

Decomposition of life insurance liabilities into risk factors – theory and application to annuity conversion options

Joint work with Daniel Bauer, Marcus C. Christiansen, Alexander Kling

Katja Schilling March 21, 2013

Research Training Group 1100

Introduction

Risk decomposition methods from literature

Martingale representation approach

Application to annuity conversion options

Outlook

Motivation

British insurance companies during the 1980s vs. 1990s:

Question: Which are the most relevant risk drivers?

Why is that important?

To be able to take adequate risk management strategies such as

- Product modifications
- Hedging

Research objectives

Situation:

- It is common to model the total risk by advanced stochastic models
- It is rarely discussed how to determine the most relevant risk driver

Our paper

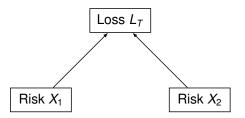
- (1) How to allocate the randomness of liabilities to different risk sources?
- (2) How to quantify and compare the individual risk contributions?
- (3) What is the **dominating risk** in annuity conversion options?

In particular, we want to decompose the distribution under \mathbb{P} .

Setting

In the following:

- Insurance product with maturity T
- Time-T loss for the insurer: L_T
- ▶ Two risk drivers: $X_1 := (X_1(t))_{t \ge 0}$ and $X_2 := (X_2(t))_{t \ge 0}$



Question: How to decompose L_T with respect to X_1 and X_2 ?

Variance decomposition approach

Step 1:
$$L_T = \underbrace{\mathbb{E}(L_T | X_1)}_{=R_1} + \underbrace{[L_T - \mathbb{E}(L_T | X_1)]}_{:=R_2}$$

 R_1 represents the randomness of L_T caused by X_1
 R_2 represents the randomness of L_T caused by X_2
Step 2: $\operatorname{Var}(I_T) - \operatorname{Var}(R_1) + \operatorname{Var}(R_2)$

Desirable property: whole distribution of R_1 and R_2

- Bühlmann (1995): annual loss = financial loss + technical loss
- Example: $L_T = X_1(T)X_2(T), X_1, X_2$ independent Brownian motions

•
$$L_T = E(L_T|X_1) + [L_T - E(L_T|X_1)] = \mathbf{0} + X_1(T)X_2(T)$$

•
$$L_T = E(L_T|X_2) + [L_T - E(L_T|X_2)] = 0 + \frac{X_1(T)X_2(T)}{X_2(T)}$$

Desirable property: symmetric definition

Modification

Idea: Use conditional expectations for a symmetric definition

Conditional expectation approach

The risk caused by risk driver X_i is measured by

 $R_i := E(L_T|X_i), \quad i = 1, \ldots, n.$

• Example: $L_T = X_1(T)X_2(T), X_1, X_2$ independent Brownian motions

•
$$R_1 = E(L_T|X_1) = 0$$

•
$$R_2 = E(L_T|X_2) = 0$$

• In general: $L_T \neq R_1 + \ldots + R_n$

Desirable property: $L_T - E(L_T) = R_1 + \ldots + R_n$

Further approaches

Sensitivity analysis

- Analyzing the effect of changes in the input parameters/variables on the insurer's loss
- Usually based on derivatives

Desirable property: Comparability between different risk drivers

Taylor expansion approach

- Function of random variables \approx first-order Taylor expansion
- Christiansen (2007) extends this approach to an infinite setting
- Local method: expansion point is relevant

Desirable property: No problem-specific choices

Martingale representation approach (1)

In the following:

- ► $W = (W_1(t), ..., W_d(t))_{0 \le t \le T^*} d$ -dimensional Brownian motion
- $\mathbb{G} = (\mathcal{G}_t)_{0 \le t \le T^*}$ augmented natural filtration generated by W

Martingale representation theorem

If $M = (M(t))_{0 \le t \le T^*}$ is a martingale with respect to \mathbb{G} , then there exist unique \mathbb{G} -adapted processes $\Gamma_1, \ldots, \Gamma_d$ such that

$$M(t) = M(0) + \sum_{i=1}^d \int_0^t \Gamma_i(s) dW_i(s), \ 0 \leq t \leq T^*.$$

