

Helmholtzstraße 22 D-89081 UIm phone +49 (0) 731/50-31230 fax +49 (0) 731/50-31239 email ifa@ifa-uIm.de

Matthias Börger

September 2009

ifa

Institut für Finanz- und Aktuarwissenschaften

Introduction

- Longevity risk = risk of insureds on average surviving longer than expected
 - Significant risk for pension funds and annuity providers
 - Systematic and non-hedgeable risk
 - \rightarrow Explicitly accounted for under Solvency II
- General concept for Solvency Capital Requirement (SCR) under Solvency II
 - SCR = 99.5% Value-at-Risk (VaR) of Available Capital over 1 year
 - "Capital necessary to cover losses over next year with at least 99.5% probability"
 - Stochastic (internal) models required whose implementation is costly and highly sophisticated
- Solvency II Standard model
 - Scenario-based rather than stochastic, modular approach
 - Longevity risk: SCR = change in Net Asset Value (NAV = assets best estimate liabilities) due to longevity shock
 - Longevity shock is a permanent 25% reduction of mortality rates for all ages
 - Value of 25% is mainly based on what UK insurance companies in 2004 regarded consistent with VaR concept (CEIOPS (2007))

2

ifa

Objective

Motivation of the standard model longevity stress is rather poor

- I UK insurance companies regarded shock between 5% and 35% as appropriate
- 1 25% longevity shock could significantly misjudge the true risk
- I Analysis of the longevity stress is required
- Comparison with VaR for longevity risk
- Questions regarding structure and calibration:
- Is a constant shock for all ages and maturities reasonable?
 - QIS4 participants question whether trend risk is appropriately accounted for (CEIOPS (2008b))
- Is the shock magnitude of 25% adequate?
 - QIS4 participants regard shock as very high, internal models required significantly less capital (CEIOPS (2008b))

3

How can the standard model longevity stress possibly be improved?

Agenda

- Introduction
- Forward mortality model
- Model setup
- **Comparison of SCR formulas for longevity risk**
- Modification of standard model longevity stress

Risk Margin

- Approximations
- Cost of capital rate
- Insights into longevity risk pricing

Conclusion

4

Institut für Finanz- und

Aktuarwissenschaften

ifa

The Forward Mortality Model

- **Computation of VaR requires stochastic modeling of mortality**
- We use slightly modified version of forward model of Bauer et al. (2008, 2009)
- Advantage of forward model: no nested simulations are required
- Model is specified in Forward Mortality Framework (for details see Bauer et al. (2008))

$$\boldsymbol{\mu}_{t}(T, x_{0}) = -\frac{\partial}{\partial T} \log \left\{ E_{P} \Big|_{T} p_{x_{0}} \Big| \mathfrak{I}_{t} \right\}$$

- Dynamics $d\mu_t(T, x_0) = \alpha(t, T, x_0)dt + \sigma(t, T, x_0)dW_t$, $\mu_0(T, x_0) > 0$
- Drift condition: α fully specified by volatility σ
- Here: σ deterministic, W finite dimensional Brownian motion
- SCR/VaR is computed empirically based on 50,000 paths for the liabilities

Model Setup

- Reference company situated in the UK, t=0 in 2007
- Risk-free interest rates: QIS4 term structure for UK
- Mortality rates: UK Life Office Pensioners in 2007

Standard contracts:

- Life annuities with yearly payments of fixed amount in arrears
- No options or guarantees, no fees, no surplus participation

Company's asset strategy:

- **Risk-free assets only** \rightarrow no equity risk, credit risk etc.
- Asset cash flows coincide with liability cash flows
- Complete hedge against changes in interest rates
 → no interest rate risk and future interest rates are known

6

Institut für Finanz- und Aktuarwissenschaften

ifa

Comparison of SCR Formulas – Basis Case

Life annuity for a 65-year old paying GBP 1000 yearly in arrears

	L_0	$L_1 - CF_1$	SCR	SCR/L_0
Shock approach	12619.28	14238.81	869.87	6.9%
VaR approach	12619.28	14050.62	691.59	5.5%

- Shock approach demands about 26% more capital
- This corresponds to 1.4% of the liabilities
- The deviation in SCRs is significant and the standard model longevity stress might overestimate the true risk
- Obvious questions:

- Does the deviation in SCRs change with age?
- For which maturities/durations do deviations occur?

