

Solvency II and Nested Simulations – a Least-Squares Monte Carlo Approach

Daniel Bauer

Georgia State University

Daniela Bergmann

Ulm University

Andreas Reuß

Institute for Finance and Actuarial Sciences (ifa)

ARIA Annual Meeting 2009

Providence (RI), August 5, 2009

Motivation

2 Solvency II Requirements

③ Numerical Approaches

- Nested Simulations Approach
- Least-Squares Monte Carlo Approach

4 Results

Summary and Outlook

Motivation

- Solvency II: New regulatory framework for insurance companies in the European Union
- Key aspect: Determine required risk capital (SCR) for a one-year time horizon based on a market-consistent valuation of assets and liabilities
- <u>Standard model</u>: Approximation of SCR via square-root formula
 ⇒ Various deficiencies (cf. Pfeifer/Strassburger (2008), Sandström (2007)).
- <u>Alternative</u>: Multivariate approach based on stochastic model for the insurance company (Internal Model).
- Problems:
 - Valuation of life insurance contracts in closed form not possible (due to embedded options and guarantees)
 - Unsolved numerical and computational problems
- ⇒ This paper provides a mathematical framework for the calculation of the SCR and discusses different approaches for the numerical implementation.

Definitions

Assessment of solvency position can be split into two components:

- 1. Available Capital (AC₀)
 - Amount of financial resources available at time t = 0 which can serve as a buffer against risks and absorb financial losses.

Market consistent valuation of assets and liabilities

 $\mathsf{AC}_0 := \mathsf{MVA}_0 - \mathsf{MVL}_0 = \mathsf{MCEV}_0$

- MCEV₀ denotes the market consistent embedded value, i.e. MCEV₀ = ANAV₀ + PVPF₀ - CoC₀, where
 - ANAV₀ is derived from statutory shareholders' equity,
 - PVFP₀ is the present value of past-taxation shareholder cash flows from the assets backing (statutory) liabilities and
 - ► CoC₀ is the Cost-of-Capital charge (not discussed further here).
- Main computational issue: calculation of PVFP₀.

Definitions

Assessment of solvency position can be split into two components:

- 2. Solvency Capital Requirement (SCR)
 - SCR is based on the Available Capital at t = 1, where $AC_1 := MCEV_1 + X_1$ and X_1 denotes shareholder cash flows at t = 1.
 - ► Intuition: An insurance company is considered solvent under Solvency II if its Available Capital at t = 1 is positive with a probability of at least $\alpha = 99.5\%$.
 - ► Therefore consider loss function $L := AC_0 AC_1/(1 + i)$ where *i* denotes the one-year risk-free rate at t = 0.

SCR definition

SCR :=
$$\operatorname{argmin}_{x} \{ P(AC_0 - AC_1/(1+i) > x) \le 0.5\% \} = VaR_{99.5\%}(L)$$

Main computational issue: calculation of 99.5%-quantile of -AC₁.

Mathematical Framework

- ► Complete filtered probability space $(\Omega, \mathcal{F}, \mathcal{P}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0, T]})$
 - ► *P* so-called *real-world* (*physical*) *measure*
 - ► *Risk-neutral measure Q* equivalent to *P*
- State process: (Y_t)_{t∈[0,T]} = (Y_t⁽¹⁾,...,Y_t^(d))_{t∈[0,T]} of sufficiently regular Markov processes that describes the stochasticity of the market
 - ► Numéraire process: $B_t = \exp\left(\int_0^t r_u du\right), r_t = r(t, Y_t)$
- Cash flow projection model, i.e. the future profits of the insurance company X_t (t = 1,..., T) can be described as

$$X_t = f_t(Y_s, s \in [0, t])$$

Valuation at t = 0

Problem: No closed form solution for V₀

• <u>Monte Carlo simulations</u>: $\widetilde{V}_0(K_0) = \frac{1}{K_0} \sum_{k=1}^{K_0} \sum_{t=1}^{T} \exp\left(-\int_0^t r_u^{(k)} du\right) X_t^{(k)}$

