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Motivation

I Solvency II: New regulatory framework for insurance companies in
the European Union

I Key aspect: Determine required risk capital (SCR) for a one-year time
horizon based on a market-consistent valuation of assets
and liabilities

I Standard model: Approximation of SCR via square-root formula
⇒ Various deficiencies (cf. Pfeifer/Strassburger (2008), Sandström (2007)).

I Alternative: Multivariate approach based on stochastic model for
the insurance company (Internal Model).

I Problems:
I Valuation of life insurance contracts in closed form not possible (due to

embedded options and guarantees)
I Unsolved numerical and computational problems

⇒ This paper provides a mathematical framework for the calculation of the
SCR and discusses different approaches for the numerical
implementation.
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Definitions
Assessment of solvency position can be split into two components:

1. Available Capital (AC0)
I Amount of financial resources available at time t = 0 which can serve as a

buffer against risks and absorb financial losses.

Market consistent valuation of assets and liabilities

AC0 := MVA0 −MVL0 = MCEV0

I MCEV0 denotes the market consistent embedded value, i.e.
MCEV0 = ANAV0 + PVPF0 − CoC0, where

I ANAV0 is derived from statutory shareholders’ equity,
I PVFP0 is the present value of past-taxation shareholder cash flows from the

assets backing (statutory) liabilities and
I CoC0 is the Cost-of-Capital charge (not discussed further here).

I Main computational issue: calculation of PVFP0.
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Definitions
Assessment of solvency position can be split into two components:
2. Solvency Capital Requirement (SCR)

I SCR is based on the Available Capital at t = 1, where
AC1 := MCEV1 + X1 and X1 denotes shareholder cash flows at t = 1.

I Intuition: An insurance company is considered solvent under Solvency II if its
Available Capital at t = 1 is positive with a probability of at least α = 99.5%.

I Therefore consider loss function L := AC0 − AC1/(1 + i)
where i denotes the one-year risk-free rate at t = 0.

SCR definition

SCR := argminx {P (AC0 − AC1/(1 + i) > x) ≤ 0.5%} = VaR99.5%(L)

I Main computational issue: calculation of 99.5%-quantile of −AC1.
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Mathematical Framework

I Complete filtered probability space
(
Ω,F ,P,F = (Ft )t∈[0,T ]

)
I P so-called real-world (physical) measure
I Risk-neutral measure Q equivalent to P

I State process: (Yt )t∈[0,T ] =
(

Y (1)
t , . . . ,Y (d)

t

)
t∈[0,T ]

of sufficiently regular

Markov processes that describes the stochasticity of the market
I Numéraire process: Bt = exp

(∫ t
0 rudu

)
, rt = r(t ,Yt)

I Cash flow projection model, i.e. the future profits of the insurance
company Xt (t = 1, . . . ,T ) can be described as

Xt = ft (Ys, s ∈ [0, t ])
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Valuation at t = 0
I Target: AC0 = ANAV0︸ ︷︷ ︸

from statutory balance sheet

+ EQ
[

T∑
t=1

exp(−
∫ t

0
ru du)Xt

]
︸ ︷︷ ︸

=:V0

I Problem: No closed form solution for V0

t=0 t=1 t=T

RF1
Y(1)

Y(2)

Y(    )

Q

… (=50)

0K

I Monte Carlo simulations: Ṽ0(K0) = 1
K0

K0∑
k=1

T∑
t=1

exp
(
−
∫ t

0 r (k)
u du

)
X (k)

t
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Valuation at t = 1
I Target: Distr. of AC1 = ANAV1 + EQ

[
T∑

t=2

exp(−
∫ t

1
ru du)Xt

∣∣∣∣∣ (Y1,D1)

]
︸ ︷︷ ︸

=:V1

+X1 ∼ F

t=0 t=1 … t=T

RF1

Y(1), D(1)

Y(i),D(i)

Y(N),D(N)

P Q

Y(i,1)

Y(i,      )K1
(i)

Simulate N first-year paths "under P": (Y (i)
1 ,D(i)

1 )

Simulate K1 paths "under Q" starting in (Y (i)
1 ,D(i)

1 ): determine V (i)
1

N × K1 paths
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Estimator in the Nested Simulations Approach

Estimated SCR
We now have

1. ÃC0(K0) = ANAV0 + Ṽ0(K0)

2. ÃC
(i)
1 (K1) := ANAV(i)

1 + Ṽ (i)
1 (K1) + X (i)

1 , 1 ≤ i ≤ N.
Hence, we can estimate SCR by

S̃CR = ÃC0 +
z̃(m)

1 + i

where z̃(m) is the mth order statistic of −ÃC
(i)
1 and m = bN · 0.995 + 0.5c.

