A combined analysis of hedge effectiveness and capital efficiency in longevity hedging

Joint work with Matthias Börger and Jochen Ruß

Arne Freimann

Fifteenth International Longevity Risk and Capital Markets Solutions Conference

Washington D.C., September 2019
A combined analysis of hedge effectiveness and capital efficiency in longevity hedging

Agenda

- Introduction
- Model setup
- Hedging instruments
- Numerical results
- Summary
- References
Introduction
Motivation

Incentives for longevity hedging

- Risk reduction
 - Hedge effectiveness typically measured in terms of the achieved risk reduction (Coughlan et al. (2011), Cairns et al. (2014))
 - Success of insurance-based solutions (e.g. customized longevity swaps)

- (Cost of) capital relief under modern solvency regimes
 - Longevity hedges may provide a regulatory capital relief
 - Primary source of value creation from hedging (Börger (2010), Meyricke and Sherris (2014))
 - Capital efficient longevity hedging: (cost of) capital relief exceeds the hedging costs
 - Assessing the impact of hedging on regulatory capital is complex, in particular for index-based hedges due to population basis risk (Cairns and El Boukfaoui (2018))
 - At least five publicly announced tail-risk protection deals (Blake et al. (2018))

So far, both aspects have only been examined independently of each other
A separate analysis misses potential interrelations between the two aspects and therefore cannot provide a full picture of all implications of hedging
Model setup
Liability to be hedged

- **Model assumptions**
 - **Focus on longevity risk**
 - Constant risk-free interest rate r
 - Ignore counterparty default risk, investment risk and interest rate risk
 - **Simplified annuity provider**
 - Portfolio of immediate or deferred life annuities, closed to new business
 - Subset of the national population with differing mortality characteristics due to a specific sociodemographic structure
 - Focus on a single model point representing a cohort aged x_0 at time zero

- **Liability to be hedged**
 - **Unhedged liabilities**
 - Time-t random present value of liabilities: $L(t)$
 - Time-t best estimate liabilities: $\tilde{L}(t)$
 - **Hedged liabilities**
 - Time-t random present value of hedged liabilities: $L_H(t) := L(t) - H(t)$
 - Time-t best estimate hedged liabilities: $\tilde{L}_H(t) := \tilde{L}(t) - \tilde{H}(t)$
Model setup
Basic stochastic mortality model framework

Multi-population extension of the actual/estimated mortality trend (AMT/EMT) framework of Börger et al. (2019)

- **AMT simulation model captures the following risk drivers**
 - Long-term mortality trend risk for a reference population
 - Stochastic trend process of Börger and Schupp (2018)
 - Mortality differentials of several subpopulations of different sociodemographic status
 - Common relative modeling approach (Villegas et al. (2017))
 - Random walk with drift (Villegas and Haberman (2014))
 - Characterization approach (Haberman et al. (2014))
 - Small sample risk due to a finite portfolio size

- **EMT valuation model**
 - Reference population
 - Estimating the prevailing mortality level and trend based on the observable mortality patterns
 - Subpopulations
 - Additional adjustment for differing mortality levels and trends relative to the reference population (in the spirit of Cairns and El Boukfaoui (2018))
Model setup
Solvency Capital Requirements (SCRs) under Solvency II

Internal model
99.5% quantile of the change in best estimate [hedged] liabilities over a one-year horizon:

\[
\frac{\tilde{L}_{[H]}(T + 1) + CF_{[H]}(T + 1)}{1 + r} - \tilde{L}_{[H]}(T)
\]

Two components:
- More annuitants than anticipated might survive the year
- Longevity assumptions might change over the year in an unfavorable direction (typically the more relevant factor)

Standard formula
Change in best estimate [hedged] liabilities due to a sudden, permanent longevity shock:

\[
SCR_{L_{[H]}}(T) := \tilde{L}_{[H]}(T|\text{shock}_T(20\%)) - \tilde{L}_{[H]}(T)
\]

- Simple approximation for the 99.5% Value-at-Risk approach
- Many companies still rely on the standard formula

The SCR at time \(T \) is interpreted as an \(F_T \)-measurable random variable

The SCRs the hedger would be required to hold over time with or without a chosen longevity hedge can be determined in each outer model path

