

Runoff or Redesign? Alternative Guarantees and New Business Strategies for Participating Life Insurance

19th International Congress on Insurance: Mathematics and Economics (IME)

Jochen Wieland Institute for Finance and Actuarial Sciences (ifa) and Ulm University

Introduction

Products and modeling

Analyses and results

Conclusion

Introduction

Motivation

- **Participating life insurance products** play a major role in old-age provision.
- **Key problem**: significant financial risk due to year-to-year guarantees
 - impact of low interest rates and volatile asset returns
 - capital requirements under risk based solvency frameworks (e.g. Solvency II)
- Reuß, Ruß, Wieland [2015] "Participating Life Insurance Contracts under Risk Based Solvency Frameworks: How to increase **Capital Efficiency** by Product Design"
 - Alternative product designs can significantly enhance "Capital Efficiency",
 - and reduce the insurer's risk and increase profitability.
 - analysis for one-product portfolios (technical interest rate 1.75%; flat yield curve of 3.0% while building up portfolio)

Focus of this presentation:

- value and compare "typical" insurer's books of business built up in the past with traditional, but also alternative and mixed product history
- 2. analyze new business strategies with alternative products

Introduction

Products and modeling

Analyses and results

Conclusion

3 considered product designs

5

Considered products with identical **guaranteed benefit** *G* at maturity:

- annual premium payments (based on a **constant interest rate** *i*, e.g. i = 1.75%)
- **prospective actuarial reserves** for guaranteed benefit *G* (also based on *i*)
- **yearly surplus** (e.g. 90% of book value returns), credited to a bonus reserve
- (policyholder's) account value consisting of actuarial reserve and bonus reserve
- Products come with the **same guarantee at maturity**, but **different year-to-year guarantee**:
 - Traditional product: *i* is also a year-to-year minimum guaranteed interest rate (cliquetstyle guarantee)
 - at least this rate has to be earned each year on the assets backing the account value
 - Alternative I product: year-to-year minimum guaranteed interest rate = 0%
 - Alternative II product: no additional guarantee on the account value
- Advantage of the **alternative** products (cf. Reuß, Ruß, Wieland [2015]) :
 - minimum required yield often lower than i (in case of previously earned surpluses),

but (total) benefit for policyholder only reduced in very adverse scenarios © Jun 2015 IME 2015

History of the portfolio

- Business starting in **1988**
- Constant new business volume of **1,000 contracts every year** until 2013
 - all policyholders are 40 years old at inception of the respective contract, maturity 20 years
 - German standard mortality table, no surrender
 - **technical interest rates** for the contracts (maximum rate allowed by German regulation):

Underwriting	1988 -	1995 -	2001 -	2004 -	2007 -	2012 -	from
year	1994	2000	2003	2006	2011	2014	2015
i	3.50%	4.00%	3.25%	2.75%	2.25%	1.75%	1.25%

Financial market:

- insurer's assets invested in a portfolio consisting of stocks and coupon bonds
- coupon rates derived from yield curves of the German treasury bonds (until 2001) and zero-coupon Euro swap curves (from 2002 to 2013)
 - maturity of coupon bonds: 15 years
- equity returns derived from DAX performance index

History of the portfolio

The asset-liability model

Simplified balance sheet:

Assets	Liabilities
book value of stocks BV_t^S	shareholders' profit or loss X _t
book value of coupon bonds BV_t^B	sum of account values AV_t

- **rebalancing** strategy with a **constant equity ratio** q = 5%
- **portion of total asset return credited to the policyholders:** participation rate p = 90%
- surplus distribution such that total yield is the same for all policyholders
 - but at least the required yield
- **Book-value accounting rules** following German GAAP are applied.
- further management rules regarding asset allocation (reinvestment, rebalancing) and handling of unrealized gains or losses etc.

