

Participating Life Insurance Contracts under Risk Based Solvency Frameworks

How to increase Capital Efficiency by Product Design

Andreas Reuß

Institute for Finance and Actuarial Sciences (ifa)

Jochen Ruß

Institute for Finance and Actuarial Sciences (ifa) and Ulm University

Jochen Wieland

Institute for Finance and Actuarial Sciences (ifa) and Ulm University

Introduction

Considered products

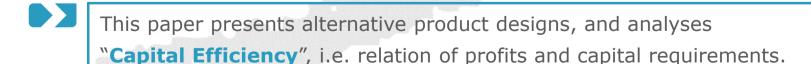
Stochastic modeling and analyzed key figures

Results

Introduction

Motivation

- Participating life insurance products play a major role in old-age provision.
- **Key problem**: significant financial risk due to cliquet-style guarantees
 - impact of low interest rates and volatile asset returns
- Currently, risk analysis of interest rate guarantees particularly important!
 - market consistent valuation (e.g. MCEV)
 - capital requirements under risk based solvency frameworks (e.g. Solvency II)
- Aims from insurer's view:
 - stabilize profits and reduce capital requirements
 - but preserve main product features perceived and requested by policyholders



Not by "model arbitrage", but by real reduction of economic risks!

Introduction

Considered products

Stochastic modeling and analyzed key figures

Results

Traditional contract design

- Guaranteed benefit G
 - constant interest rate i = 1.75% applied to annual premium payments (after deduction of charges)

$$\sum_{t=0}^{T-1} (P - c_t)^t \cdot (1+i)^{T-t} = G$$

- annual charges $c_t = \beta \cdot P + \alpha \cdot \frac{T \cdot P}{5} \mathbb{I}_{t \in \{0,\dots,4\}}$ with $\beta = 3\%$, $\alpha = 4\%$
- **prospective actuarial reserve** (based on the same interest rate *i*)

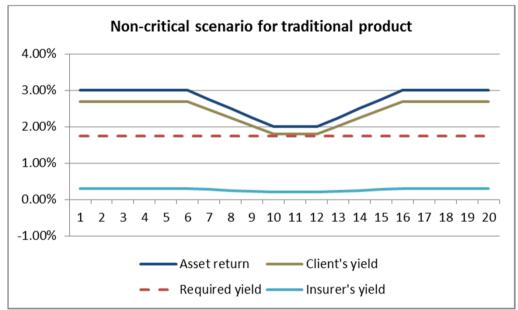
$$AR_t = G \cdot \left(\frac{1}{1+i}\right)^{T-t} - \sum_{k=t}^{T-1} (P - c_k) \cdot \left(\frac{1}{1+i}\right)^{k-t}$$

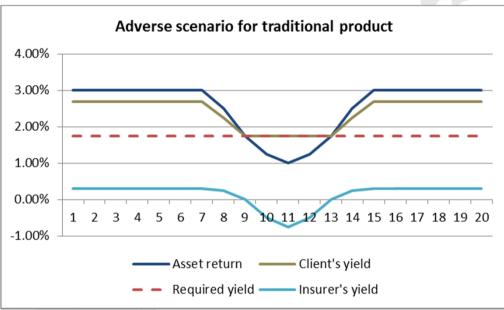
yearly surplus s_t (e.g. 90% of book value returns) is credited to a bonus reserve, and the interest rate i is also applied to the bonus reserve:

$$BR_t = BR_{t-1} \cdot (1+i) + s_t$$

- \blacksquare client's **account value** AV_t : sum of actuarial and bonus reserve
 - *i* is a **year-to-year minimum guaranteed interest rate**, i.e. (in book value terms) at least this rate has to be earned each year on the assets backing the account value (cliquet-style guarantee).

Traditional contract design





in adverse scenarios: **significant shortfall** for the insurer major driver for **high capital requirements** (Solvency II, Swiss Solvency Test (SST)).