Entire distributions for the company’s SCRs over time
Model setup
Hedging objectives

Quantify the impact of longevity hedging on the hedger’s future cash flow profile

- **Adjusted [hedged] liabilities**
 \[
 \Pi_{L[H]} := L[H](0) + CoC_{L[H]}, \quad CoC_{L[H]} := \sum_{t \geq 0} \frac{r_{CoC} SCR_{L[H]}(t)}{(1 + r)^{t+1}}
 \]

- Benefit payments to surviving annuitants [minus hedge payments] plus
- Cost of regulatory capital for the [hedged] liabilities

Capital efficiency

- *Net capital relief*: expected reduction in the company’s future adjusted liabilities
 \[NCR(H) := E(\Pi_L) - E(\Pi_{L[H]})\]

- *Capital efficiency*: proportionate reduction in the company’s cost of regulatory capital
 \[CE(H) := \frac{NCR(H)}{E(CoC_L)} \leq 1\]

Hedge effectiveness

- Achieved risk reduction in the centralized **adjusted liabilities** (under a risk measure ρ)
 \[HE(H) := 1 - \frac{\rho(\Pi_{L[H]})}{\rho(\Pi_L)} \leq 1\]
Hedging instruments
Overview

- **Longevity swaps** \(h(t) := SI_{x_0+t,t} - K(t), \ 0 < t \leq \tau \)
 - Exchange the realizations of a survivor index \(SI_{x_0+t,t} \) against a set of fixed payments \(K(t) \)
 - Unlimited fully customized longevity swap provides a perfect hedge

- **Annuity forwards** \(h(\tau) := \tilde{L}(\tau) - K(\tau) \)
 - Exchange the realization of a liability index \(\tilde{L}(\tau) \) against a single pre-defined payment \(K(\tau) \)
 - \(\tilde{L}(\tau) \) derived based on up-to-date mortality assumptions at maturity (EMT valuation model)

- **Q-forwards** \(h(\tau) := n (K(\tau) - q_{x_0+\tau,\tau}) \)
 - Exchange realized mortality probabilities \(q_{x_0+\tau,\tau} \) against a fixed forward rate \(K(\tau) \)
 - Simple portfolio of a single q-forward with reference age \(x_0 + \tau \)

- **Rolling portfolios of one-year call spread options**
 - At any point in time \(t \geq 0 \), the hedger might enter into a one-year call spread option contract

 \[
 h(t+1) = (EP(t) - AP(t)) \max \left\{ 0, \min \left\{ \frac{\tilde{X}(t+1) - AP(t)}{EP(t) - AP(t)} ; 1 \right\} \right\}
 \]

 - Hedge index \(\tilde{X}(t+1) \), attachment point \(AP(t) \) and exhaustion point \(EP(t) \) are tailored to the company’s SCR computation method at time \(t \)
Hedging instruments
Index populations and pricing

- Different index population (IP)s
 - IP=B (fully customized, linked to the Book population)
 - Linked directly to the realized survivors and the realized mortality in the book population
 - IP=S (index-based, linked to the Subpopulations)
 - Hedger bears small sample risk
 - IP=R (index-based, linked to the Reference population)
 - Hedge exclusively covers the randomness originating from the reference population
 - Small sample risk and demographic basis risk remain with the hedger
 - Initial experience ratios are fixed to match the hedger’s initial portfolio characteristics

- Pricing
 - Incomplete and illiquid market for longevity-linked securities
 - Market participants demand a risk premium for taking longevity risk
 - Key idea of risk-adjusted pricing: adjust the distribution of each risk driver to obtain a risk-adjusted version of the AMT simulation model (Boyer and Stentoft (2013), Freimann (2019))
 - Under Q, the price of any security is defined as expected value of its discounted future payoffs
Numerical results: model calibration

Overview of model parameters

Model calibrated to the historical mortality experience of English and Welsh males

- National population serves as the reference population (Human Mortality Database (2018))
- Five subpopulations of different sociodemographic status based on the Index of Multiple Deprivation (IMD) for England (Office for National Statistics (2018))