The financial market model for the projections

- asset portfolio consisting of stocks and coupon bonds
- Short rate process follows a Vasicek model, stock market follows a geometric Brownian motion.
- risk-neutral (ℚ) valuation framework

short rate process	$dr_t = \kappa(\theta - r_t)dt + \sigma_r dW_t^{(1)}$
stock market process	$\frac{dS_t}{S_t} = r_t dt + \rho \sigma_S dW_t^{(1)} + \sqrt{1 - \rho^2} \sigma_S dW_t^{(2)}$

Bank account given by $B_t = \exp\left(\int_0^t r_u du\right)$, and used for investment of cash flows during the year.

parameter values for projections:

	r_0	θ	К	σ_r	σ_S	ρ
basic	1.5%	3.0%	20.00/	2.0%	20.0%	15.0%
stress	0.5%	2.0%	50.0%			

- (Source of parameters: r_0 , θ take yield curves for current Solvency II calculations into account; other parameters: Graf et al. [2011])
- Monte Carlo projection of sample book of business until maturity of last contract

Introduction

Products and modeling

Analyses and results

Valuation measures

Portfolios in force

New business strategy

Development of risk exposure

Conclusion

Valuation measures

Measure for profit: Present Value of Future Profits PVFP

- and *PVFP_{stress}* (i.e. under parameters from stress level)
- **Measure for financial relief:** Average required yield of portfolio **ARY**_t (in year t)
 - required yields of all contracts in t weighted with the account values
- Measures for asymmetry and risk:
 - Time Value of Options and Guarantees: $TVOG = PVFP_{CE} PVFP$
 - *PVFP_{CE}* from a so-called "certainty equivalent" scenario
 - Solvency capital requirement for interest rate risk SCR_{int} (approx.): $\Delta PVFP = PVFP PVFP_{stress}$
- Measure for capital efficiency: $CapEff := \frac{PVFP}{\Delta PVFP} \cong \frac{PVFP}{SCR_{int}}$
- Measure for new business profitability: New business margin NBM
 - and *NBM_{stress}* accordingly

Introduction

Products and modeling

Analyses and results

Valuation measures

Portfolios in force

New business strategy

Development of risk exposure

Conclusion

12 © Jun 2015 IME 2015

Analysis of portfolios in force in 2014

Setting: Insurer has sold the traditional / alternative I / alternative II product since starting business in 1988.

	Traditional	Alternative I	Alternative II
PVFP	3.05%	5.16%	5.23%
<i>ARY</i> ₂₀₁₃	3.46%	0.02%	-3.39%
TVOG	2.14%	0.07%	0.05%
PVFP _{stress}	-1.26%	3.22%	3.40%
$\Delta PVFP \ (\cong SCR_{int})$	4.31%	1.94%	1.83%
CapEff	0.71	2.67	2.87

- **PVFP** about 70% higher, and **average required yield** close to zero with Alternative I and even remarkably below zero with Alternative II.
- **SCR**_{int} could have been reduced by 55 to 58% by selling alternative guarantees.
- → Capital efficiency multiple times larger with alternative products

Analysis of portfolios in force in 2014

Setting: Insurer started with the traditional product, and switched to selling alternative I / alternative II in the respective year.

In	2004		2008		2012		No
switch to	Alt. I	Alt. II	Alt. I	Alt. II	Alt. I	Alt. II	switch
PVFP	4.74%	4.75%	4.07%	4.11%	3.40%	3.46%	3.05%
<i>ARY</i> ₂₀₁₃	2.88%	2.20%	3.28%	3.18%	3.45%	3.45%	3.46%
TVOG	0.45%	0.44%	1.12%	1.08%	1.79%	1.73%	2.14%
$\Delta PVFP \ (\cong SCR_{int})$	2.99%	2.99%	3.86%	3.89%	4.25%	4.30%	4.31%
CapEff	1.59	1.59	1.05	1.06	0.80	0.81	0.71

The earlier the insurer has switched to alternatives, the stronger are the effects towards capital efficiency:

- e.g. 0.71 if staying with the traditional product, 0.80 if switch to Alt. I in 2012, 1.59 if switch in 2004.
- Measures show different speed of adjustment: TVOG and PVFP with significant effects shortly after switch; SCR_{int} and ARY need more time to adjust.
- → What will be the effects in the future if switching now?