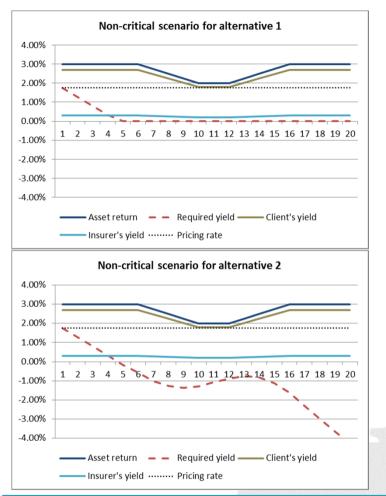
Alternative contract design

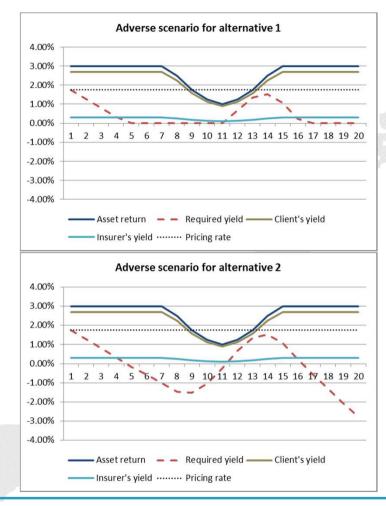
- The technical rate *i* plays 3 different roles
 - \blacksquare the **pricing** interest rate (i.e. for the calculation of P)
 - \blacksquare the **reserving** interest rate (i.e. for the calculation of AR_t)
 - the year-to-year minimum guaranteed interest rate on the account value
- lacktriangle alternative contract designs: split in three variables i_p , i_r and i_g which can take different values
 - The minimum rate to be earned on the account value (=required yield) is then

$$z_{t} = \max \left\{ \frac{\max\{AR_{t}, 0\}}{(AV_{t-1} + P - c_{t-1})} - 1, i_{g} \right\}$$

- lacksquare P based on i_p , AR_t based on i_r
- In the paper, two alternative products are considered:
 - **Alternative 1:** $i_g = 0\%$ (i.e. guarantee that account value cannot decrease)
 - Alternative 2: $i_g = -100\%$ (i.e. no additional guarantee on the account value)
 - $(i_p = i_r = 1.75\%)$

Alternative contract design





Alternative contract designs reduce the required yield after "good" years.

Lower financial risk for insurer in subsequent **adverse years**; shortfalls are prevented!

Introduction

Considered products

Stochastic modeling and analyzed key figures

Results

Stochastic modeling and analyzed key figures

The financial market model

- Insurer's assets are invested in a portfolio consisting of stocks and coupon bonds.
- Short rate process follows a classical Vasicek model, stock market index follows a geometric Brownian motion:

$$dr_t = \kappa(\theta - r_t)dt + \sigma_r dW_t^{(1)}$$

$$\frac{dS_t}{S_t} = r_t dt + \rho \sigma_S dW_t^{(1)} + \sqrt{1 - \rho^2} \sigma_S dW_t^{(2)}$$

- lacksquare probability space $(\Omega, \mathcal{F}, \mathcal{F} = (\mathcal{F}_t), \mathbb{Q})$ with a filtration \mathcal{F} and a risk-neutral measure \mathbb{Q}
- Bank account given by $B_t = \exp\left(\int_0^t r_u du\right)$, and used for investment of cash flows during the year.
- valuation using Monte Carlo methods
- parameter values:

	r_0	θ	κ	σ_r	σ_{S}	ρ
basis	2.5%	3.0%	20 00/-	2.0%	20.0%	15.0%
stress	1.5%	2.0%	30.0%			

Source: r_0 , θ corresponding to current observations in the German market; other parameters from **Graf et al. (2011)**)

Stochastic modeling and analyzed key figures

The asset-liability model

simplified balance sheet:

Assets	Liabilities
BV_t^S	X_t
BV_t^B	AV_t

- **book-value accounting rules** following German GAAP are applied.
 - \blacksquare BV_t^S / BV_t^B : book value of stocks / coupon bonds
 - X_t : shareholders' profit or loss
 - \blacksquare AV_t: sum of actuarial and bonus reserves
- rebalancing strategy with a constant stock/bonds ratio
 - stock ratio q=5% in the base case
- portion of total asset return credited to the policyholders : p=90%
 - but at least the required yield
 - surplus distribution such that total yield is the same for all policyholders (may not be possible in all cases)
- further management rules regarding asset allocation (reinvestment, rebalancing) and handling of **unrealized gains or losses** etc.
- projection of sample book of business over 20 years

Stochastic modeling and analyzed key figures

Key figures for capital efficiency

- proposed **measure for "Capital Efficiency":** distribution of $\frac{\sum_{t=1}^{\tau} \frac{X_t}{B_t}}{\sum_{t=1}^{\tau} \frac{RC_{t-1} \cdot CoC_t}{B_t}}$
 - \blacksquare RC_t: required capital under some risk based solvency frameworks
 - CoC_t : cost of capital rate
 - → Distribution of this ratio contains a lot of information, but requires complex calculations.
- Therefore, we focus on the following **key figures**:
 - Present Value of Future Profits: $PVFP = \frac{1}{N}\sum_{n=1}^{N}\sum_{t=1}^{T}\frac{X_t^{(n)}}{B_t^{(n)}} = \frac{1}{N}\sum_{n=1}^{N}PVFP^{(n)}$
 - $X_t^{(n)}$, $B_t^{(n)}$, $PVFP^{(n)}$ the realizations of X_t , B_t , PVFP in scenario N
 - Time Value of Options and Guarantees: $TVOG = PVFP_{CE} PVFP$
 - PVFP_{CE} from a so-called "certainty equivalent" scenario
 - \blacksquare $\triangle PVFP = PVFP(basis) PVFP(stress)$
 - → approximation for the solvency capital requirement (SCR) for interest rate risk

Introduction

Considered products

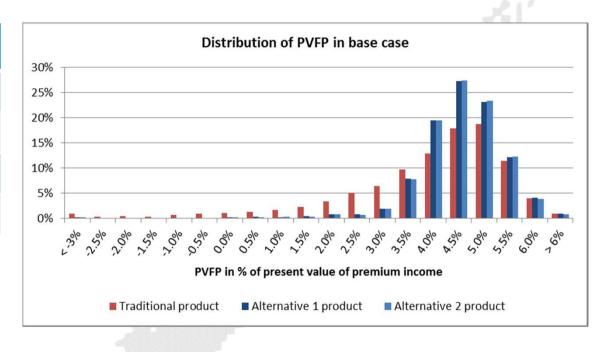
Stochastic modeling and analyzed key figures

Results

Results

Comparison of product designs

	Traditional product	Alternative 1	Alternative 2
PVFP	3.63%	4.24%	4.25%
TVOG	0.63%	0.02%	0.01%
PVFP(stress)	0.90%	2.58%	2.60%
$\Delta PVFP$	2.73%	1.66%	1.65%



- Alternative products: 17% increase of profitability; > 90% TVOG reduction
- Distribution of $PVFP^{(n)}$ changes from highly asymmetric to symmetric, i.e. **more** stable profit perspective
- Reduction of PVFP under stress significantly lower, i.e. **SCR decreases**

Results

Interesting questions / Sensitivities

- Type of guarantee vs. level of guarantee
 - reduce the level of guarantee in the traditional product setting such that the PVFP is the same as for the alternative products: i=0.9% instead of 1.75%
 - → significant reduction of level of guarantee can be avoided by using a different type of guarantee
- Market stress equivalent to considered change of type of guarantee
 - If interest rates decrease by 50 bps, the alternative products have the same PVFP as the traditional product in the basic setting.

