

Extension, Compression, and Beyond

A Unique Classification System for Mortality Evolution Patterns

- June, 16th 2015
- Martin Genz
- Joint work with Matthias Börger and Jochen Ruß
- Institute for Finance and Actuarial Sciences and University of Ulm, Germany

Agenda

Classification of mortality evolutions in the past

Shortcomings

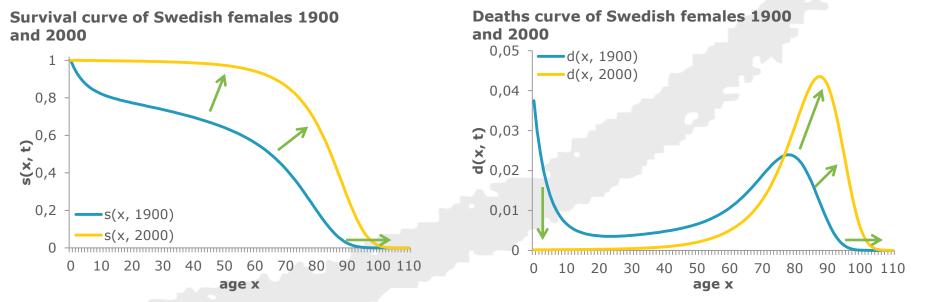
A new classification framework

Requirements

Details

Application

Summary



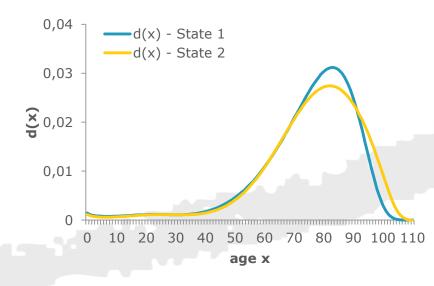
Key question

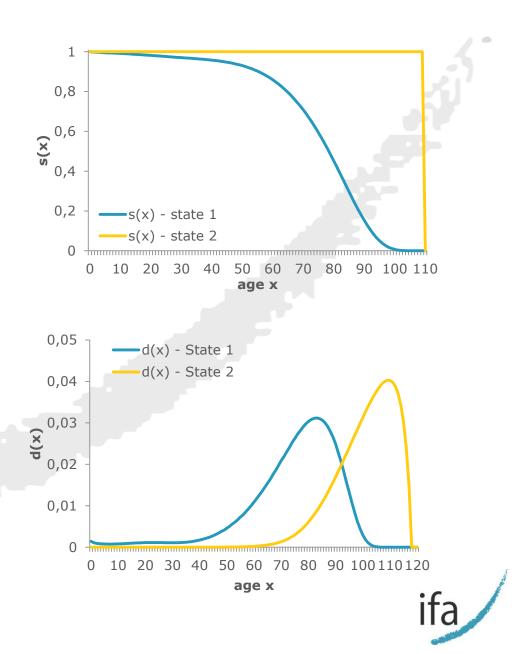
Life expectancy increases in many countries.

Intuitive Question: What is the structure of the change?

- We consider the survival curve s(x) and the deaths curve d(x) over time.
- s(x) = number of survivors to age x starting from a fixed number of newborn
- d(x) =number of people dying at age x

Concrete question: How does the shape of these curves change over time?

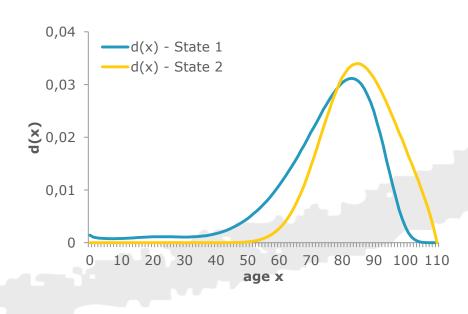


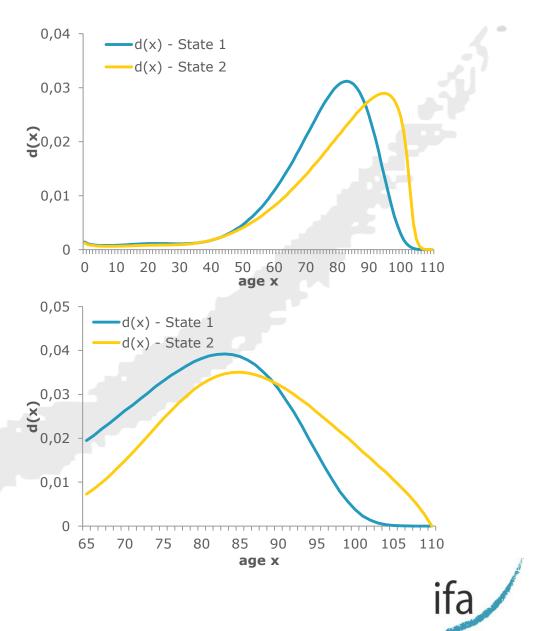


Classification of mortality evolutions in the past

Shortcomings

- Mortality scenarios are often defined imprecisely.
 - E.g., rectangularization is defined by a final state.
- Sometimes mortality scenarios are assumed to be **mutually exclusive**.
 - E.g., compression and shifting mortality are assumed to be opposing scenarios.