I Within the estimation process, we have three sources of error:
1. Estimation of AC0 with only K0 sample paths
2. Estimation of the quantile with only N real-world scenarios
3. Estimation of AC(i)

1 with only K1 inner simulations ∀i

⇒ Analysis of the resulting error in our estimate S̃CR
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Variance-Bias Tradeoff – Choice of K0, N and K1

I Idea: minimize the Mean-Square Error (MSE)

MSE = E
[
(S̃CR− SCR)2

]
= Var(S̃CR) +

E(S̃CR)− SCR︸ ︷︷ ︸
bias

2

I Similar to Gordy/Juneja (2008), we obtain:

Optimization problem in K0, N and K1

σ2
0

K0
+

α(1− α)

(N + 2)f 2(SCR)
+

θ2
α

K 2
1 · f 2(SCR)

→ min

subject to the effort restriction K0 + N · K1 = Γ.

I Can be solved using Lagrangian multipliers (for given computational
budget Γ).

I Note: bias is positive in practical applications resulting in a systematic
overestimation of the SCR.

I Problem: To make bias small (for 99.5% confidence level), K1 may not be
chosen "too small"→ Immense computational effort!
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Least-Squares-Algorithm
I Based on LSM approach by Longstaff/Schwartz (2001) for the valuation

of non-European options (see also Clément et al. (2002)).
I Algorithm:

I Simulate N scenarios (first year P, other years Q)

PV (i)
1 (ωi ) :=

T∑
t=2

exp
{
−
∫ t

1
rs(ωi ) ds

}
Xt (ωi ) = EQ

[
PV (i)

1

∣∣∣F1

]
+ εi , 1 ≤ i ≤ N

I 1st step: Approximate V1 by finite sum of appropriate basis functions

V1 = EQ
[ T∑

t=2

exp(−
∫ t

1
ru du)Xt

∣∣∣∣∣ (Y1,D1)

]
≈ V̂ (M)

1 (Y1,D1) =
M∑

k=1

αk · ek (Y1,D1)

I 2nd step: Estimate unknown parameter vector α via regression:

α̂(N) = argminα∈RM


N∑

i=1

[
PV (i)

1 −
M∑

k=1

αk · ek

(
Y (i)

1 ,D(i)
1

)]2
I Estimate Available Capital:

ÂC
(i)
1 = ANAV(i)

1 +
M∑

k=1

α̂
(N)
k · ek (Y (i)

1 ,D(i)
1 ) + X (i)

1 , 1 ≤ i ≤ N
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Least-Squares-Algorithm: Does it work?

Issues to consider:
I Suitability of regression approach
I Convergence of the algorithm
I Bias (finite number of basis functions, estimation of regression

parameters)
I Choice of regression function

⇒ Ultimate test: How well does it perform in a somewhat realistic
framework?
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Example: A Participating Life Insurance Contract

I Term-fix insurance contract with minimum interest rate guarantee
I Bonus distribution models obligatory payments to the policyholder

(MUST-case from Bauer et al. (2006))
I No mortality⇒ no biometric risk

I Dividends dt are paid to the shareholders
I Company obtains additional contribution ct from its shareholders in case

of a shortfall

I Asset model: Extended Black-Scholes model with stochastic interest
rates (see Bauer/Zaglauer (2008))
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Bias in Nested Simulations, N = 100, 000
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Figure 2: Empirical density function for different choices of K1 for the estimator
based on the policyholders’ cash flows (left) and the shareholders’ cash flows
(right), N = 100, 000, K0 = 250, 000

σr = 0.89%, ρ = 0.15 and λ = −0.2304. We use an initial short rate of r0 = 3%.
For the insurance contract, similarly to [4], we assume a guaranteed minimum
interest rate of g = 3.5%, a minimum participation rate of δ = 90%, an initial
premium of L0 = 10, 000 and a maturity of T = 10. Moreover, we assume that
y = 50% of earnings on market values are declared as earnings on book values and
that the initial reserve quota equals x0 = R0/L0 = 10%, i.e. R0 = x0 ·L0 = 1, 000.