Valuation at t = 1

 $\underline{\text{Target: Distr. of AC}_1 = \text{ANAV}_1 + \underbrace{\mathbb{E}^{\mathcal{Q}}\left[\sum_{t=2}^T \exp(-\int_1^t r_u \, du) X_t \middle| (Y_1, D_1)\right]}_{=:V_1} + X_1 \sim F$

SimulateNfirst-year paths "under P": $(Y_1^{(i)}, D_1^{(i)})$ Simulate K_1 paths "under Q" starting in $(Y_1^{(i)}, D_1^{(i)})$: determine $V_1^{(i)}$ $N \times K_1$ paths

Estimator in the Nested Simulations Approach

Estimated SCR

We now have

1.
$$\widetilde{AC}_0(K_0) = ANAV_0 + \widetilde{V}_0(K_0)$$

2.
$$\widetilde{\operatorname{AC}}_{1}^{(i)}(K_{1}) := \operatorname{ANAV}_{1}^{(i)} + \widetilde{V}_{1}^{(i)}(K_{1}) + X_{1}^{(i)}, 1 \le i \le N.$$

Hence, we can estimate SCR by

$$\widetilde{\mathsf{SCR}} = \widetilde{\mathsf{AC}}_0 + \frac{\widetilde{z_{(m)}}}{1+i}$$

where $\widetilde{z_{(m)}}$ is the *m*th order statistic of $-\widetilde{AC}_1^{(i)}$ and $m = \lfloor N \cdot 0.995 + 0.5 \rfloor$.

- Within the estimation process, we have three sources of error:
 - 1. Estimation of AC_0 with only K_0 sample paths
 - 2. Estimation of the guantile with only N real-world scenarios
 - 3. Estimation of AC₁⁽ⁱ⁾ with only K_1 inner simulations $\forall i$
- \Rightarrow Analysis of the resulting error in our estimate \widetilde{SCR}

- 2

Variance-Bias Tradeoff – Choice of K_0 , N and K_1

Idea: minimize the Mean-Square Error (MSE)

$$\mathsf{MSE} = \mathbb{E}\left[(\widetilde{\mathsf{SCR}} - \mathsf{SCR})^2\right] = Var(\widetilde{\mathsf{SCR}}) + \left[\underbrace{\mathbb{E}(\widetilde{\mathsf{SCR}}) - \mathsf{SCR}}_{\mathsf{bias}}\right]^2$$

Similar to Gordy/Juneja (2008), we obtain:

Optimization problem in K_0 , N and K_1

$$\frac{\sigma_0^2}{K_0} + \frac{\alpha(1-\alpha)}{(N+2)f^2(\text{SCR})} + \frac{\theta_\alpha^2}{K_1^2 \cdot f^2(\text{SCR})} \to \min$$

subject to the effort restriction $K_0 + N \cdot K_1 = \Gamma$.

- Can be solved using Lagrangian multipliers (for given computational budget Γ).
- Note: bias is positive in practical applications resulting in a systematic overestimation of the SCR.
- Problem: To make bias small (for 99.5% confidence level), K₁ may not be chosen "too small" → Immense computational effort!

Least-Squares-Algorithm

- Based on LSM approach by Longstaff/Schwartz (2001) for the valuation of non-European options (see also Clément et al. (2002)).
- Algorithm:
 - Simulate N scenarios (first year \mathcal{P} , other years \mathcal{Q})

$$PV_1^{(i)}(\omega_i) := \sum_{t=2}^T \exp\left\{-\int_1^t r_s(\omega_i) \, ds\right\} X_t(\omega_i) = \mathbb{E}^{\mathcal{Q}}\left[\left.PV_1^{(i)}\right| \mathcal{F}_1\right] + \varepsilon_i, \qquad 1 \le i \le N$$

• 1^{*st*} step: Approximate V_1 by finite sum of appropriate basis functions

$$V_{1} = \mathbb{E}^{\mathcal{Q}}\left[\sum_{t=2}^{T} \exp(-\int_{1}^{t} r_{u} \, du) X_{t} \middle| (Y_{1}, D_{1})\right] \approx \hat{V}_{1}^{(M)}(Y_{1}, D_{1}) = \sum_{k=1}^{M} \alpha_{k} \cdot e_{k}(Y_{1}, D_{1})$$