Classification of mortality evolutions in the past

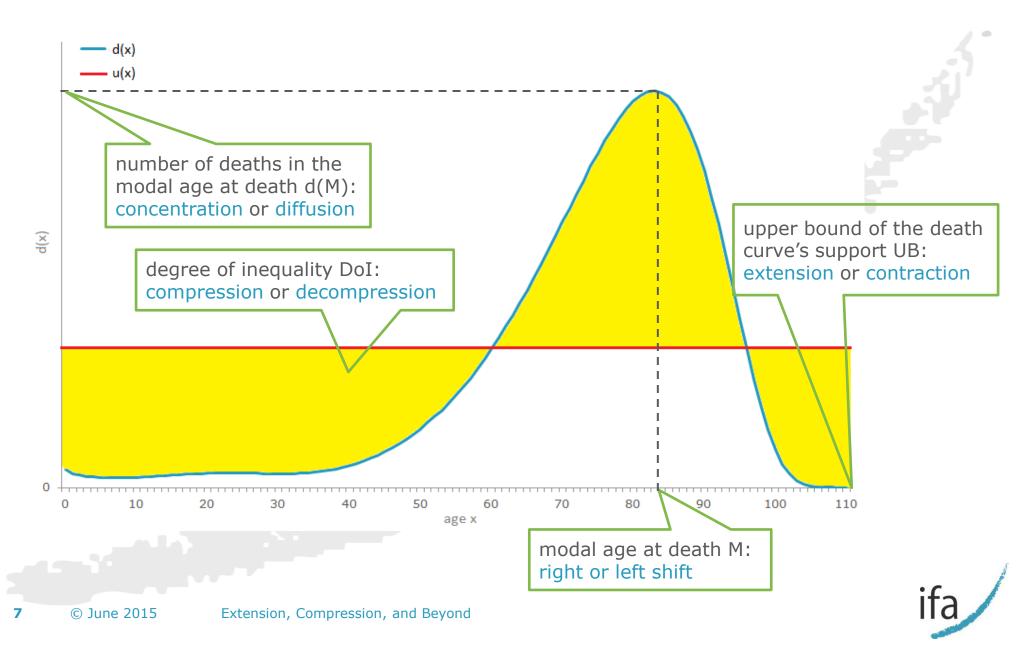
Shortcomings

- detected by an exclusive analysis of M and SD(M+).
- The choice of the age range matters.
 - The age range should be chosen depending on the question at hand.

A new classification framework

Requirements

In light of these shortcomings of previous approaches, we postulate that a new classification system should...


- ... capture every observed and theoretically possible mortality evolution,
- ... allow for mixed scenarios,
- ... build on statistics that can be feasibly calculated and easily interpreted,
- ... be applicable to different age ranges,
- ... be extendable by additional components if needed.

Our new approach:

- We use the deaths curve as basis for the framework.
- We define 4 characteristics of the deaths curve for a unique classification of observed mortality evolutions.

A new classification framework Details

A new classification framework Details

Each scenario is defined by a **4-dimensional vector** where each component can have three specifications:

	component	attainable states
position of the	М	right shift / neutral / left shift
deaths curve	UB	extension / neutral / contraction
shape of the	DoI	compression / neutral / decompression
deaths curve	d(M)	concentration / neutral / diffusion

- This allows for 3⁴=81 different scenarios (some of which might not be relevant in practice), including pure and mixed scenarios.
- Each observed mortality evolution can uniquely be classified in one of those scenarios.
- The framework can be applied to age ranges starting at any given age up to UB.

In the paper, we discuss different issues in estimating these statistics.

A new classification framework

Application: The mortality evolution of Swedish females

age range 10 to UB:

Scenario Component	Statistic Used	1860s	1870s	1880s	1890s	1900s	1910s	1920s	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s
1	м		right	-shift			n	eutra	I		right-shift					
2	UB			exter	nsion			r	eutra	I		extension				
3	Dol		neu	tral		compression						neu	tral	compression		
4	d(M)	neu	tral			СС	oncen	tratio	n		neu	tral	concentration			

- Each component of the vector develops independently from the others (no redundant information).
- We observe mixed scenarios (rather the rule than an exception).

Scenario Component	Statistic Used	1860s	1870s	1880s	1890s	1900s	1910s	1920s	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s		
1	м		right	-shift			r	neutra	I		right-shift							
2	UB	extension							eutra	ıl	extension							
3	Dol	decompression							compression									
4	d(M)	neutral						concentration				diffu	sion	concentration				

We observe different scenarios for different age ranges (age range matters).

In the paper, we analyze this application in more detail.

A new classification framework

Summary

In the paper, we have

- identified shortcomings of previous approaches for classification of mortality scenarios,
- derived requirements for a new framework,
- identified 4 central characteristics of the deaths curve,
- derived a new classification framework based on these characteristics, which
 - builds on clear scenario definitions,
 - provides a unique classification for each mortality evolution,
 - allows for mixed scenarios,
 - is applicable for different age ranges,
- **applied the framework** to concrete data.

Thank you for your attention!

Martin Genz (M.Sc.)

+49 (731) 20 644-264 m.genz@ifa-ulm.de

