On the Pricing of Longevity-Linked Securities

Daniel Bauer
Matthias Börger
Jochen Ruß

September 2008
Agenda

- Introduction
- Different Approaches for Pricing Longevity-Linked Securities
- Theoretical Comparison of the Approaches
- Empirical Comparison of the Approaches
- An Option-Type Longevity Derivative
- Conclusion
Introduction

Longevity risk = The risk that future mortality improvement exceeds today’s assumptions

- Important risk factor for annuity providers and pension funds
- Importance of this risk will increase in the future
 - reduction of benefits from public pension systems
 - tax incentives for annuitization
- Securitization is seen as a solution for managing this risk:
 - In the literature: Survivor bonds; survivor swaps, longevity bonds,…
 - In practice: First attempt to issue a longevity linked security failed.
 - However: There appears to be a consensus that suitable instruments will be available in the near future
- Interesting question: How to price such instruments
 - What are suitable (actuarial or economic) methods?
 - How can such methodologies be applied (calibration, etc.)?
Different Approaches for Pricing Longevity-Linked Securities

- Price of a longevity derivative depends on the estimate of uncertain future mortality trends and the degree of uncertainty of this estimate → Mortality risk premium (MRP)
- Problem: There are no liquidly traded securities → MRP can not be observed in the market
- Consequence: Different pricing methods have been proposed

- CAPM/CCAPM based approach (Friedberg and Webb 2007)
 - MRP suggested by the models is very low (MRP-puzzle similar to equity premium puzzle)
 - → Probably limited applicability of this approach

- Instantaneous Sharpe Ratio (ISR) based approach (Milevsky et al. 2005; Bayraktar et al. 2008)
 - Investor in longevity risk requires compensation according to some ISR (λ)
 - Return in excess of risk free return = λ * standard deviation (after diversifiable risk is “hedged”)
 - For large portfolio size this coincides with a change of probability measure ($P \rightarrow Q$) with a constant market price of risk

 - Adjust the cdf of the future lifetime by a Wang transform to account for risk:
 \[q_x^Q = \Phi(\Phi^{-1}(q_x^P) - \theta) \quad \text{or} \quad q_x^Q = \Psi(\Phi^{-1}(q_x^P) - \theta) \]
Theoretical Comparison of the Approaches

Our methodology

- **Establish the different approaches in a common framework**
 - “Forward Mortality Framework” (Details see Bauer et al. (2007))
 - \(\hat{\mu}_t(T, x_0) = -\frac{3}{\partial T} \log \{ E_p[T p_{x_0} | \mathcal{F}_t] \} \)
 - Dynamics \(d\hat{\mu}_t(T, x_0) = \hat{\alpha}(t, T, x_0)dt + \hat{\sigma}(t, T, x_0)dW_t, \quad \hat{\mu}_0(T, x_0) > 0 \)
 - Here: \(\hat{\sigma} \) deterministic, \(W \) finite dimensional Brownian motion

- **Derive Pricing Formulas for “simple” \((T, x_0)\)-Longevity bonds based on different approaches**
 (simple longevity bonds pays \(T x \) at time \(T \), “longevity zero”)
 1. Wang Transform Approach: \(\Pi_0(T, x_0) = B(0, T) \cdot \left(1 - \Phi \left(\Phi^{-1} \left(1 - E_p[T p_{x_0}] \right) - \theta \right) \right) \)
 2. Sharpe Ratio Approach: \(\Pi_0(T, x_0) = B(0, T) \cdot \exp \left\{ \lambda \int_0^T \left\| \hat{\sigma}(u, s, x_0) \right\| du ds \right\} \cdot E_p[T p_{x_0}] \)
 3. “Generic” model: \(\Pi_0(T, x_0) = B(0, T) \cdot \exp \left\{ - \int_0^T \hat{\sigma}(u, s, x_0) \cdot \lambda(u) du ds \right\} \cdot E_p[T p_{x_0}] \)
 (\(\lambda(\cdot) \) is a negative MPR process)
What is a good basis for determining θ and λ?

- Loeys et al.: (Sharpe ratio from) *stock markets*
 - **But:** different characteristics
 - Adequacy questionable!

- Lin & Cox: *Annuity Prices*
 - Strong empirical evidence that there is a mortality risk premium embedded in annuity prices

If there is one, which is the better of the two approaches?

- Wang transform not coherent with “generic” pricing formula if more than one age cohort is considered.
- In line with Pelsser, 2008: Inconsistency with arbitrage-free prices
- Hence, the Sharpe ratio approach is the more general and better approach
Empirical Comparison of the Approaches

- We use the “Volatility of Mortality” model from Bauer et al (2007) and recalibrate to UK data.
- We derive Sharpe Ratios and Wang Transform parameters from monthly UK annuity quotes (November 2000 to July 2006).