2nd step: Estimate unknown parameter vector α via regression:

$$\hat{\alpha}^{(N)} = \operatorname{argmin}_{\alpha \in \mathbb{R}^{M}} \left\{ \sum_{i=1}^{N} \left[PV_{1}^{(i)} - \sum_{k=1}^{M} \alpha_{k} \cdot e_{k} \left(Y_{1}^{(i)}, D_{1}^{(i)} \right) \right]^{2} \right\}$$

Estimate Available Capital:

$$\widehat{\mathsf{AC}}_{1}^{(i)} = \mathsf{ANAV}_{1}^{(i)} + \sum_{k=1}^{M} \hat{\alpha}_{k}^{(N)} \cdot \boldsymbol{e}_{k}(\boldsymbol{Y}_{1}^{(i)}, \boldsymbol{D}_{1}^{(i)}) + \boldsymbol{X}_{1}^{(i)}, \quad 1 \leq i \leq N$$

Least-Squares-Algorithm: Does it work?

Issues to consider:

- Suitability of regression approach
- Convergence of the algorithm
- Bias (finite number of basis functions, estimation of regression parameters)
- Choice of regression function
- ⇒ Ultimate test: How well does it perform in a somewhat realistic framework?

Example: A Participating Life Insurance Contract

- Term-fix insurance contract with minimum interest rate guarantee
- Bonus distribution models obligatory payments to the policyholder (MUST-case from Bauer et al. (2006))
- No mortality \Rightarrow no biometric risk
- Dividends d_t are paid to the shareholders
- Company obtains additional contribution c_t from its shareholders in case of a shortfall
- Asset model: Extended Black-Scholes model with stochastic interest rates (see Bauer/Zaglauer (2008))

Results

Bias in Nested Simulations, N = 100,000

- Choice of K₁ significantly affects SCR!
- Estimation of θ_{α} via pilot simulation with N = 100,000, $K_1 = 100$ and regression/finite difference approximation:

 $\hat{\theta}_{\alpha} \approx 0.027 \Rightarrow (K_0; N; K_1) = (2,500,000; 550,000; 400)$ approx. optimal

Calculation takes about 35 minutes.

Comparison of different (K_0 ; N; K_1) with $\Gamma = 222,500,000$

 \rightarrow Based on 120 runs of simulations (approx. 35 min each)

N	K_1	Mean	Empirical	Estimated	Estimated	Corrected
		(SCR)	Variance	Bias	MSE	Mean
275,000	800	1319.6	28.0	1.5	30.2	1318.1
550,000	400	1320.5	19.3	3.0	28.2	1317.5
1,100,000	200	1323.1	8.8	5.9	43.9	1317.2
2,200,000	100	1328.9	4.4	11.8	143.2	1317.1

