝜇̂𝑀
(1)

, which drives the intensity of trend changes in 

the first period effect towards higher life expectancy, is structurally suitable for the 

characteristics of our senolytics-scenario (see Section 4.3.1). 

3) Specification of the scaling method and execution of the driver-driven calibration 

The objective is to find a scaling factor 𝑆 (to be applied to the parameter selected in the 

previous step) such that the model satisfies Eq. (1), i.e., ℙ(𝑅𝑥,𝜏 ≥ (1 + 𝐼) ⋅ 𝔼[𝑅𝑥,𝜏]) = 𝑄. 

Define 𝑃[𝑆] ≔ ℙ(𝑅𝑥,𝜏 ≥ (1 + 𝐼) ⋅ 𝔼[𝑅𝑥,𝜏]) for the model with the scaled parameter. If more 

than one parameter has been selected in the previous step, see Section 3.3 for guidance on 

how to simultaneously scale these parameters. 

The scaling factor 𝑆 is derived numerically, e.g., via a bi-section routine. For our trend-

change model, the algorithm proceeds as follows: 

• Initialise bounds 𝑆𝐿 and 𝑆𝑈 (e.g., 0.1 and 10) such that  𝑃[𝑆𝐿] > 𝑄 and 𝑃[𝑆𝑈] < 𝑄. 

(Note: In the trend-change model, smaller values of 𝑆 increase 𝑃[𝑆], since 𝜇̂𝑀
(1)

< 0.) 

• Iterate until convergence: 

o Set 𝑆: = (𝑆𝐿 + 𝑆𝑈)/2. 

o Simulate 50,000 scenarios over the first 𝜏 projection years using 𝑆 ⋅ 𝜇̂𝑀
(1)

 

(applied to downward trend changes only). 

o Compute 𝑅𝑥,𝜏 in each scenario and evaluate 𝑃[𝑆]. 

o If 𝑃[𝑆] < 𝑄, update 𝑆𝑈 = 𝑆; otherwise set 𝑆𝐿 = 𝑆. 

• The resulting scaling factor is the midpoint of the converged interval [𝑆𝐿 , 𝑆𝑈]. For 

the senolytics-scenario in our trend-change model, we obtain 𝑆 = 0.91996. 

4) Model validation 
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Assess the plausibility of the resulting calibration by reviewing key figures across multiple 

time horizons (see Section 4.3.2).  
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