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial model point age</td>
<td>$x_0 = 65$</td>
</tr>
<tr>
<td>Retirement age</td>
<td>65</td>
</tr>
<tr>
<td>Initial portfolio size</td>
<td>10,000</td>
</tr>
<tr>
<td>Sociodemographic book composition</td>
<td>(0, 0, 0.3, 0.3, 0.4)</td>
</tr>
<tr>
<td>Interest rate</td>
<td>$r = 2%$</td>
</tr>
<tr>
<td>Cost of capital rate</td>
<td>$r_{CoC} = 6%$</td>
</tr>
<tr>
<td>Risk premium of the hedge provider</td>
<td>$\lambda = 0.275$</td>
</tr>
<tr>
<td>Risk measure for assessing hedge effectiveness</td>
<td>$\rho = TVaR_{0.90}$</td>
</tr>
</tbody>
</table>
Numerical results: unhedged (adjusted) liabilities
The impact of stochastic cost of regulatory capital

- Initial situation without hedging

<table>
<thead>
<tr>
<th></th>
<th>$L(0)$</th>
<th>$\Pi_L(SF)$</th>
<th>$\Pi_L(IM)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(X)$</td>
<td>165,800</td>
<td>176,900</td>
<td>169,900</td>
</tr>
<tr>
<td>$TVaR_{0.90}(\bar{X})$</td>
<td>10,100</td>
<td>11,300</td>
<td>11,500</td>
</tr>
</tbody>
</table>

- Quantile plots of the company’s SCRs over time

Adjustment for future cost of regulatory capital increases both, the
- Expected future liabilities (more pronounced under the standard formula)
- Overall risk exposure (more pronounced under the internal model)
Numerical results: the separate effects of hedging
Overview of hedging instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Parametrization</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longevity swaps</td>
<td>index population maturity</td>
<td>$\in {\text{Book, Subpops, Refpop}}$ ≥ 25</td>
</tr>
<tr>
<td>Annuity forwards</td>
<td>index population maturity</td>
<td>$\in {\text{Book, Subpops, Refpop}}$ ≤ 25</td>
</tr>
<tr>
<td>Q-forwards</td>
<td>index population maturity</td>
<td>$\in {\text{Subpops, Refpop}}$ ≤ 25</td>
</tr>
<tr>
<td>Rolling portfolios of one-year call spread options</td>
<td>index population maturity</td>
<td>$\in {\text{Book, Subpops, Refpop}}$ ≤ 25</td>
</tr>
<tr>
<td>(standard formula design)</td>
<td>attachment point exhaustion point</td>
<td>$ap = 0.05$ $\alpha_{EP} = 99.5%$</td>
</tr>
<tr>
<td>Rolling portfolios of one-year call spread options</td>
<td>index population maturity</td>
<td>$\in {\text{Book, Subpops, Refpop}}$ ≤ 25</td>
</tr>
<tr>
<td>(internal model design)</td>
<td>attachment point exhaustion point</td>
<td>$ap = 0.01$ $\alpha_{EP} = 99.5%$</td>
</tr>
</tbody>
</table>
Numerical results: the separate effects of hedging
Capital relief for selected fully customized hedges over 25 years

The structures of the remaining SCRs differ in terms of both, level and variability
- Among the instruments
- Between the internal model (upper row) and the standard formula (lower row)
Numerical results: the separate effects of hedging
Cost of capital relief: standard formula vs. internal model

- Higher CoC relief under the standard formula
 - Limited longevity swaps
 - Q-forwards
 - Rolling call-spreads (0.05,0.20)
- Comparable CoC relief
 - Annuity forwards
- Higher CoC relief under the internal model
 - Rolling call-spreads (0.01,99.5%)

- Standard formula does not detect population basis risk
- Internal model: haircut for small sample risk ($IP=S$, □) and additionally for population basis risk ($IP=R$, ▷)

Discordant cost of capital reliefs
Numerical results: the separate effects of hedging

Risk reduction

For a selected hedge structure, clear ranking among the index populations:

\[HE(IP=B, \bigcirc) > HE(IP=S, \square) > HE(IP=R, \uparrow) \]

Hedge effectiveness is sometimes underestimated, sometimes overestimated when ignoring the uncertainty in future cost of capital (relief)
Numerical results: combined analysis of HE and CE

The costs of effective hedging

Higher hedge effectiveness typically comes along with higher hedging costs.

