On the Pricing of Longevity-Linked Securities

Daniel Bauer
Matthias Börger
Jochen Ruß

March 2009
Agenda

- Introduction
- Different Approaches for Pricing Longevity-Linked Securities
- Theoretical Comparison of the Approaches
- Empirical Comparison of the Approaches
- An Option-Type Longevity Derivative
- Conclusion
Introduction

- Longevity risk = The risk that future mortality improvement exceeds today’s assumptions
 - Important risk factor for annuity providers and pension funds
 - Importance of this risk will increase in the future
 - reduction of benefits from public pension systems
 - tax incentives for annuitization
 - Securitization is seen as a solution for managing this risk:
 - In the literature: Survivor bonds; survivor swaps, longevity bonds,…
 - In practice: First attempt to issue a longevity linked security failed.
 - However: There appears to be a consensus that suitable instruments will be available in the near future
 - Interesting question: How to price such instruments
 - What are suitable (actuarial or economic) methods?
 - How can such methodologies be applied (calibration, etc.)?
Different Approaches for Pricing Longevity-Linked Securities

- Price of a longevity derivative depends on the estimate of uncertain future mortality trends and the degree of uncertainty of this estimate → Mortality risk premium (MRP)

- Problem: There are no liquidly traded securities → MRP can not be observed in the market

- Consequence: Different pricing methods have been proposed

- CAPM/CCAPM based approach (Friedberg and Webb 2007)
 - MRP suggested by the models is very low (MRP-puzzle similar to equity premium puzzle)
 - → Probably limited applicability of this approach

- Instantaneous Sharpe Ratio (ISR) based approach (Milevsky et al. 2005; Bayraktar et al. 2008)
 - Investor in longevity risk requires compensation according to some ISR (λ)
 - Return in excess of risk free return = λ * standard deviation (after diversifiable risk is “hedged”)
 - For large portfolio size this coincides with a change of probability measure (P→Q) with a constant market price of risk

 - Adjust the cdf of the future lifetime by a Wang transform to account for risk:

 \[q^Q_x = \Phi(\Phi^{-1}(q^P_x) - \theta) \text{ or } q^Q_x = \Psi(\Phi^{-1}(q^P_x) - \theta) \]
Theoretical Comparison of the Approaches

Our methodology: Establish the different approaches in a common framework

- “Forward Mortality Framework” (Details see Bauer et al. (2008))
- $\mu_t(T, x_0) = -\frac{\partial}{\partial T} \log \mathbb{E}_\mathbb{P}\left[\prod_{t} p_{x_0} \right]$
- Dynamics $d\hat{\mu}_t(T, x_0) = \hat{\alpha}(t, T, x_0)dt + \hat{\sigma}(t, T, x_0)dW_t, \quad \hat{\mu}_0(T, x_0) > 0$
- Drift condition: $\hat{\alpha}$ only depends on volatility (as in HJM forward interest rate modeling)
- Here:
 - W finite dimensional Brownian motion
 - $\hat{\sigma}$ and market price of risk deterministic
 - Volatilities and hence dynamics under measures \mathbb{P} and \mathbb{Q} coincide
- Initial “risk-adjusted” forward mortality curves derived from best estimate curve using both pricing methods
If there is one, which is the better of the two approaches?

- Wang transform not coherent with a “generic” pricing model in the forward framework if more than one age cohort is considered.
- In line with Pelsser (2008): Inconsistency with arbitrage-free prices
- Hence, the Sharpe ratio approach is the more general and better approach

What is a good basis for determining θ and λ?

- Loeys et al.: (Sharpe ratio from) stock markets
 - But: different characteristics
 - Adequacy questionable!
- Lin & Cox: Annuity Prices
 - Strong empirical evidence that there is a significant mortality risk premium embedded in annuity prices
 - Possibly, there are also risk premiums for other sources of risk (e.g. non-systematic mortality risk)
 - Hence, annuity prices provide at least an upper bound for risk premiums in longevity derivative pricing
Empirical Comparison of the Approaches

- We use the “Volatility of Mortality” model from Bauer et al (2008) and recalibrate to UK data
- We derive Sharpe Ratios and Wang Transform parameters from monthly UK annuity quotes (January 2000 to December 2006)

- We find significant correlation between the market price of mortality risk and stock markets / interest rates
 → Assumption of independence between risk-adjusted mortality evolution and financial markets seems to be inadequate
Empirical Comparison of the Approaches (ctd.)