6.2 Results

In Sections 3 and 5, we introduced different methods on how to estimate the SCR
in our framework. In what follows, we implement them in the setup described in
Section 6.1. In particular, we focus on contemplating pitfalls, drawbacks, as well
as advantages of the different methods.

6.2.1 Nested Simulations Approach

As indicated in Section 3.4, the estimation of the SCR using Nested Simulations
is biased. This bias mainly depends on the choice of the estimator and the
number of inner simulations. Hence, in order to develop an idea for the magnitude
of this bias, we analyze the results for the estimator based on cash flows from
the policyholders’ and from the shareholders’ perspective (see Section 6.1.2) and
choose different numbers of inner simulations. If not noted otherwise, we fix
K0 = 250, 000 sample paths for the estimation of V0, N = 100, 000 realizations
for the simulation over the first year, and choose K

(i)
1 = K1 ∀1 ≤ i ≤ N .

In Figure 2, the empirical density functions for both estimators and different
choices of K1 are plotted. As expected, for both estimators the distribution is
more dispersed for small K1, which has a tremendous impact on our problem of

23

K1 S̃CR AC0/S̃CR
1 2,321.0 75%
5 1,538.2 113%
10 1,432.6 121%

100 1,335.3 130%
1,000 1,324.8 131%

I Choice of K1 significantly affects SCR!
I Estimation of θα via pilot simulation with N = 100,000, K1 = 100 and

regression/finite difference approximation:

θ̂α ≈ 0.027⇒ (K0; N; K1) = (2,500,000 ; 550,000 ; 400) approx. optimal

I Calculation takes about 35 minutes.
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Comparison of different (K0; N; K1) with Γ = 222, 500, 000

simulations, namely K1 = 400. Then, we find that a choice of approximately
N = 550, 000 and K0 = 2, 500, 000 is optimal, which results in a total budget

of Γ = 222, 500, 000 simulations. In this setting, we obtain S̃CR = 1317.8 and
a solvency ratio of 132%. At first sight, it might be surprising that K0 should
be chosen that large compared to the two other parameters. But reducing the
variance of AC0 is relatively “cheap” compared to reducing the variance of

z(m)

1+i

because whenever we increase N we automatically have to perform K1 inner sim-
ulations for every additional real-world scenario. Therefore, it is reasonable to
allocate a rather large budget to K0.

To demonstrate that, given a total budget of Γ = 222, 500, 000, this choice
is roughly adequate, we estimate the SCR 120 times for fixed K0 and different
combinations of N and K1, where each combination corresponds to a total budget
of 222,500,000 simulations. We estimate the bias by θ̄α

K1·f̄(S̃CR)
, where θ̄α and f̄

denote the average of the estimates resulting from the 120 estimation procedures
as explained above. The MSE is then estimated by the sum of the empirical
variance and the squared estimated bias. The estimation of the mean can then
be corrected by the estimated bias. Figure 3 and Table 3 show our results.
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C
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Figure 3: 120 simulations for different choices of N and K1, K0 = 2, 500, 000,
Nested Simulations Approach

As expected, the mean of the estimated SCRs increases as K1 decreases due to
the increased bias. In contrast to this, the empirical variance obviously decreases
as N increases. Furthermore, we find that our choice of N and K1 yields the

24

→ Based on 120 runs of simulations (approx. 35 min each)

N K1 Mean Empirical Estimated Estimated Corrected
(S̃CR) Variance Bias MSE Mean

275,000 800 1319.6 28.0 1.5 30.2 1318.1
550,000 400 1320.5 19.3 3.0 28.2 1317.5

1,100,000 200 1323.1 8.8 5.9 43.9 1317.2
2,200,000 100 1328.9 4.4 11.8 143.2 1317.1