Sensitivities:

- **Interest rate** sensitivity $(\theta, r_0: -100 \text{ bps})$
- **stock ratio** sensitivity (q=10% instead of 5%, i.e. more risky asset allocation)
- initial buffer sensitivity (initial bonus reserve doubled for all contracts)

Results

Sensitivities

Base case	Traditional product	Alternative 1	Alternative 2	
PVFP	3.63%	4.24%	4.25%	
TVOG	0.63%	0.02%	0.01%	
PVFP(stress)	0.90%	2.58%	2.60%	
∆PVFP	2.73%	1.66%	1.65%	
Interest rate				
sensitivity				
PVFP	0.90%	2.58%	2.60%	
TVOG	2.13%	0.78%	0.76%	
PVFP(stress)	-4.66%	-1.81%	-1.76%	
$\Delta PVFP$	5.56%	4.39%	4.36%	
Stock ratio				
sensitivity				
PVFP	1.80%	3.83%	3.99%	
TVOG	2.45%	0.43%	0.26%	
PVFP(stress)	-1.43%	1.65%	1.92%	
$\Delta PVFP$	3.23%	2.18%	2.07%	
Initial buffer				
sensitivity				
PVFP	3.74%	4.39%	4.39%	
TVOG	0.64%	<0.01%	<0.01%	
PVFP(stress)	1.02%	2.87%	2.91%	
$\Delta PVFP$	2.72%	1.52%	1.48%	

Interest rate sensitivity:

- Also alternative products exhibit significant TVOG
- However, PVFP/TVOG changes much less pronounced, i.e. alternative products still much more profitable and less volatile.
- SCR reduction compared to traditional product: > 1 percentage point

Stock ratio sensitivity:

- PVFP decreases /TVOG increases, but stronger for traditional product
- More pronounced differences between Alternative 1 and 2 → Guarantee on account value more risky with higher volatility of asset returns

Initial buffer sensitivity:

■ TVOG/SCR remains approx. the same for traditional product, but significantly reduced for alternative products → larger surpluses from previous years create a "buffer" reducing risk in future years