- We then apply different pricing methodologies to the EIB/BNP-Bond
 - Best estimate valuation
 - Sharpe Ratio calibrated to UK annuity quotes
 - Sharpe Ratio from stock markets
 - 1 factor Wang Transform calibrated to UK annuity quotes
 - 1 factor Wang Transform calibrated to US annuity quotes (Calibration from Lin and Cox 2005)
 - 2 factor Wang Transform calibrated to UK annuity quotes
 - 2 factor Wang Transform calibrated to US annuity quotes (Calibration from Lin and Cox 2006)

- Design of the EIB/BNP-Bond
 - Notional = GBP 50m; Pays annual coupons for 25 years
 - Coupons depend on mortality experience of English and Welsh males aged 65 in 2003
- The EIB/BNP-Bond was offered at GBP 540m
Empirical Comparison of the Approaches (ctd.)

- **Lin and Cox (2006): Risk premium is very high → Bond is unattractive**
 - Conclusion is based on a Wang Transform approach

- **Cairns et al. (2006): Price seems reasonable**
 - Conclusion is based on an approach similar to an Instantaneous Sharpe Ratio approach

- We “repriced” the bond using the 7 methods above and two hypothetical bonds of the same design but being offered in November 2002 and November 2006, respectively

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>na</td>
<td>540</td>
<td>na</td>
</tr>
<tr>
<td>BE</td>
<td>512.80</td>
<td>528.85</td>
<td>548.15</td>
</tr>
<tr>
<td>SRUK</td>
<td>520.25</td>
<td>550.33</td>
<td>561.68</td>
</tr>
<tr>
<td>SRLOE</td>
<td>555.10</td>
<td>576.16</td>
<td>600.94</td>
</tr>
<tr>
<td>1WTUK</td>
<td>527.16</td>
<td>569.67</td>
<td>572.84</td>
</tr>
<tr>
<td>1WTL C</td>
<td>544.75</td>
<td>559.42</td>
<td>578.89</td>
</tr>
<tr>
<td>2WTUK</td>
<td>526.83</td>
<td>566.71</td>
<td>568.49</td>
</tr>
<tr>
<td>2WTL C</td>
<td>530.36</td>
<td>544.36</td>
<td>563.23</td>
</tr>
</tbody>
</table>

- Significant differences between issue dates and 7 pricing models
 - Due to changes in interest rates, mortality projections and Sharpe Ratio / Wang Transform parameter calibrations

- All “risk-adjusting” models result in values that exceed the quoted price

- Quoted price in the middle of best estimate and risk-adjusted valuation
 → The Bond seems to have been a “good deal” or at least fairly priced
Empirical Comparison of the Approaches (ctd.)

- If the EIB/BNP-Bond was a fair if not good deal, two questions arise:
 - Why did Lin & Cox regard the Bond as too expensive?
 - They used a different yield curve and survival rates based on realized mortality rates in 2003 as opposed to projections
 - Why was it not successfully placed?
 - Based on population as opposed to inureds (basis risk)
 - Fixed maturity of the bond \Rightarrow tail risk is not hedged
 - Capital intensive hedge

- We conclude that the financial engineering and not the pricing was the reason for the failure of the EIB/BNP-Bond.
 - Therefore, in the final section, we analyzed a call-option-type longevity derivative
An Option-Type Longevity Derivative

Payoff: \(C_T = \left(T \, p_{x_0} - K(T) \right)^+ \) with strike \(K(T) = (1 + a)E_p \left[T \, p_{x_0} \right], \ a > 0 \)

By suitable adjustment of the strike (choice of the parameter \(a \)), the insurer can decide, which portion of the risk to keep

