Modeling Mortality Trend under Modern Solvency Regimes

Matthias Börger Daniel Fleischer Nikita Kuksin

September 2011

Helmholtzstraße 22 D-89081 Ulm

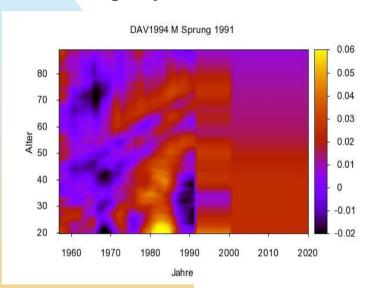
phone +49 (0) 731/50-31230 fax +49 (0) 731/50-31239

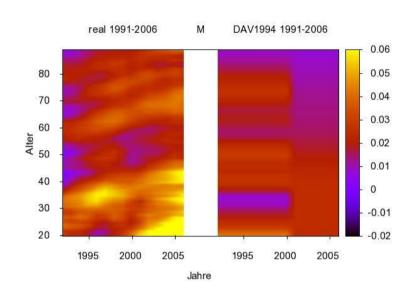
email ifa@ifa-ulm.de

ifa

Introduction

What is longevity risk?





→ Longevity risk is the risk of underestimating future mortality improvements

- Trend risk
- Mortality risk has a trend risk and a catastrophe risk component
- Systematic and non-hedgeable risk
 - → Explicitly accounted for under Solvency II and the Swiss Solvency Test (SST)

Capital Requirements under Solvency II

- General concept for Solvency Capital Requirement (SCR) under Solvency II
 - SCR = 99.5% Value-at-Risk (VaR) of Available Capital over 1 year
 - "Capital necessary to cover losses over next year with at least 99.5% probability"
 - Overall risk is typically split into several modules, individual SCRs are finally aggregated
- Stochastic mortality model is required for mortality/longevity trend risk under Solvency II
- In a 1-year setting, longevity/mortality trend risk consists of two components:
 - Low/high realized mortality in the one year
 - Decrease/increase in expected future mortality, i.e. changes in the long-term mortality trend

Mortality Trend Model Requirements

- Goal: Specification and calibration of a mortality model with the following properties
 - Simultaneous modeling of mortality and longevity risk
 - Exploiting of diversification effects
 - Full age range
 - 20 to 105 in our case
 - Consideration of several populations at the same time
 - Males and females in the same country
 - Populations from different countries
 - Quantification of risk over limited time horizons
 - One-year view of Solvency II and the SST particularly relevant
 - Plausible tail scenarios
 - 99.5% VaR
 - Conservative calibration

Model Specification and Estimation

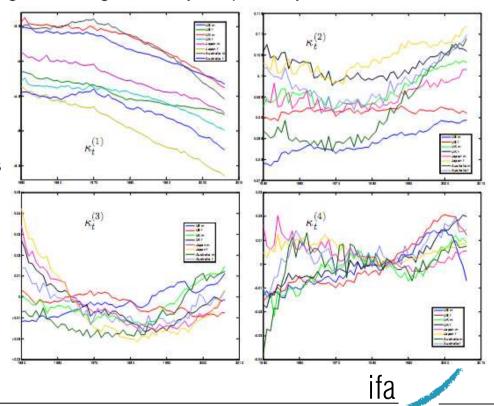
We model the logit of mortality rates

$$logit(q_{x,t}) = \alpha_x + \kappa_t^{(1)} + \kappa_t^{(2)}(x - x_{center}) + \kappa_t^{(3)}(x_{young} - x)^+ + \kappa_t^{(4)}(x - x_{old})^+ + \gamma_{t-x}$$

- $x_{center} = 60, x_{young} = 55, x_{old} = 85$
- level of mortality, $K_t^{(1)}$ is the slope of the mortality curve, $K_t^{(3)}$ and $K_t^{(4)}$ describe additional effects in young and old age mortality, respectively