Table: Choice of *N* and K_1 ($K_0 = 2,500,000$), 120 runs

Choice of the Regression Function in the LSM Approach

#	Regression Function	Mean
		(SCR)
1	$\hat{\alpha}_0^{(N)} + \hat{\alpha}_1^{(N)} \cdot A_1$	921.1
2	$\hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2}$	1141.9
3	$ \hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} $	1309.2
4	$ \hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} + \hat{\alpha}_{4}^{(N)} \cdot r_{1}^{2} $	1330.1
5	$ \hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} + \hat{\alpha}_{4}^{(N)} \cdot r_{1}^{2} + \hat{\alpha}_{5}^{(N)} \cdot L_{1} $	1297.5
6	$ \hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} + \hat{\alpha}_{4}^{(N)} \cdot r_{1}^{2} + \hat{\alpha}_{5}^{(N)} \cdot L_{1} + \hat{\alpha}_{6}^{(N)} \cdot x_{1} $	1302.5
7	$ \hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} + \hat{\alpha}_{4}^{(N)} \cdot r_{1}^{2} + \hat{\alpha}_{5}^{(N)} \cdot L_{1} + \hat{\alpha}_{6}^{(N)} \cdot x_{1} + \hat{\alpha}_{7}^{(N)} \cdot A_{1} \cdot e^{r_{1}} $	1309.2
8	$ \hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} + \hat{\alpha}_{4}^{(N)} \cdot r_{1}^{2} + \hat{\alpha}_{5}^{(N)} \cdot L_{1} + \hat{\alpha}_{6}^{(N)} \cdot x_{1} + \hat{\alpha}_{7}^{(N)} \cdot A_{1} \cdot e^{r_{1}} $	
	$+\hat{\alpha}_8^{(N)}\cdot L_1\cdot e^{r_1}$	1316.5
9	$\hat{\alpha}_{0}^{(N)} + \hat{\alpha}_{1}^{(N)} \cdot A_{1} + \hat{\alpha}_{2}^{(N)} \cdot A_{1}^{2} + \hat{\alpha}_{3}^{(N)} \cdot r_{1} + \hat{\alpha}_{4}^{(N)} \cdot r_{1}^{2} + \hat{\alpha}_{5}^{(N)} \cdot L_{1} + \hat{\alpha}_{6}^{(N)} \cdot x_{1} + \hat{\alpha}_{7}^{(N)} \cdot A_{1} \cdot e^{r_{1}}$	
	$+\hat{\alpha}_{8}^{(N)} \cdot L_{1} \cdot e^{r_{1}} + \hat{\alpha}_{9}^{(N)} \cdot e^{A_{1}/10000}$	1317.5

Table: Estimated SCR for different choices of the regression function, N = 550,000

- Influence of basis function is quite pronounced.
- For "good" choices, the estimated SCR is close to the result obtained via Nested Simulations.
- "Good" choices appear to remain "good" for different parameters.
- Calculation takes only about 30 seconds.

Comparison of different *N* in the LSM Approach

Table: Results for the LSM estimator, 120 runs

Summary

- Nested Simulations:
 - → Inadequate choice of (K_0, N, K_1) in nested simulations may yield erroneous outcomes.
 - $\rightarrow\,$ Immense computational effort to achieve accurate results.
- LSM:
 - \rightarrow Fast approach to achieve relatively accurate results.
 - → Results are similarly positive when calculating SCR for longer time horizons ("richer sigma field").
 - → Care is required in choice of regression function even though simple algorithms yield good results in our applications.
 - $\rightarrow\,$ Open question: theoretical results regarding validity of approximation.

Future Research

- Improvement of the Nested Simulations Approach by variance reduction techniques, QMC and screening procedures.
- Use of statistical methods to determine the regression function.
- Analysis of other risk measures, such as TVaR.

Literature

- D. Bauer, R. Kiesel, A. Kling, and J. Ruß: Risk-neutral valuation of participating life insurance contracts. *Insurance: Mathematics and Economics*, 39:171–183, 2006.
- E. Clément, D. Lamberton, and P. Protter: An analysis of a least squares regression method for American option pricing. *Finance and Stochastics*, 6:449–471, 2002.
- M.B. Gordy and S. Juneja: Nested simulations in portfolio risk measurement, 2008. Finance and Economics Discussion Series, submitted to Management Science.
- F.A. Longstaff and E.S. Schwartz: Valuing American options by simulation: A simple least-squares approach. *The Review of Financial Studies*, 14:113–147, 2001.
- D. Pfeifer and D. Strassburger: Solvency II: stability problems with the SCR aggregation formula. *Scandinavian Actuarial Journal*, 1:61–77, 2008.
- A. Sandström: Solvency II: Calibration for skewness. *Scandinavian Actuarial Journal*, 2:126–134, 2007.
- K. Zaglauer and D. Bauer: Risk-neutral valuation of participating life insurance contracts in a stochastic interest rate environment. *Insurance: Mathematics and Economics*, 43:29–40, 2008.

Contact

Andreas Reuß Institute for Finance and Actuarial Sciences Helmholtzstr. 22 89081 Ulm Germany

a.reuss@ifa-ulm.de

Thanks for your attention!