Such derivatives can be priced within our framework with a Black-type formula (Bauer 2007)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(T = 5)</th>
<th>(T = 10)</th>
<th>(T = 15)</th>
<th>(T = 20)</th>
<th>(T = 25)</th>
<th>(T = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>0.00247</td>
<td>0.01513</td>
<td>0.02911</td>
<td>0.03424</td>
<td>0.02759</td>
<td>0.01555</td>
</tr>
<tr>
<td>SRUK</td>
<td>0.00450</td>
<td>0.03605</td>
<td>0.07968</td>
<td>0.11015</td>
<td>0.10587</td>
<td>0.07515</td>
</tr>
<tr>
<td>SRLOE</td>
<td>0.00222</td>
<td>0.02473</td>
<td>0.04336</td>
<td>0.05166</td>
<td>0.04495</td>
<td>0.02800</td>
</tr>
<tr>
<td>1WTUK</td>
<td>0.00073</td>
<td>0.01615</td>
<td>0.03679</td>
<td>0.04826</td>
<td>0.04425</td>
<td>0.02982</td>
</tr>
<tr>
<td>2WTLC</td>
<td>0.00063</td>
<td>0.01532</td>
<td>0.03537</td>
<td>0.04633</td>
<td>0.04217</td>
<td>0.02825</td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>0.00024</td>
<td>0.00934</td>
<td>0.02409</td>
<td>0.03082</td>
<td>0.02567</td>
<td>0.01473</td>
</tr>
<tr>
<td>SRUK</td>
<td>0.00033</td>
<td>0.01245</td>
<td>0.03299</td>
<td>0.04413</td>
<td>0.03875</td>
<td>0.02390</td>
</tr>
<tr>
<td>SRLOE</td>
<td>0.00078</td>
<td>0.02547</td>
<td>0.07048</td>
<td>0.10357</td>
<td>0.10194</td>
<td>0.07332</td>
</tr>
<tr>
<td>1WTUK</td>
<td>0.00071</td>
<td>0.01440</td>
<td>0.03321</td>
<td>0.04248</td>
<td>0.03737</td>
<td>0.02306</td>
</tr>
<tr>
<td>1WTLC</td>
<td>0.00097</td>
<td>0.01645</td>
<td>0.03681</td>
<td>0.04721</td>
<td>0.04235</td>
<td>0.02682</td>
</tr>
<tr>
<td>2WTUK</td>
<td>0.00066</td>
<td>0.01006</td>
<td>0.03091</td>
<td>0.04299</td>
<td>0.04167</td>
<td>0.02860</td>
</tr>
<tr>
<td>2WTLC</td>
<td>0.00005</td>
<td>0.00947</td>
<td>0.02964</td>
<td>0.04217</td>
<td>0.03966</td>
<td>0.02706</td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>0.00024</td>
<td>0.00368</td>
<td>0.01726</td>
<td>0.02576</td>
<td>0.02275</td>
<td>0.01345</td>
</tr>
<tr>
<td>SRUK</td>
<td>0.00033</td>
<td>0.00525</td>
<td>0.02442</td>
<td>0.03768</td>
<td>0.03492</td>
<td>0.02216</td>
</tr>
<tr>
<td>SRLOE</td>
<td>0.00078</td>
<td>0.01283</td>
<td>0.05663</td>
<td>0.09316</td>
<td>0.09559</td>
<td>0.07033</td>
</tr>
<tr>
<td>1WTUK</td>
<td>0.00071</td>
<td>0.00628</td>
<td>0.02460</td>
<td>0.03619</td>
<td>0.03362</td>
<td>0.02136</td>
</tr>
<tr>
<td>1WTLC</td>
<td>0.00097</td>
<td>0.00742</td>
<td>0.02757</td>
<td>0.04048</td>
<td>0.03831</td>
<td>0.02495</td>
</tr>
<tr>
<td>2WTUK</td>
<td>0.00066</td>
<td>0.00404</td>
<td>0.02272</td>
<td>0.03756</td>
<td>0.03767</td>
<td>0.02666</td>
</tr>
<tr>
<td>2WTLC</td>
<td>0.00005</td>
<td>0.00375</td>
<td>0.02170</td>
<td>0.03592</td>
<td>0.03577</td>
<td>0.02519</td>
</tr>
</tbody>
</table>

As expected: \(\mathcal{N} \) in \(T \)

As expected: \(\mathcal{N} \) in \(a \)

Sometimes large differences despite calibration to the same data

2 questions:

- Where do these differences come from?
- Which approach yields the “correct” price?
An Option-Type Longevity Derivative

- The risk premium allocations differ considerably between the pricing approaches.

![Graph showing best estimate probabilities for different approaches over time.](image)
An Option-Type Longevity Derivative

The risk premium allocations differ considerably between the pricing approaches:

- **short maturities**
 - red: Sharpe ratio approach
 - green: 1-factor Wang transform approach
 - blue: 2-factor Wang transform approach

- **large maturities**

 Sharpe ratio approach: risk premium proportional to aggregated risk

 Wang Transform: risk premium allocation independent of actual risk

 → Adequacy of the Wang Transform again questionable
Conclusion

- Overview and comparison of different pricing approaches

- Risk premium implied by the Wang Transform induces inconsistencies if securities on different ages are traded
 - Even if just one security is traded, the “risk premium allocation” appears questionable

- We conclude that currently a “market price of longevity risk” should be derived from annuity quotes
 - Adopting Sharpe Ratios from equity markets appears to have weaknesses

- We identify significant correlation between the market price of longevity risk and stock markets / interest rates
 - Assuming independence between risk-adjusted mortality evolution and financial markets seems to be inadequate

- The EIB/BNP-Bond appears to have been offered at a fair if not good price
 - Reason for failure was financial engineering rather than pricing
www.mortalityrisk.org

- Exchange platform for latest papers and results on mortality/longevity risk and modeling
- Run by a Research Training Group at Ulm University
- Please feel encouraged to submit your papers!
- submission@mortalityrisk.org
References