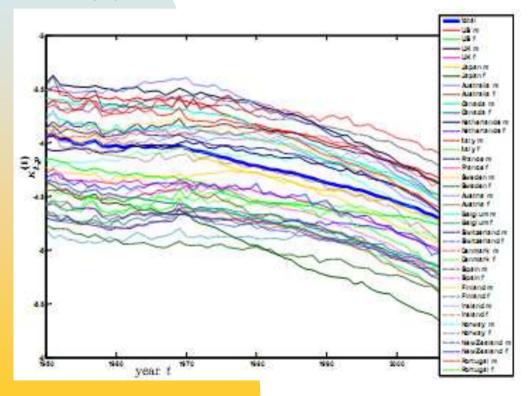
Model estimation via Generalized Linear Model Theory

- Logit is canonical link function for Binomial distribution
- Number of deaths is binomially distributed given initial exposures



Multi-Population Setting

- Important note: Even if one is only interested in a single population considering several populations is worthwile
 - Trend uncertainty can be significantly reduced
 - We generally observe smaller SCRs in the multi-population model compared to the single population model



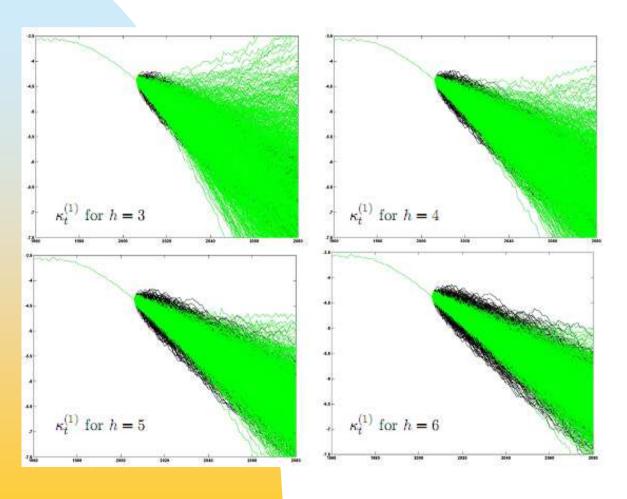
- There is clearly a common trend in $K_t^{(1)}$
- A model for several populations must account for that
- We apply cointegration and an error correction model for deviations from the common trend

Model Simulation

Projection of $K_{t,total}^{(1)}$ for the total population

- Linear trends with breaks in the historical data
 - Commonly used random walk with drift does not allow for such trend breaks
 - Trend breaks are particularly important under one-year view (change of best estimate trend)
- Idea: Each year, fit regression line to historical data and forecast future best estimate mortality as $\kappa_{t+1,total}^{(1)} = l_t(t+1) + \varepsilon_{t+1}^{(1)}(\sigma^{(1)} + \overline{\sigma}^{(1)})$
 - $oldsymbol{\overline{\sigma}}^{(1)}$ is a volatility add-on, volatility $oldsymbol{\sigma}^{(1)}$ may be weighted to stress most recent past
 - Implicit "re-calibration" of the model with respect to the long-term trend
 - To stress most recent mortality experience, the regression line is fitted with weights $w_s = \left(1 + \frac{1}{h}\right)^{s-t}$

Model Simulation (ctd.)



- Weighting parameter h has massive impact
- Plausible one-year and run-off scenarios
- Each run-off scenario is a combination of one-year scenarios
- Disentangling of one-year noise and long-term trend uncertainty
- Possibly more plausible confidence bounds than for a random walk with drift

Model Simulation (ctd.)

Projection of $K_{t,p}^{(1)}$ for individual populations

- For each individual population we project as
 - $\mathbf{K}_{t,p}^{(1)} = \mathbf{K}_{t,total}^{(1)} + a_p + b_p (\mathbf{K}_{t-1,p}^{(1)} \mathbf{K}_{t-1,total}^{(1)}) + \mathcal{E}_{t,p}$
 - b_p denotes the "mean reversion speed" (absolute value should be smaller than 1)
 - $a_p/(1-b_p)$ is the long-term difference between the total population and population p
- Different approaches of calibrating the long-term difference
 - Fitting of an AR(1) process to historical differences
 - Weighted/unweighted average of historical differences

Model Simulation (ctd.)