If L_T is \mathcal{G}_T -measurable and integrable, we define $M(t) := E(L_T | \mathcal{G}_t)$ and obtain

$$L_{T} = \mathrm{E}(L_{T}) + \sum_{i=1}^{d} \underbrace{\int_{0}^{T} \Gamma_{i}(s) dW_{i}(s)}_{=:R_{i}}.$$

Martingale representation approach (2)

Special case: Itô's Lemma

Let
$$X = (X(t))_{0 \le t \le T^*}$$
 be an *n*-dimensional Itô process with dynamics
 $dX_i(t) = \mu_i(t, X(t))dt + \sum_{j=1}^d \sigma_{ij}(t, X(t))dW_j(t), \ i = 1, ..., n.$

If the martingale is of the very particular form $M(t) := E(L_T | G_t) = f(t, X(t))$, then Itô's lemma yields

$$L_{T} = \mathrm{E}(L_{T}) + \sum_{i=1}^{n} \underbrace{\int_{0}^{T} \frac{\partial f}{\partial x_{i}}(t, X(t)) \sum_{j=1}^{d} \sigma_{ij}(t, X(t)) dW_{j}(t)}_{=:R_{i}}.$$

• Sufficient conditions for M(t) = f(t, X(t)):

- ▶ $L_T = h(X(T))$ for some bounded, Borel-measurable function $h : \mathbb{R}^n \to \mathbb{R}$
- $\mu_i(t, x)$ and $\sigma_{ij}(t, x)$ are Lipschitz $\Rightarrow X$ is a Markov process w.r.t. \mathbb{G}

$$\stackrel{\text{Factorization lemma}}{\Rightarrow} \textit{M}(t) := \textit{E}\left(\textit{L}_{\textit{T}} | \textit{G}_t\right) = \textit{E}\left(\textit{h}(\textit{X}(\textit{T})) | \textit{X}(t)\right) = \textit{f}(t,\textit{X}(t))$$

Martingale representation approach (3)

Special case: Itô's Lemma

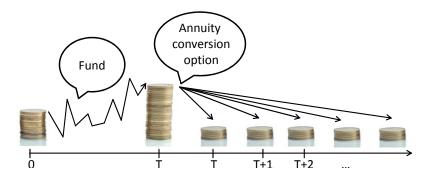
$$L_{T} = \mathrm{E}(L_{T}) + \sum_{i=1}^{n} \underbrace{\int_{0}^{T} \frac{\partial f}{\partial x_{i}}(t, X(t)) \sum_{j=1}^{d} \sigma_{ij}(t, X(t)) dW_{j}(t)}_{=:R_{i}}.$$

List of desirable properties:

- \checkmark Whole distribution for each risk R_i
- ✓ Symmetric definition
- $\checkmark \text{ It holds: } L_T E(L_T) = R_1 + \ldots + R_n$
- Comparability between different risk drivers
- ✓ No problem-specific choices

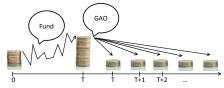
Annuity conversion options

- Additional feature of unit-linked deferred annuity contracts
- Guarantee the policyholder
 - at the beginning of the contract (at time 0)
 - certain minimum conditions
 - ▶ for **converting** the accumulated money into an annuity (at time *T*)



Guaranteed annuity option (GAO) (1)

- Caused serious solvency problems in the UK during the 1990s
- Special type of annuity conversion option:



Guaranteed annual annuity = g (conversion rate) $\times A_T$ (account value)

Option payoff at time T (= insurer's loss)

$$L_T^{\text{GAO}} = \mathbb{1}_{\{\tau_x > T\}} \max \{ g A_T a_T - A_T, 0 \}$$
$$= \mathbb{1}_{\{\tau_x > T\}} g A_T \max \left\{ a_T - \frac{1}{g}, 0 \right\}$$

τ_x: remaining lifetime of a policyholder aged x at time 0

a_T: time-T value of an immediate annuity of unit amount per year

Guaranteed annuity option (GAO) (2)

Option payoff at time T (= insurer's loss)

$$L_{T}^{\mathrm{GAO}} = \mathbb{1}_{\{\tau_{x} > T\}} g A_{T} \max\left\{a_{T} - \frac{1}{g}, 0\right\}$$

Risk	Implied by	Model
Fund risk	A _T	GBM
Interest risk	a _T	Vasicek model
Systematic mortality risk	a _T	Prudent mortality table
Unsystematic mortality risk	$\mathbb{1}_{\{\tau_x > T\}}$	∞ -large portfolio