Introduction

Products and modeling

Analyses and results

Valuation measures

Portfolios in force

New business strategy

Development of risk exposure

Conclusion

15 © Jun 2015 IME 2015

Analysis of new business strategy

- Setting: Insurer sold traditional product in the past, and sells for the upcoming 5 years (2014-18; 1,000 contracts per yr) either
 - no new business,
 - **traditional contracts,** or
 - alternative (I/II) contracts.

- With selling new business, *PVFP* as well as capital requirement (measured by Δ*PVFP*) grow.
 - However, relation of *PVFP* to *∆PVFP* improves, particularly with alternative guarantees.
 → Stopping new business not beneficial.

	In-force business		Traditional	Alternative I	Alternative II
PVFP	3.05%	NBM	3.01%	3.63%	3.74%
PVFP _{stress}	-1.26%	 NBM _{stress}	0.67%	1.53%	1.58%

New business margin (*NBM*) of alternative new business clearly larger than profitability of (traditional) in-force business (especially in more adverse capital market).

Introduction

Products and modeling

Analyses and results

Valuation measures

Portfolios in force

New business strategy

Development of risk exposure

Conclusion

17 © Jun 2015 IME 2015

Development of risk exposure in the future (ORSA)

- Own risk and solvency assessment (ORSA) with respect to the company's strategic planning and projected risk profile required in Solvency II framework
- In a planning scenario, we assume the following market conditions in the **next 5 years** (from 2014 on):
 - 15 yr bonds with coupons of 2.604% (derived from the risk-neutral return in the CE-scenario of the projections),
 - equity returns of **5.604%** (i.e. a risk premium of 3 perc. points)
 - 4 settings:
 - 1) Insurer sold traditional contracts in the past, and stops new business from 2014 on.
 - 2) Insurer sold and **continues** selling **traditional contracts**.
 - 3) Insurer sold **traditional contracts in the past**, but **sells Alternative I product from 2014** on.
 - 4) Insurer already **switched from Traditional to Alternative I in 2008**, and continues selling Alternative I.
 - new business: 1,000 contracts per year

Development of risk exposure in the future (ORSA): Planning scenario

- **PVFP** increases by approx. 11% over 5 years if insurer switches to Alt. I for new business
 - constant on a higher level if he already switched in 2008
- As before, ARY needs more time to adjust, i.e. decreases stronger with a longer history of alternative contracts in the portfolio.

Development of risk exposure in the future (ORSA): Planning scenario

- TVOG: decreases stronger with alternative guarantees in new business; increases without new business (run-off portfolio)
- SCR_{int}: parallely decreasing due to decreasing guarantee levels; lower risk level if already alternative contracts in the portfolio
- → Capital efficiency of portfolios with alternative products strong after few years.

Development of risk exposure in the future (ORSA): Stressed scenario

- consider a stressed planning scenario with coupons of 1.592% and equity returns of 4.592%
 - No profitability in stressed scenario for all settings, but projected loss developping worst in case of no new business and least severe if switching early to alternatives.
 - *SCR_{int}* decreasing slightly stronger in run-off portfolio
 - → no advantage, however, considering the increasing loss

Introduction

Products and modeling

Analyses and results

Conclusion

Conclusion

Importance of alternative product design and new business strategy

- Impact of alternative products on existing "traditional" portfolio:
 - Strong relief in financial risk for insurer (→ required yield moving to zero); improving capital efficiency.
 - **Early switch** to alternatives **amplifies the effects** a lot.
- New business strategy:
 - Considering profit and capital requirement, new business is beneficial and improves capital efficiency.
 - New business margin of alternative new business clearly larger.
 - Positive development of risk exposure in the planning scenario with alternative contracts (→ important for ORSA).
- Areas for **additional research**:
 - product design for the annuity payout phase

Thank you for your attention!

Jochen Wieland

Institute for Finance and Actuarial Sciences (ifa) and Ulm University

j.wieland@ifa-ulm.de