- Projection of $K_t^{(2)}$, $K_t^{(3)}$, and $K_t^{(4)}$ for the individual populations
 - No substantial trend obvious in the historical data
 - Forecast as correlated 3-dimensional random walk
 - No substantial correlation with $\kappa_t^{(1)}$
 - Volatility add-on $\overline{\sigma}^{(2)}$ for $\mathcal{K}_t^{(2)}$
 - The larger the changes in the slope of the mortality, the smaller the correlation between young and old ages
 - Thus the add-on affects diversification between mortality and longevity risk
 - Between populations, increments of $\kappa_t^{(1)}$ and $\kappa_t^{(2)}$ are correlated
 - This also implies slight correlation between the $K_t^{(3)}$ and $K_t^{(4)}$
 - Historical correlations should be checked carefully though and possibly adjusted
- Projection of γ_{t-x}
 - Cohort parameters should stay around zero
 - Forecast as imposed stationary AR(1) process
 - Cohort parameters are rather irrelevant for short-term simulations as under Solvency II

Weighting Parameters and Volatility Add-ons

Parameters $h, \overline{\sigma}^{(1)}$, and $\overline{\sigma}^{(2)}$ have a massive impact on simulation outcomes and thus SCRs

Add-on $\overline{\mathcal{O}}^{(1)}$ determines possible severity of short-term events

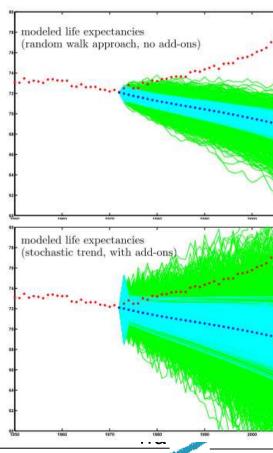
Weighting parameter h determines trend changes over one year and width of confidence

bounds

Calibration is difficult but should be conservative

→ Fitting to most severe events/evolutions in the past

- Example: Rapid increase in Dutch life expectancy gains starting from about 1970
- Question: At which percentile should such extreme evolutions be observed?
- Calibhation of $\overline{\sigma}^{(2)}$
 - The larger the add-on the smaller the correlation between young and old ages thus limiting diversification
 - → Choose $\overline{\sigma}^{(2)}$ such that correlation between ages at the boundaries of the age range is (close to) zero for most populations



Mortality/Longevity Threat Scenarios

- Available data contains only little information on tail scenarios which we are interested in
- Uncertainty remains whether model outcomes are severe enough
 - → Incorporate epidemiological/demographic expert opinion
- Specification of mortality/longevity threat scenarios
 - Shock to mortality projection
 - Likely effects of finding of a cure for a certain illness
 - Scenarios which the statistical model cannot generate, e.g., diverging mortality trends between countries/regions
 - I ...

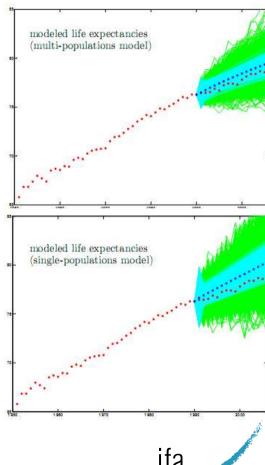
Application of threat scenarios

- Check of model calibration: Adjustment of weighting parameter or volatility add-ons if the model outcomes should cover the threat scenarios but do not
- Inclusion in SCR computations: SCR as a weighted average of model outcomes and threat scenarios

Summary

We have specified and calibrated a mortality model with several appealing properties:

- Full age range
- Variability in simulation outcomes due to 5 stochastic drivers
- Clear interpretation of the model parameters
- Non-trivial correlation structure to allow for simultaneous modeling of mortality and longevity risk
- Stochastic trend modeling spares full re-calibration of the model in each scenario (could be applied in other models as well)
- Plausible outcomes in one-year view and run-off view
- Conservative calibration
- **Inclusion of expert opinion**
- Multi-population model allowing for diversification effects



Contact Details

Matthias Boerger

Institute of Insurance, Ulm University & Institute for Finance and Actuarial Sciences (ifa), Ulm

Helmholtzstraße 22, 89081 Ulm, Germany

Phone: +49 731 50-31257, Fax: +49 731 50-31239

Email: m.boerger@ifa-ulm.de