Martingale representation approach for GAOs (1)

Let W_S and W_r be two independent \mathbb{P} -Brownian motions

- Fund value: Geometric Brownian motion $dS(t) = \mu_S S(t) dt + \sigma_S S(t) dW_S(t), S(0) > 0$
- Short rate: Vasicek model

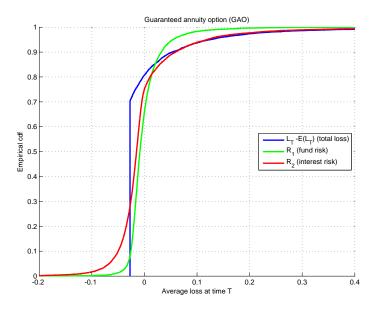
 $dr(t) = \kappa(\theta - r(t))dt + \sigma_r dW_r(t), \ r(0) > 0$

Martingale representation approach

With $f(t, x_1, x_2) := E(L_T^{GAO} | S(t) = x_1, r(t) = x_2)$ and Itô's Lemma we obtain

$$L_{T}^{\text{GAO}} - \mathrm{E}\left(L_{T}^{\text{GAO}}\right) = \underbrace{\int_{0}^{T} \frac{\partial f}{\partial x_{1}}(t, S(t), r(t))\sigma_{S}S(t)dW_{S}(t)}_{=:R_{1}^{\text{GAO}}} + \underbrace{\int_{0}^{T} \frac{\partial f}{\partial x_{2}}(t, S(t), r(t))\sigma_{r}dW_{r}(t)}_{=:R_{2}^{\text{GAO}}}.$$

Martingale representation approach for GAOs (2)



Quantifying the risk contributions

Our paper

- (1) How to allocate the randomness of liabilities to different risk sources?
- (3) How to quantify and compare the individual risk contributions?
- (3) What is the dominating risk in annuity conversion options?

Tail-Value-at-Risk (TVaR)

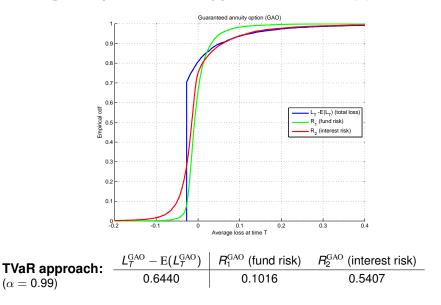
$$\operatorname{TVaR}_{\alpha}(X) = \operatorname{E}(X | X \ge \operatorname{Var}_{\alpha}(X)), \ 0 < \alpha < 1$$

TVaR approach

The risk contribution of X_i to the total risk $X = \sum_{i=1}^{n} X_i$ is quantified as

$$\operatorname{FVaR}_{\alpha}(X_{i}; X) := \operatorname{E}(X_{i} | X \ge \operatorname{Var}_{\alpha}(X)), \quad i = 1, \dots, n \quad (\alpha \text{ fixed})$$

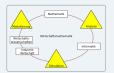
Martingale representation approach for GAOs (2)



Future research

- Stochastic mortality
 - Systematic mortality risk
 - Unsystematic mortality risk
- Application to other annuity conversion options
 - Modified GAOs
 - GMIBs
- Quantifying the individual risk contributions

Contact



Katja Schilling katja.schilling@uni-ulm.de

Research Training Group 1100 University of Ulm

Thank you very much for your attention!

Literature

- Bühlmann, H. (1995). Life insurance with stochastic interest rates. In: Ottaviani, G. Financial Risk in Insurance. *Springer*.
- Christiansen, M.C. (2007). A joint analysis of financial and biometrical risks in life insurance. Doctoral thesis, University of Rostock.
- Christiansen, M.C., Helwich, M. (2008). Some further ideas concerning the interaction between insurance and investment risk. *Blätter der DGVFM*, 29:253-266.
- Kling, A., Ruß, J., Schilling, K. (2012). Risk analysis of annuity conversion options in a stochastic mortality environment. *Working Paper, University of Ulm.*
- Saltelli, A., Chan, K., and Scott, E.M. (2000). Sensitivity analysis. Wiley Series in Probability and Statistics.