Index-based designs ($IP=R, \uparrow$) are offered at a better price.

The costs for rolling portfolios of one-year call spreads are disproportionately high if the hedge provider does not reduce the risk loading for yearly noise.

(a) $\lambda = 0.275$ for all risk drivers

(b) reduced $\lambda_e = 0.15$ for yearly noise
Numerical results: combined analysis of HE and CE

The trade-off between HE and CE

The most effective hedge does not provide the highest capital efficiency

Customized designs (IP=B, O) dominate in terms of hedge effectiveness

Index-based designs (IP=R, +) dominate in terms of capital efficiency

Trade-off between hedge effectiveness and capital efficiency
Summary

Framework for a joint analysis of hedge effectiveness and capital efficiency

- Uncertainty in future cost of regulatory capital is incorporated into the assessment of hedge effectiveness
- Applied in the context of an economic capital model under Solvency II to a variety of different customized and index-based instruments taking into account population basis risk

Key findings

- The standard formula’s prescribed longevity shock provides different and less consistent capital reliefs than a risk-based internal model
- Hedge effectiveness might, depending on the underlying hedge structure, rise or fall when allowing for uncertain future cost of regulatory capital and appropriate capital reliefs
- Rolling portfolios of one-year contracts are only competitive if market participants lower the risk premium for random noise around the prevailing mortality trend
- Index-based solutions have the potential to outperform fully customized hedges in terms of capital efficiency
- Hedgers might face a trade-off between hedge effectiveness and capital efficiency when hedge providers demand a risk premium
References

Boyer M. M. & Stentoft, L. (2013). If we can simulate it, we can insure it: An application to longevity risk management. Insurance: Mathematics and Economics, 52, 35-45.

References

Institut für Finanz- und Aktuarwissenschaften

Contact information

Arne Freimann (M.Sc.)
+49 (731) 20644-253
a.freimann@ifa-ulm.de
What we do

Overview

Life
- product development
- biometric risks
- life settlements/TEPs

Non-Life
- product design
- pricing
- reserving
- DFA
- risk management

Health
- actuarial modeling
- claims management
- portfolio analyses

Solvency II
- embedded value
- asset liability management
ERM
- value- and risk-based management
- data analytics

Actuarial Consulting
- project management
- market entries
- inforce management
- strategic consulting

Actuarial Services
- large-scale actuarial projects
- actuarial tests
- support in case of capacity constraints

... further information is available on our website
www.ifa-ulm.de

Research

Education
Disclaimer

Please consider the following reliances and limitations:

- This document must be considered in its entirety as individual sections, if considered in isolation, may be misleading. No reliance should be placed on any advice not given in writing. Draft versions of this document must not be relied upon by any person for any purpose. All decisions taking into account this document must consider the agreed basis and the specific purposes of this document. If reliance is placed contrary to the guidelines set out above, we disclaim any and all liability which may arise.

- This document is based on our market analyses and views as well as on information which we received from you. We have checked this information for consistency against our market knowledge and experience. But we have not undertaken any independent verification regarding completeness or correctness of this information. Statistical market data as well as information where the source of the information is indicated are in general not checked by us. Please also note that this document was based on data available to us at, or prior to the date it was prepared. It takes no account of developments after that date and we are under no obligation to update or correct inaccuracies which may become apparent in the document. In particular, this holds for possible implications arising from the introduction of new regulatory requirements.

- This document is based on our experience as actuarial advisers. Where, in the course of providing our services, we need to interpret a document, deed, accounts or relevant taxation provision or medical issues in order to advise you, we will do so with the reasonable skill and care to be expected of us in our professional capacity. Should you want definitive advice, for example as to the proper interpretation of a document, deed, accounts, relevant taxation provision or medical issues, you should consult your lawyers, accountants, tax advisers or medical experts for that advice.

- As agreed, this document was made available for internal use only. Except with our written consent, this document must not be reproduced, distributed or communicated in whole or in part to any third party. We disclaim all liability for consequences arising from any third party relying on our reports, advice, opinions, documents or other information.

- Any reference to ifa in context with this document in any report, accounts, other published documents, or oral form is not authorised without our prior written consent. This holds similarly for any oral information or advice provided by us in the context of presenting/discussing this document.