Institut für Finanz- und Aktuarwissenschaften

ifa

Comparison of SCR Formulas – Different Ages

Different initial ages for life annuities paying GBP 1000 yearly in arrears

Age	L_0	SCR^{shock}	$\frac{SCR^{shock}}{L_0}$	SCR^{VaR}	$\frac{SCR^{VaR}}{L_0}$	$\frac{\Delta SCR}{SCR^{VaR}}$	$\frac{\Delta SCR}{L_0}$
55	15671.10	657.23	4.2%	729.88	4.7%	-10.0%	-0.5%
65	12619.28	869.87	6.9%	691.59	5.5%	25.8%	1.4%
75	8941.83	1009.81	11.3%	513.27	5.7%	96.7%	5.6%
85	4940.13	1003.43	20.3%	304.89	6.2%	229.1%	14.1%
95	2549.75	818.58	32.1%	214.38	8.4%	281.8%	23.7%
105	1413.19	646.23	45.7%	180.79	12.8%	257.4%	32.9%

- SCR in shock approach first increases and then decreases
 - Reason: structure of the shock (the larger the mortality rates the larger the shocks)
- SCR in VaR approach decreases with age and liabilities which seems more intuitive

8

- Deviation becomes enormous for old ages
- 1 25% shock seems far too large
- Sole adjustment of shock magnitude does not seem appropriate
- \rightarrow Structural shortcoming of the standard model longevity stress:

Age-dependent shock magnitude seems more appropriate

Institut für Finanz- und Aktuarwissenschaften

ifa

Comparison of SCR Formulas – Different Maturities

Decomposition of annuity in series of endowment contracts for a 65-year old paying GBP 1000 at maturity T

- Absolute SCRs are rather similar up to T=20
- Thereafter, shock approach demands significantly more capital (larger shocks)
- Relative deviations in SCRs vary considerably
- → Structural shortcoming of the standard model longevity stress:

Maturity-dependent shock (magnitude) seems more appropriate

9

Institut für Finanz- und Aktuarwissenschaften

ifa

Comparison of SCR Formulas – Deferred annuities

Age	L_0	SCR^{shock}	$\frac{SCR^{shock}}{L_0}$	SCR^{VaR}	$\frac{SCR^{VaR}}{L_0}$	$\frac{\Delta SCR}{SCR^{VaR}}$	$\frac{\Delta SCR}{L_0}$
30	3205.97	217.90	6.8%	382.66	11.9%	-43.1%	-5.1%
35	3851.54	268.30	7.0%	428.53	11.1%	-37.4%	-4.2%
40	4623.92	329.89	7.1%	489.79	10.6%	-32.7%	-3.5%
45	5549.28	404.85	7.3%	561.71	10.1%	-27.9%	-2.8%
50	6676.64	495.51	7.4%	631.44	9.5%	-21.5%	-2.0%
55	8100.16	604.29	7.5%	688.98	8.5%	-12.3%	-1.1%
60	9978.02	733.27	7.4%	724.06	7.3%	1.3%	0.1%

Deferred annuities of GBP 1000 in arrears starting at age 65

- In both approaches, the SCRs increase with age
- For young ages, the VaR requires significantly more capital
- \rightarrow The shock approach seems to underestimate the long-term risk
- \rightarrow Again, a longevity stress independent of age and maturity seems inadequate

10

ifa

Modified Standard Model Longevity Stress

- Significant structural shortcomings of current standard model longevity stress: Age and maturity-dependent stress seems necessary to appropriately assess longevity risk
- Modified stress according to volatility in forward model
 - **I** Keep structure of one-off shock (\rightarrow integration in standard model remains the same)
 - I Shock T-year survival probabilities by setting them to individual 99.5% quantiles:

$$E_{P}\left[T p_{x_{0}}^{(T)} | \mathfrak{I}_{1}\right] = E_{P}\left[T p_{x_{0}}^{(T)}\right] \cdot \exp\left\{-\int_{0}^{T} \int_{0}^{1} \alpha(s, u, x_{0}) ds + \int_{0}^{1} \sigma(s, u, x_{0}) dW_{s} du\right\}$$