- We find significant correlation between the market price of mortality risk and stock markets / interest rates.
 → Assumption of independence between risk-adjusted mortality evolution and financial markets seems to be inadequate.
Empirical Comparison of the Approaches (ctd.)

- We then apply different pricing methodologies to the EIB/BNP-Bond
 - Sharpe Ratio calibrated to UK annuity quotes
 - Sharpe Ratio from stock markets
 - 1 factor Wang Transform calibrated to UK annuity quotes
 - 1 factor Wang Transform calibrated to US annuity quotes (Calibration from Lin and Cox 2005)
 - 2 factor Wang Transform calibrated to UK annuity quotes
 - 2 factor Wang Transform calibrated to US annuity quotes (Calibration from Lin and Cox 2006)

- Design of the EIB/BNP-Bond
 - Notional = GBP 50m; Pays annual coupons for 25 years
 - Coupons depend on mortality experience of English and Welsh males aged 65 in 2003

- The EIB/BNP-Bond is therefore essentially equivalent to a portfolio of (T,65)-Longevity Bonds for T=1,2,…,25

- The EIB/BNP-Bond was offered at GBP 540m
 - discounting best estimate coupon payments at LIBOR-35bp

- EIB’s yield curve is about LIBOR-15bp → 20bp can be interpreted as “fee for the longevity hedge”
Empirical Comparison of the Approaches (ctd.)

- Lin and Cox (2006): Risk premium is very high ⇒ Bond is unattractive
 - Conclusion is based on a Wang Transform approach
- Cairns et al. (2006): Price seems reasonable
 - Conclusion is based on an approach similar to an Instantaneous Sharpe Ratio approach
- We “repriced” the bond using the 6 methods above and two hypothetical bonds of the same design but being offered in 2001 and 2006, respectively

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>na</td>
<td>540</td>
<td>na</td>
</tr>
<tr>
<td>SRUK</td>
<td>487.56</td>
<td>584.40</td>
<td>605.50</td>
</tr>
<tr>
<td>SRLOE</td>
<td>540.42</td>
<td>580.60</td>
<td>597.95</td>
</tr>
<tr>
<td>1WTUK</td>
<td>482.19</td>
<td>601.02</td>
<td>618.74</td>
</tr>
<tr>
<td>1WTLC</td>
<td>530.87</td>
<td>563.42</td>
<td>576.32</td>
</tr>
<tr>
<td>2WTUK</td>
<td>480.03</td>
<td>595.77</td>
<td>612.33</td>
</tr>
<tr>
<td>2WTLC</td>
<td>516.91</td>
<td>548.27</td>
<td>560.72</td>
</tr>
</tbody>
</table>

- Significant differences between issue dates
 - Due to changes in interest rates, mortality projections and Sharpe Ratio / Wang Transform parameter calibrations
- Significant differences between the 6 models
- All models result in a value that exceeds the price ⇒ The Bond was a “good deal”
Empirical Comparison of the Approaches (ctd.)

- If all 6 pricing models state that the EIB/BNP-Bond was a good deal, 2 questions arise:
 - Why did Lin & Cox regard the Bond as too expensive?
 - They used a different yield curve and survival rates based on realized mortality rates in 2003 as opposed to projections
 - Why was it not successfully placed?
 - Based on population as opposed to inureds (basis risk)
 - Fixed maturity of the bond → tail risk is not hedged
 - Capital intensive hedge

- We conclude that the financial engineering and not the pricing was the reason for the failure of the EIB/BNP-Bond.
 - Therefore, in the final section, we analyzed a call-option-type longevity derivative
An Option-Type Longevity Derivative

- Payoff: $C_T = \left(T \ p_{x_0} - K(T) \right)^+ \text{ with strike } K(T) = (1 + a) E_p \left[T \ p_{x_0} \right], \ a > 0$

- By suitable adjustment of the strike (choice of the parameter a), the insurer can decide, which portion of the risk to keep
 - Example: No hedge against small deviation of actual/expected longevity. Hedge only against a deviation of more than, say, 10%

- Such derivatives can be priced within our framework with a Black-type formula (Bauer 2007)

