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Introduction
Motivation and Common practice

B Lapse risk is one of the key risk drivers of life
and pension business.

B significant impact on the cash flow profile
and the profitability of life insurance
business

relevant for Asset-Liability-Management
and liquidity risk
@ Market consistent valuations are based on
best estimate future lapse rates.

e.g. Solvency II regulation (also specific
risk module that addresses lapse risk)

® Common practice
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Introduction
Whittaker-Henderson

® The insurance portfolio is typically divided into sub-portfolios based on contract characteristics like
type of contract, country, or distribution channel.

® Whittaker-Henderson including covariate country
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Introduction
Motivation and data set

® Multivariate models estimate lapse rates using ® Application

all covariates simultaneously. .
Y @ We use data from a European life insurer

® GLM lapse model: Eling and Kiesenbauer operating in four countries (run-off
(2014) and Barucci et al. (2020) portfolio).
® number of coefficients & considerable effort @ We use 13 covariates and a total sample

@ risk of under- or overfitting size of 501,251.

B covariates include standard data of an

® Data Science methods can be a solution. We .
insurance company, €.g.:

use the LASSO approach to derive a lapse

model that contract duration, entry age, sum

insured, country, contract type,...
@ is calibrated automatically and purely data

driven,
but remains fully interpretable,

is able to detect hidden structures in the
covariates.

#@ We analyze and combine different extensions
of LASSO to satisfy the needs of a practical
application.
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Method
Logistic regression and LASSO

® Logistic regression
@ Y, is Bernoulli distributed.
® EY) =p(x)
@ Transform p(x;) and assume a linear relationship:

p(x;)

logit(p(x)) = In (W

> = Bo + Pixis + ... + BmXim

® Likelihood function:
LB, X,y) = [Tiei p(x)?Vi(1 — p(x))~¥0
® LASSO (Least Absolute Shrinkage and Selection Operator)

® Include a regularization term:

min  —log(L(B,X,¥)) + A Z§=1g(ﬁj)
| |

¥ 3
Shrinkage-Factor: 1 >0 Regularization:
Controlling the impact of Penalty term for the coefficients
regularization and goodness-of-fit Regular Lasso: g(B;) = Zfil 1B; 1]
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Method
Extension: Fused LASSO and Trend Filtering - Tibshirani and Taylor (2011)

® Now we extend the LASSO: min —log(L(8,X,y)) + A Z§=1gj(ﬁj) - Devriendt et al. (2018)

® Regular LASSO: gx(8)) =11 Bil,= X}, 1B;.]
8 Fused LASSO: ® Trend Filtering:

pj pj Dj bj
gr(B;) = Z|Bj,i — Bjia| = Z 18] gr(B;) = z 1Bji — 2Bji-1 + Bji—2| =: z 1B}
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Model Selection

R interface for H20

@ Assign a penalty term for each covariate:

@ Contract duration - trend
@ Entry age - fused
® Sum insured - trend
® Country - regular
[

Hyperparameter A is based on 5-fold cross validation with one standard error rule.

Residual Deviance as measure for goodness of fit

]
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Model Selection
Trend filtering for contract duration
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Model Selection
Fused Lasso for entry age
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Interactions
Motivation — Problem of the model without interactions
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® Impact of contract duration on observed lapse rates differs for the individual countries
® Model without interaction does not capture this

® We want to include the interaction contract duration - country
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Interactions
Model with the interaction contract duration - country
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Conclusion

# Results: 1 - Deviance/Null Deviance

Intercept Only 0%
Whittaker-Henderson 6.7%
LASSO without interaction 11.0%
LASSO with interaction 11.7%

# Advantages - The resulting model

@ +64%

@ +6%

@ is multivariate and estimates lapse rates using all covariates simultaneously,

@ is calibrated automatically and purely data driven,

B remains fully interpretable,

B is able to detect hidden structures in the covariates.

® Outlook on further research questions:
B Offset model
@ Extrapolation

B Other machine learning algorithms
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