A matrix of shock factors would have to be provided by supervisory authorities

11

- Any diversification effects are neglected
 - Additional SCR between 5% and 10% for reasonable portfolios of immediate and deferred annuities
 - Acceptable shortcoming given the enormous structural improvements
 - Standard model is to be conservative

Institut für Finanz- und Aktuarwissenschaften

ifa

Risk Margin Approximations

- Technical Provisions ("market value" of liabilities) consist of best estimate liabilities and Risk Margin
- **Risk Margin = capital required to guarantee orderly run-off of a portfolio in case of insolvency**
- **Computation via cost of capital approach (CEIOPS (2009)):**

$$RM = \sum_{t \ge 0} \frac{CoC \cdot SCR_t}{\left(1 + i_{t+1}\right)^{t+1}}$$

- Exact computation of Risk Margin practically impossible
- Approximations have been proposed (CEIOPS (2008a)):
 - Assumption of best estimate mortality evolution ("exact" computation)

$$RM^{(I)} = \sum_{t \ge 0} \frac{CoC}{(1+i_{t+1})^{t+1}} \cdot SCR_t^{BE}$$

Approximation of future SCRs

$$RM^{(II)} = \sum_{t \ge 0} \frac{CoC}{(1+i_{t+1})^{t+1}} \cdot 25\% \cdot q_t^{av} \cdot 1.1^{(dur_t - 1)/2} \cdot dur_t \cdot L_t$$

Assumption of constant ratio of SCRs and liabilities over time

$$RM^{(III)} = \sum_{t \ge 0} \frac{CoC}{(1+i_{t+1})^{t+1}} \cdot \frac{SCR_0}{L_0} \cdot L_t$$

Approximation of Risk Margin via modified duration of liabilities

12

$$RM^{(IV)} = CoC \cdot dur_0 \cdot SCR_0$$

© September 2009 Deterministic Shock vs. Stochastic Value-at-Risk

ifa

Risk Margin Approximations (ctd.)

			25% longevity shock			Modified longevity shock			
Portfolio	Method	L_0	RM	Rel. dev.	RM/L_0	RM	Rel. dev.	RM/L_0	
	(I)	36394.73	2383.87		6.6%	1143.08		3.1%	
Immediate	(II)	36394.73	2751.71	15.4%	7.6%	n/a	n/a	n/a	
annuities	(III)	36394.73	1957.24	-17.9%	5.4%	988.11	-13.6%	2.7%	
	(IV)	36394.73	2051.70	-13.9%	5.6%	1035.80	-9.4%	2.9%	
	(I)	88165.37	11240.74		12.8%	12159.44		13.8%	
Deferred	(II)	88165.37	10126.91	-9.9%	11.5%	n/a	n/a	n/a	
annuities	(III)	88165.37	10034.70	-10.7%	11.4%	13206.71	8.6%	15.0%	
	(IV)	88165.37	10488.60	-6.7%	11.9%	13804.08	13.5%	15.7%	

13

Risk Margin approximations are rather crude

- Wide range of values is problematic:
 - Comparisons of companies' solvency situations can get blurred due to use of different risk margin approximations
 - Companies might choose approximation which yields the smallest value

Performance of popular assumption (III) of constant ratios of SCRs and liabilities is rather poor

- In general, ratios seem to increase over time
- Haslip (2008) makes the same observation for non-life insurance
- Dependence e.g. on average age in portfolio might improve proxi

© September 2009

Deterministic Shock vs. Stochastic Value-at-Risk

Institut für Finanz- und Aktuarwissenschaften

ifa

The Cost of Capital Rate

- Ongoing discussion on adequate calibration of cost of capital rate
 - Calibration is crucial (Risk Margin is linear in cost of capital rate)
 - Currently set to 6%
 - Values between 2% and 8% are regarded as reasonable (see CEIOPS (2009))
- Inferences on calibration by comparison with hypothetical market prices for longevity risk
 - I Idea: If there was a market, the Risk Margin should coincide with the markup in this market
 - Forward modeling framework: Risk-adjusted survival probabilities can be derived via a deterministic "market price of longevity risk process":

$$E_{\mathcal{Q}}\left[T p_{x_0}^{(T)} \middle| \mathfrak{T}_t\right] = \exp\left\{-\int_{0}^{T} \int_{0}^{u} \sigma(u, s, x_0) \cdot \lambda(s) \, ds \, du\right\} \cdot E_{\mathcal{P}}\left[T p_{x_0}^{(T)} \middle| \mathfrak{T}_t\right]$$