Introduction

Considered products

Stochastic modeling and analyzed key figures

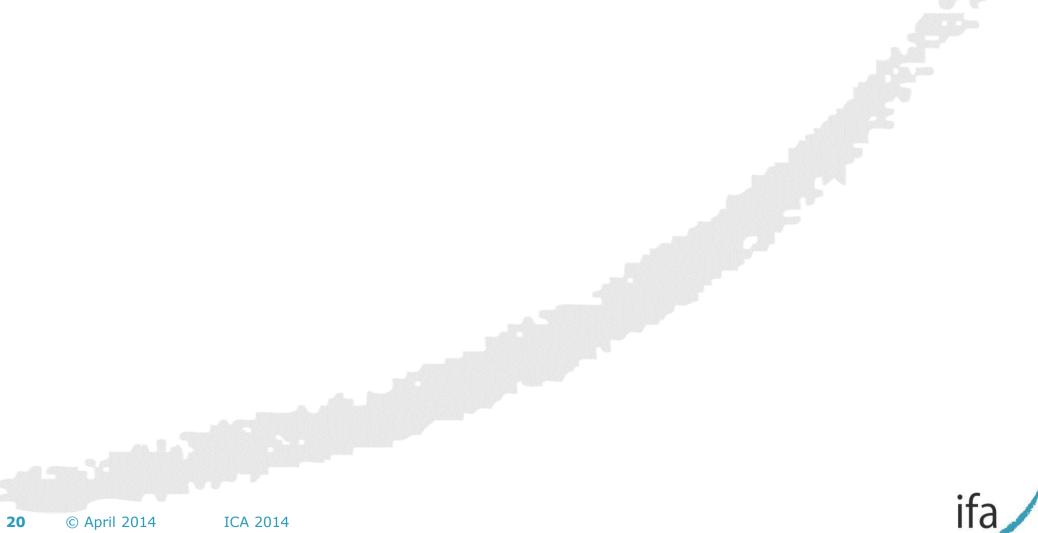
Results

Conclusion and outlook

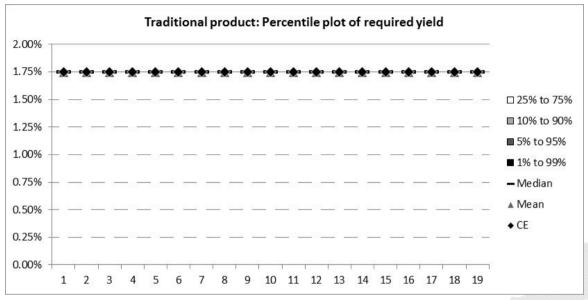
- Results confirm that products with a typical year-to-year guarantee are rather risky.
 →high capital requirement
- Proposed product modifications significantly enhance "Capital Efficiency", reduce the insurer's risk, and increase profitability.
 - Policyholder receives less only in extreme scenarios, but these scenarios drive the capital requirements (Solvency II, SST).
- Areas for additional research:
 - additional participation of policyholders in reduced capital requirements
 - optimal strategic asset allocation for modified products
 - analysis of a change in new business strategy (traditional product in the past, modified products in new business)
 - product modifications for the annuity payout phase

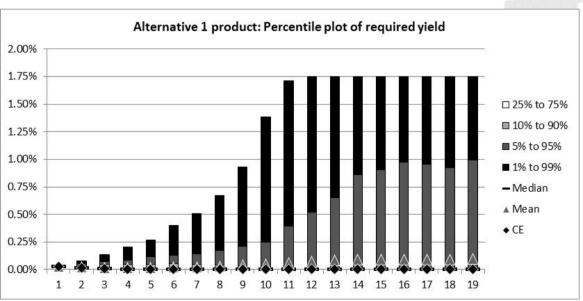
Importance of "risk management by product design" will increase.

Thank you for your attention!

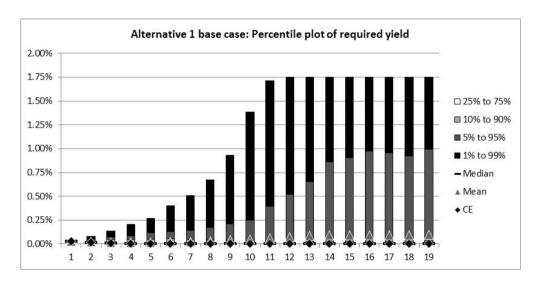


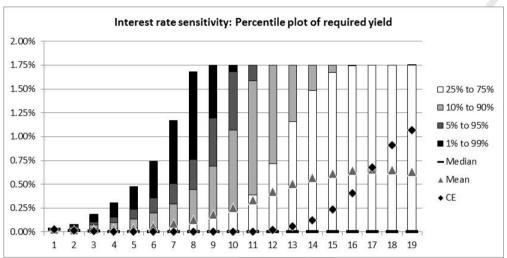
Percentile plots: Base case

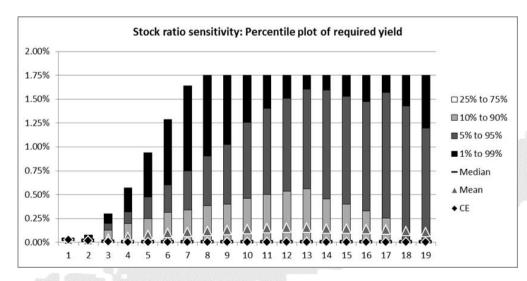


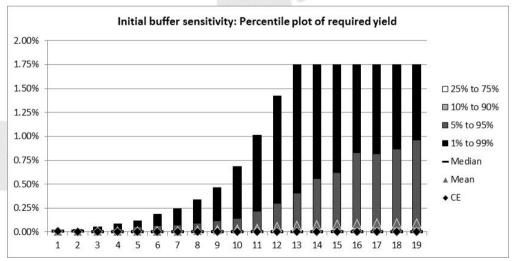


Percentile plots: Alternative 1 sensitivities









Percentile plots: Alternative 2 sensitivities