<table>
<thead>
<tr>
<th>a</th>
<th>$T = 5$</th>
<th>$T = 10$</th>
<th>$T = 15$</th>
<th>$T = 20$</th>
<th>$T = 25$</th>
<th>$T = 30$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>SRUK</td>
<td>0.00486</td>
<td>0.03678</td>
<td>0.07483</td>
<td>0.09079</td>
<td>0.07223</td>
</tr>
<tr>
<td></td>
<td>SRLOR</td>
<td>0.00443</td>
<td>0.03357</td>
<td>0.06752</td>
<td>0.08071</td>
<td>0.06316</td>
</tr>
<tr>
<td></td>
<td>1WTUK</td>
<td>0.01532</td>
<td>0.04780</td>
<td>0.07357</td>
<td>0.08069</td>
<td>0.06447</td>
</tr>
<tr>
<td></td>
<td>1WTLC</td>
<td>0.00634</td>
<td>0.02669</td>
<td>0.04235</td>
<td>0.04386</td>
<td>0.03127</td>
</tr>
<tr>
<td></td>
<td>2WTUK</td>
<td>0.00580</td>
<td>0.03838</td>
<td>0.07034</td>
<td>0.08428</td>
<td>0.07168</td>
</tr>
<tr>
<td></td>
<td>2WTLC</td>
<td>0.00075</td>
<td>0.01694</td>
<td>0.03545</td>
<td>0.04081</td>
<td>0.03066</td>
</tr>
<tr>
<td>5%</td>
<td>SRUK</td>
<td>0.00049</td>
<td>0.02639</td>
<td>0.06665</td>
<td>0.08573</td>
<td>0.06977</td>
</tr>
<tr>
<td></td>
<td>SRLOR</td>
<td>0.00043</td>
<td>0.02372</td>
<td>0.05973</td>
<td>0.07589</td>
<td>0.06081</td>
</tr>
<tr>
<td></td>
<td>1WTUK</td>
<td>0.00342</td>
<td>0.03582</td>
<td>0.06545</td>
<td>0.07587</td>
<td>0.06210</td>
</tr>
<tr>
<td></td>
<td>1WTLC</td>
<td>0.00076</td>
<td>0.01816</td>
<td>0.03630</td>
<td>0.04030</td>
<td>0.02957</td>
</tr>
<tr>
<td></td>
<td>2WTUK</td>
<td>0.00066</td>
<td>0.02772</td>
<td>0.06239</td>
<td>0.07933</td>
<td>0.06922</td>
</tr>
<tr>
<td></td>
<td>2WTLC</td>
<td>0.00006</td>
<td>0.01075</td>
<td>0.03003</td>
<td>0.03671</td>
<td>0.02899</td>
</tr>
<tr>
<td>10%</td>
<td>SRUK</td>
<td>0.00025</td>
<td>0.01366</td>
<td>0.05422</td>
<td>0.07768</td>
<td>0.06578</td>
</tr>
<tr>
<td></td>
<td>SRLOR</td>
<td>0.00022</td>
<td>0.01195</td>
<td>0.04800</td>
<td>0.06826</td>
<td>0.05703</td>
</tr>
<tr>
<td></td>
<td>1WTUK</td>
<td>0.00215</td>
<td>0.02013</td>
<td>0.05313</td>
<td>0.06824</td>
<td>0.05829</td>
</tr>
<tr>
<td></td>
<td>1WTLC</td>
<td>0.00041</td>
<td>0.00855</td>
<td>0.02762</td>
<td>0.03488</td>
<td>0.02693</td>
</tr>
<tr>
<td></td>
<td>2WTUK</td>
<td>0.00035</td>
<td>0.01454</td>
<td>0.05038</td>
<td>0.07154</td>
<td>0.06525</td>
</tr>
<tr>
<td></td>
<td>2WTLC</td>
<td>0.00001</td>
<td>0.00445</td>
<td>0.02240</td>
<td>0.03159</td>
<td>0.02637</td>
</tr>
</tbody>
</table>

- As expected: $\mathcal{N}\mathcal{O}$ in T
- As expected: $\mathcal{N}O$ in a
- Wang prices higher for short maturities and vice versa
- Sometimes large differences despite calibration to the same data
An Option-Type Longevity Derivative

The risk premium allocations differ considerably between the pricing approaches
An Option-Type Longevity Derivative

- The risk premium allocations differ considerably between the pricing approaches.

short maturities

large maturities

- red: Sharpe ratio approach
- green: 1-factor Wang transform approach
- blue: 2-factor Wang transform approach

- **Sharpe ratio approach**: risk premium proportional to aggregated risk
- **Wang Transform**: risk premium allocation independent of actual risk
- → Adequacy of the Wang Transform again questionable
Conclusion

- Overview and comparison of different pricing approaches

- Risk premium implied by the Wang Transform induces inconsistencies if securities on different ages are traded
 - Even if just one security is traded, the “risk premium allocation” appears questionable

- We conclude that currently a “market price of longevity risk” should be derived from annuity quotes
 - Adopting Sharpe Ratios from equity markets appears to have weaknesses

- We identify significant correlation between the market price of longevity risk and stock markets / interest rates
 - Assuming independence between risk-adjusted mortality evolution and financial markets seems to be inadequate

- The EIB/BNP-Bond appears to have been offered at a “good price”
 - Reason for failure was financial engineering rather than pricing
www.mortalityrisk.org

- Exchange platform for latest papers and results on mortality/longevity risk and modeling
- Run by a Research Training Group at Ulm University
- You are encouraged to submit your papers!
- submission@mortalityrisk.org
References