Setup: Risk Margin = risk-adjusted liabilities – best estimate liabilities \rightarrow Sharpe ratio

Portfolio	25% longe	vity shock	Modified longevity shock		
of contracts	RM	λ	RM	λ	
Immediate annuities	2383.87	18.6%	1143.08	13.2%	
Deferred annuities	11240.74	8.7%	12159.44	8.9%	

14

The Sharpe ratios are reasonable but rather small

 \rightarrow The cost of capital rate of 6% does not seem overly conservative

Institut für Finanz- und Aktuarwissenschaften

ifa

Market Prices for Longevity Derivatives

- Alternative interpretation of Sharpe ratios: willingness to pay for longevity risk securitization
- Rationale: Company may be indifferent between keeping and transferring longevity risk if price for securitization coincides with Risk Margin
 - Keeping the risk implies the payment of cost of capital to providers of solvency capital: Risk Margin is present value of these cost of capital
 - **I** Transferring risk implies payment of markup above best estimate liabilities
- Influence of other effects, e.g.
 - Expected own cost of capital lower than Risk Margin
 - Diversification with other risks
 - Strategic reasons (e.g. abandonment of line of business)
 - Difficulties in raising solvency capital
- Effects differently relevant for different companies
- Market's appetite for longevity risk will finally decide on prices
- Nevertheless, the Risk Margin can provide valuable insights in and starting point for pricing of longevity derivatives

15

ifa

Conclusion

- Structural shortcomings in the current standard model longevity stress
 - Possibly significant overestimation or underestimation of true risk
 - Age and maturity dependent longevity stress required

Proposition of modified shock

- Simple in structure (one-off shock)
- Age and maturity dependent
- **Conservative** due to waiving of diversification effects
- Risk Margin approximations yield wide range of values
 - Comparison of solvency situations difficult
 - Undesired incentives (minimization of Risk Margin)
- Assumption of SCR proportional to liabilities in general not appropriate
 - **Risk Margin might** be too small due to mostly increasing ratio of SCRs and liabilities
- **Cost of capital rate of 6% does not seem overly conservative**
- **Solvency requirements** can provide valuable insights into pricing of longevity derivatives
 - **Capital requirements determine companies** willingness to pay for securitization

Institut für Finanz- und Aktuarwissenschaften

ita

References

- Bauer, D., Börger, M., Ruß, J., Zwiesler, H.-J., 2008. The Volatility of Mortality. Asia-Pacific Journal of Risk and Insurance, 3: 184–211.
- Bauer, D., Börger, M., Ruß, J., 2009. On the Pricing of Longevity-Linked Securities. To appear in: Insurance: Mathematics and Economics.
- CEIOPS, 2007. QIS3 Technical Specifications, Part I: Instructions. Available at: http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF.
- CEIOPS, 2008a. QIS4 Technical Specifications. Available at: http://www.ceiops.eu/media/docman/Technical%20Specifications%20QIS4.doc.
- CEIOPS, 2008b. CEIOPS' Report on its fourth Quantitative Impact Study (QIS4) for Solvency II. Available at: http://www.ceiops.eu/media/files/consultations/QIS/CEIOPS-SEC-82-08%20QIS4%20Report.pdf.
- CEIOPS, 2009. Consultation Paper No. 42, Draft CEIOPS' Advice for Level 2 Implementing Measures on Solvency II: Article 85(d) - Calculation of the Risk Margin. Available at: http://www.ceiops.eu/media/files/consultations/consultationpapers/CP42/CEIOPS-CP-42-09-L2-Advice-TP-Risk-Margin.pdf.
- Haslip, G., 2008. Risk Assessment. The Actuary, Dec 2008.
- Lin, Y., Cox, S., 2005. Securitization of Mortality Risks in Life Annuities. The Journal of Risk and Insurance, 72: 227–252.
- Loeys, J., Panigirtzoglou, N., Ribeiro, R., 2007. Longevity: A Market in the Making. Working Paper, JPMorgan Global Market Strategy.

17