Sie sind hier: Startseite - News & Publikationen - ifa informiert - 

ifa informiert

05.2021

Data Analytics in der BU-Versicherung (mit Vorstellung am 26.05.2021 im Livestream)


Auch in der Berufsunfähigkeitsversicherung ist die Höhe der Prämie ein zentrales Kriterium für den Verbraucher. Die Prämie berechnet sich dabei typischerweise aus mehr Merkmalen als nur Alter und Beruf. Gerade in den letzten Jahren sind immer mehr Merkmale zu Person und Beruf hinzugekommen, welche die Ermittlung der Prämie verfeinern und so den Versicherern in ausgewählten Segmenten einen Preisvorteil verschaffen können.

Aus aktuarieller Sicht wird damit die Prämienkalkulation in der Berufsunfähigkeits­versicherung komplexer und die mathematischen Methoden müssen entsprechend Schritt halten. Methoden von Data Analytics können beispielsweise mittels Entscheidungs­bäumen Abweichungen von erwarteten zu tatsächlichen Inzidenzen in einzelnen Segmenten aufzeigen. Dies nutzt man heute bereits häufig im Risikocontrolling. Solche Erkenntnisse können aber natürlich auch für die Prämienkalkulation genutzt werden.

Ein Beispiel kann die Anwendung von Data Analytics in der Prämienberechnung verdeutlichen: Eine einfache Kalkulationsmethode besteht darin, ein Merkmal anhand eines einheitlichen Faktors zu berücksichtigen. Dies sei hier das Merkmal Raucherstatus. Für Raucher wird ein Zuschlag von 10% und für Nichtraucher ein Abschlag von 5% auf die Basistafel erhoben und damit ein Spreiz von 15% vorgenommen. Bei einer Analyse von tatsächlich eingetretenen BU-Fällen im Vergleich zu den erwarteten Fällen mittels Entscheidungsbäumen zeigt sich nun folgendes Bild: Auf den gesamten Bestand betrachtet, kann der Zuschlag von 10% bzw. Abschlag von 5% bestätigt werden. In teuren Berufsgruppen fällt der Spreiz jedoch tatsächlich geringer aus als 15% und in günstigen Berufsgruppen stärker. Ein solches Ergebnis bedeutet dann insbesondere, dass für günstige Berufsgruppen die Prämie für Raucher stärker erhöht und für Nichtraucher stärker verringert werden könnte.

Der Aktuar spricht in Fällen, in denen Merkmale in Bezug auf die Zielgröße voneinander abhängen, von Interaktionen. Das zuvor geschilderte Beispiel zeigt bei Raucherstatus und Berufsgruppe bzgl. der Invalidisierungswahrscheinlichkeiten solche Interaktionen auf, sodass sich ein nicht-konstanter Spreiz für verschiedene Berufsgruppen ableiten lässt.

Methoden von Data Analytics wie die hier eingesetzten Entscheidungsbäume sind in der Lage, selbstständig Interaktionen aus Merkmalen zu erkennen. Die Ergebnisse dieser Analysen bilden damit eine gute Basis für die Prämienkalkulation. Sie erlauben zum einen eine risikogerechtere Prämienkalkulation und zum anderen Wettbewerbs­vorteile durch eine differenzierende Preisgestaltung in ausgewählten Segmenten.

Dr. Sandra Blome und Dr. Johannes Schupp stellen am 26.05.2021 um 17.00 Uhr eine Anwendung von Data Analytics in der BU im Rahmen unseres Formats ifa informiert live vor. Im Mittelpunkt steht dabei eine Case Study. Der Kurzvortrag dauert etwa 30 Minuten.

Hier können Sie sich für diesen kostenlosen Livestream registrieren.


Weitere Informationen:

Dr. Sandra Blome

Institut für Finanz- und Aktuarwissenschaften
Lise-Meitner-Str. 14
89081 Ulm

Wichtige Informationen:

ifa aktuell:
ifa fordert BdV auf, fehlerhafte Studie zur Kombination von Arbeitskraft- und Alterssicherung zurückzuziehen

Der Bund der Versicherten (BdV) hat eine Studie vorgestellt, die wirtschaftliche Nachteile von Koppelprodukten (welche Arbeitskraftabsicherung und Altersvorsorge in einem Vertrag anbieten) belegen soll und in diesem Kontext eine ifa-Studie aus dem Jahr 2020 gezielt diskreditiert und als „von der Branche gekauft“ bezeichnet. In einer Stellungnahme weisen wir nach, dass den Autoren der BdV-Studie ein fundamentaler fachlicher Fehler unterlaufen ist, und dass das Studiendesign des BdV offensichtlich ungeeignet ist, um die Frage zu beantworten, ob die Koppelung per se finanziell vorteilhaft ist oder nicht. Nach Korrektur des fachlichen Fehlers und des Studiendesigns ergeben sich ähnliche Ergebnisse wie in der ifa-Studie aus dem November 2020. [mehr]

ifa informiert:
Produktenwicklung im Zeichen der Regulierung

Mit den Veröffentlichungen von Eiopa und BaFin kommen auf die Lebens­versicherer in der Produktentwicklung neue quantitative Anforderungen zur Darlegung des Kundennutzen zu, die insbesondere Ablaufleistung und Rückkaufswert betreffen. [mehr]

Neuigkeiten in Kürze:

Forschungsarbeiten zu Solvency II mit PwC Insurance Nord Preis ausgezeichnet [mehr]

Fondsgebundene Rückdeckungsversicherung in der Unterstützungskasse  [mehr]

Forschungsarbeiten zu Solvency II mit Gauss-Preis ausgezeichnet [mehr]

VAIT-Novelle verlangt angemessenen Test aktuarieller Software [mehr]

Beitragsstabilität für BU-Tarife der Alte Leipziger bestätigt [mehr]