

Deterministic Shock vs. Stochastic Value-at-Risk

An Analysis of the Solvency II Standard Model Approach to Longevity Risk

Matthias Börger Ulm University & ifa Ulm

Introduction

- Longevity risk = risk of insured on average surviving longer than expected
 - Significant risk for pension funds and annuity providers
 - − Systematic and non-hedgeable risk
 → Explicitly accounted for under Solvency II
- General concept for Solvency Capital Requirement (SCR) under Solvency II
 - SCR = 99.5% Value-at-Risk (VaR) of Available Capital over 1 year
 - "Capital necessary to cover losses over next year with at least 99.5% probability"
 - Stochastic (internal) models required whose implementation is costly and sophisticated
- Solvency II Standard model
 - Scenario-based rather than stochastic, modular approach
 - Longevity risk: SCR = change in Net Asset Value (NAV) due to longevity shock
 - Longevity shock is a permanent 25% reduction of mortality rates for all ages

Agenda

Cape Town Afrique du Sud iCA2010 CiA

- Introduction
- Mortality modeling
- Model setup
- Comparison of SCR formulas for longevity risk
- Modification of standard model longevity stress
- Analysis of Risk Margin
- Summary

Mortality Modeling

- In 1-year setting, longevity risk consists of two components:
 - Low realized mortality in the one year
 - Decrease in expected future mortality
- A stochastic mortality model must account for both components
 - Well known spot mortality models do not cover possible changes in expected mortality
 - Forward mortality model is required
- We use slightly modified version of forward model of Bauer et al. (2008, 2009)

Model Setup

- Reference company situated in the UK
- Company is solely exposed to longevity risk
- Risk-free interest rates: QIS4 term structure for UK for 2007
- Initial mortality rates: UK Life Office Pensioners in 2007
- Standard contracts:
 - Immediate and deferred life annuities with yearly payments of fixed amount in arrears
 - No options or guarantees, no fees, no surplus participation

Comparison of SCR Formulas – Different Ages

• Life annuities paying GBP 1000 yearly in arrears for different ages

Age	L_0	SCR^{shock}	$\frac{SCR^{shock}}{L_0}$	SCR^{VaR}	$\frac{SCR^{VaR}}{L_0}$	$\frac{\Delta SCR}{SCR^{VaR}}$	$\frac{\Delta SCR}{L_0}$
55	15671.10	657.23	4.2%	729.88	4.7%	-10.0%	-0.5%
65	12619.28	869.87	6.9%	691.59	5.5%	25.8%	1.4%
75	8941.83	1009.81	11.3%	513.27	5.7%	96.7%	5.6%
85	4940.13	1003.43	20.3%	304.89	6.2%	229.1%	14.1%
95	2549.75	818.58	32.1%	214.38	8.4%	281.8%	23.7%
105	1413.19	646.23	45.7%	180.79	12.8%	257.4%	32.9%

- Deviation becomes enormous for old ages
- 25% shock seems to overestimate longevity risk significantly
- Sole adjustment of shock magnitude does not seem appropriate
- → Structural shortcoming of the standard model longevity stress: Age-dependent shock magnitude seems more appropriate

Modified Standard Model Longevity Stress

- Cape Town Afrique du Sud iCA2010 CiA
- Current standard model longevity stress does not seem to reflect the true longevity risk
- Modified stress according to volatility in forward model
 - Keep structure of one-off shock (\rightarrow integration in standard model remains the same)
 - Shock T-year survival probabilities by setting them to individual 99.5% quantile
 - Application of shock by multiplying best estimate survival probabilities by factors
 - A matrix of shock factors would have to be provided by supervisory authorities
 (→ complexity basically unchanged)
- Any diversification effects are neglected
 - Additional SCR between 5% and 10% for reasonable portfolios
 - Acceptable shortcoming given the enormous structural improvements
 - Standard model is to be conservative

Analysis of Risk Margin

- Technical Provisions ("market value" of liabilities) = Best Estimate Liabilities + Risk Margin
- Risk Margin = capital required to guarantee run-off of a portfolio in case of insolvency (cost of capital approach)
- 4 main findings (future SCRs computed based on 25% shock and modified shock):
- 1. Risk Margin approximations yield wide range of values
 - Variation of up to 30% for reasonable portfolios
 → Limited comparability and undesired incentives!
- 2. Popular assumption of future SCRs being proportional to future liabilities is not adequate in general
 - Ratios typically increase over time → Risk is underestimated!
- 3. Cost of capital rate of 6% does not seem overly conservative compared to hypothetical market prices for longevity risk
 - Survival probabilities are adjusted for risk according to a time-constant Sharpe ratio
 - Sharpe ratios between 8% and 19% yield the same markup for reasonable portfolios
- 4. Sharpe ratios can be starting point for pricing longevity derivatives

INTERNATIONAL CONGRESS OF ACTUARIES | 7-12 MARCH 2010 | CAPE TOWN

 SCR_4/L_4

 SCR_4/L_4

Cape Town Afrique du Sud iCA2010 CiA

Cape Town Afrique du Sud Summary Structural shortcomings in the current standard model longevity stress Possibly significant overestimation or underestimation of true risk Age and maturity dependent longevity stress required **Proposition of modified shock** Simple in structure (one-off shock) Age and maturity dependent Conservative due to waiving of diversification effects Several findings regarding the Risk Margin . Approximations yield wide range of values Assumption of SCR proportional to liabilities in general not appropriate Cost of capital rate of 6% does not seem overly conservative Solvency requirements can provide valuable insights into pricing of longevity derivatives TOWN INTERNATIO ONGRESS OF ACTUARIES | 7-12 MARCH 2010

Contact Details

Matthias Boerger

Institute of Insurance, Ulm University & Institute for Finance and Actuarial Sciences (ifa), Ulm

Helmholtzstraße 22, 89081 Ulm, Germany

Phone: +49 731 50-31257, Fax: +49 731 50-31239

Email: m.boerger@ifa-ulm.de

The paper is also available under www.mortalityrisk.org