

Introduction

Longevity risk = risk of insured on average surviving longer than expected

- I Significant risk for pension funds and annuity providers
- Systematic and non-hedgeable risk
 → Explicitly accounted for under Solvency II

General concept for Solvency Capital Requirement (SCR) under Solvency II

- **SCR = 99.5%** Value-at-Risk (VaR) of Available Capital over 1 year
- "Capital necessary to cover losses over next year with at least 99.5% probability"
- **Stochastic (internal)** models required whose implementation is costly and sophisticated

Solvency II Standard model

- Scenario-based rather than stochastic, modular approach
- Longevity risk: SCR = change in Net Asset Value (NAV) due to longevity shock

2

Longevity shock is a permanent 25% reduction of mortality rates for all ages

ifa

Objective

Motivation of the standard model longevity stress is rather poor

- Value of 25% is mainly based on what UK insurance companies in 2004 regarded consistent with VaR concept (CEIOPS (2007))
- UK insurance companies regarded shock between 5% and 35% as appropriate \rightarrow 25% longevity shock could significantly misjudge the true risk

3

Analysis of the longevity stress regarding structure and calibration is required

- I Is an equal shock for all ages and maturities reasonable?
- What should the magnitude of the shock be?
- How can the standard model longevity stress possibly be improved?

→ Comparison with VaR for longevity risk

ifa

Agenda

- Introduction
- Mortality modeling
- Model setup
- **Comparison of S**CR formulas for longevity risk
- Modification of standard model longevity stress
- Analysis of Risk Margin
- **Summary**

4

ifa

The Forward Mortality Model

In 1-year setting, longevity risk consists of two components:

- Low realized mortality in the one year
- Decrease in expected future mortality
- A stochastic mortality model must account for both components
 - Well known spot mortality models do not cover possible changes in expected mortality

5

- Forward mortality model is required
- We use slightly modified version of forward model of Bauer et al. (2008, 2010)

ifa

Model Setup

- Reference company situated in the UK
- **Company is solely exposed to longevity risk**
- Risk-free interest rates: QIS4 term structure for UK for 2007
- Initial mortality rates: UK Life Office Pensioners in 2007

Standard contracts:

- Immediate and deferred life annuities with yearly payments of fixed amount in arrears
- No options or guarantees, no fees, no surplus participation

Comparison of SCR Formulas – Different Ages

Life annuities paying GBP 1000 yearly in arrears for different ages

Age	L_0	SCR^{shock}	$\frac{SCR^{shock}}{L_0}$	SCR^{VaR}	$\frac{SCR^{VaR}}{L_0}$	$\frac{\Delta SCR}{SCR^{VaR}}$	$\frac{\Delta SCR}{L_0}$
55	15671.10	657.23	4.2%	729.88	4.7%	-10.0%	-0.5%
65	12619.28	869.87	6.9%	691.59	5.5%	25.8%	1.4%
75	8941.83	1009.81	11.3%	513.27	5.7%	96.7%	5.6%
85	4940.13	1003.43	20.3%	304.89	6.2%	229.1%	14.1%
95	2549.75	818.58	32.1%	214.38	8.4%	281.8%	23.7%
105	1413.19	646.23	45.7%	180.79	12.8%	257.4%	32.9%

- Deviation becomes enormous for old ages
- 25% shock seems to overestimate longevity risk significantly
- Sole adjustment of shock magnitude does not seem appropriate
- → Structural shortcoming of the standard model longevity stress: Age-dependent shock magnitude seems more appropriate

ifa Institut für Finanz- und Aktuarwissenschaften

Comparison of SCR Formulas – Different Maturities

Decomposition of annuity in series of endowment contracts for a 65-year old paying GBP 1000 at maturity T

- Absolute SCRs are rather similar up to T=20
- Thereafter, shock approach demands significantly more capital (larger shocks)

8

- Relative deviations in SCRs vary considerably
- → Structural shortcoming of the standard model longevity stress: Maturity-dependent shock (magnitude) seems more appropriate

Institut für Finanz- und Aktuarwissenschaften

Modified Standard Model Longevity Stress

Current standard model longevity stress does not seem to reflect the true longevity risk

Modified stress according to volatility in forward model

I Keep structure of one-off shock (\rightarrow integration in standard model remains the same)

9

- Shock T-year survival probabilities by setting them to individual 99.5% quantile
- Application of shock by multiplying best estimate survival probabilities by factors
- A matrix of shock factors would have to be provided by supervisory authorities (→ complexity basically unchanged)

Any diversification effects are neglected

- Additional SCR between 5% and 10% for reasonable portfolios
- Acceptable shortcoming given the enormous structural improvements
- Standard model is to be conservative

© September 2009 Deterministic Shock vs. Stochastic Value-at-Risk

ifa

Analysis of Risk Margin

- **Technical Provisions ("market value" of liabilities) = Best Estimate Liabilities + Risk Margin**
- Risk Margin = capital required to guarantee run-off of a portfolio in case of insolvency (cost of capital approach)

10

- 4 main findings (future SCRs computed based on 25% shock and modified shock):
- 1. Risk Margin approximations yield wide range of values
 - Variation of up to 30% for reasonable portfolios

 Limited comparability and undesired incentives!
- Popular assumption of future SCRs being proportional to future liabilities is not adequate in general
 - Ratios typically increase over time \rightarrow Risk is underestimated!
- 3. Cost of capital rate of 6% does not seem overly conservative compared to hypothetical market prices for longevity risk
 - Survival probabilities are adjusted for risk according to a time-constant Sharpe ratio
 - Sharpe ratios between 8% and 19% yield the same markup for reasonable portfolios
- 4. Sharpe ratios can be starting point for pricing longevity derivatives

Summary

Structural shortcomings in the current standard model longevity stress

- Possibly significant overestimation or underestimation of true risk
- Age and maturity dependent longevity stress required

Proposition of modified shock

- Simple in structure (one-off shock)
- Age and maturity dependent
- **Conservative** due to waiving of diversification effects

Several findings regarding the Risk Margin

- Approximations yield wide range of values
- Assumption of SCR proportional to liabilities in general not appropriate
- Cost of capital rate of 6% does not seem overly conservative
- Solvency requirements can provide valuable insights into pricing of longevity derivatives

11

ifa

References

- Bauer, D., Börger, M., Ruß, J., Zwiesler, H.-J., 2008. The Volatility of Mortality. Asia-Pacific Journal of Risk and Insurance, 3: 184–211.
- Bauer, D., Börger, M., Ruß, J., 2010. On the Pricing of Longevity-Linked Securities. Insurance: Mathematics and Economics, 46: 139-149.
- CEIOPS, 2007. QIS3 Technical Specifications, Part I: Instructions. Available at: http://www.ceiops.eu/media/files/consultations/QIS/QIS3/QIS3TechnicalSpecificationsPart1.PDF.

Contact Details

Matthias Boerger

Institute of Insurance, Ulm University & Institute for Finance and Actuarial Sciences (ifa), Ulm Helmholtzstraße 22, 89081 Ulm, Germany Phone: +49 731 50-31257, Fax: +49 731 50-31239 Email: m.boerger@ifa-ulm.de

Institut für Finanz- und Aktuarwissenschaften

ifa