Table: Choice of N and K1 (K0 = 2, 500, 000), 120 runs
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Choice of the Regression Function in the LSM Approach

# Regression Function Mean
(ŜCR)

1 α̂
(N)
0 + α̂

(N)
1 · A1 921.1

2 α̂
(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 1141.9
3 α̂

(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 1309.2

4 α̂
(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 + α̂

(N)
4 · r2

1 1330.1
5 α̂

(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 + α̂

(N)
4 · r2

1 + α̂
(N)
5 · L1 1297.5

6 α̂
(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 + α̂

(N)
4 · r2

1 + α̂
(N)
5 · L1 + α̂

(N)
6 · x1 1302.5

7 α̂
(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 + α̂

(N)
4 · r2

1 + α̂
(N)
5 · L1 + α̂

(N)
6 · x1 + α̂

(N)
7 · A1 · er1 1309.2

8 α̂
(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 + α̂

(N)
4 · r2

1 + α̂
(N)
5 · L1 + α̂

(N)
6 · x1 + α̂

(N)
7 · A1 · er1

+α̂(N)
8 · L1 · er1 1316.5

9 α̂
(N)
0 + α̂

(N)
1 · A1 + α̂

(N)
2 · A2

1 + α̂
(N)
3 · r1 + α̂

(N)
4 · r2

1 + α̂
(N)
5 · L1 + α̂

(N)
6 · x1 + α̂

(N)
7 · A1 · er1

+α̂(N)
8 · L1 · er1 + α̂

(N)
9 · eA1/10000 1317.5

Table: Estimated SCR for different choices of the regression function, N = 550, 000

I Influence of basis function is quite pronounced.
I For "good" choices, the estimated SCR is close to the result obtained via

Nested Simulations.
I "Good" choices appear to remain "good" for different parameters.
I Calculation takes only about 30 seconds.
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Comparison of different N in the LSM Approach

1290

1300

1310

1320

1330

1340

1350

N =
275, 000

N =
550, 000

N =
1, 100, 000

N =
2, 200, 000

Ŝ
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Figure 4: 120 simulations for different choices of N in the LSM Approach

N Mean Empirical Solvency

(ŜCR) Variance Ratio
275,000 1316.9 87.5 132%
550,000 1317.5 62.6 132%
1,100,000 1317.4 23.5 132%
2,200,000 1317.2 10.5 132%

Table 5: Results for the LSM estimator

Since we might also be interested in other quantiles or further information
about the distribution such as alternative risk measures, we now analyze the
quality of the approximation of the whole distribution. Figure 5 shows the em-
pirical density functions for the Nested Simulations Approach and the LSM Ap-
proach for one run with a fixed seed. We find that the two distributions are very
similar and hence, the LSM Approach provides an efficient alternative to Nested
Simulations.

Furthermore, in practice, the SCR needs to be calculated on a quarterly,
monthly or even weekly basis for risk management purposes. In this case, one
would like to avoid determining new regressors, but use the same regressors as
in the preceding period instead. Therefore, it is interesting to analyze how small
changes in the parameters influence the quality of the LSM estimate when using

27

N Mean Empirical Solvency
(ŜCR) Variance Ratio

275,000 1316.9 87.5 132%
550,000 1317.5 62.6 132%

1,100,000 1317.4 23.5 132%
2,200,000 1317.2 10.5 132%

Table: Results for the LSM estimator, 120 runs
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Summary
I Nested Simulations:
→ Inadequate choice of (K0,N,K1) in nested simulations may yield erroneous

outcomes.
→ Immense computational effort to achieve accurate results.

I LSM:
→ Fast approach to achieve relatively accurate results.
→ Results are similarly positive when calculating SCR for longer time horizons

("richer sigma field").
→ Care is required in choice of regression function even though simple

algorithms yield good results in our applications.
→ Open question: theoretical results regarding validity of approximation.

Future Research
I Improvement of the Nested Simulations Approach by variance reduction

techniques, QMC and screening procedures.
I Use of statistical methods to determine the regression function.
I Analysis of other risk measures, such as TVaR.
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