Sie sind hier: Startseite - Beratungsfelder - Schaden-/​Unfallversicherung - Data Analytics

Data Analytics in der Schaden-/Unfallversicherung

Versicherungsunternehmen besitzen große Datenmengen, die zahlreiche Informationen z.B. zu Kunden und Schäden enthalten. Data Analytics beinhaltet die intelligente Informationsgewinnung aus solchen Daten und die praktische Umsetzung der daraus gewonnenen Erkenntnisse.

Anwendungsbeispiele:
  • Data Analytics bietet eine Erweiterung der Toolbox des Aktuars zur verbesserten Tarifierung. Sinnvoll eingesetzt optimiert es die Schätzung von erwarteten Schadenbedarfen, ohne die Möglichkeiten zur Interpretation, Kommunikation und Tarifmodellierung zu verlieren.
    • Die klassische Risikomodellierung mit verallgemeinerten linearen Modellen (Generalized Linear Models, GLMs) lässt sich durch den Einsatz sog. elastischer Netze effizienter gestalten. Rein datengetrieben werden nicht-lineare Transformationen von Merkmalen oder Gruppen einzelner Merkmalsausprägungen unter simultaner Kalibrierung aller Merkmale erkannt und automatisch an die beobachteten Daten angepasst. Da die Risikofaktoren in bewährter GLM-Struktur vorliegen, ist die nahtlose Integration in den weiteren Tarifierungsprozess gegeben:

      Details zu diesem Ansatz finden Sie in diesem Vortrag.
    • Komplexere Machine-Learning-Verfahren können gewinnbringend zur Unterstützung der bestehenden Modellierung eingesetzt werden. Gemäß dem Prinzip „Ergänzen statt Ersetzen“ reichen Anwendungen von der Auswertung neuer Big-Data-Datenquellen über die verbesserte Erkennung von nicht-linearen Zusammenhängen und versteckten Interaktionen bis hin zum Benchmarking des GLMs zur Identifizierung defizitärer Teilbestände.
    • In der Schadenversicherung macht die geografische Analyse auf einen Blick erkennbar, in welchen Regionen Produkte profitabel oder defizitär sind und wo Spielräume für Beitragsrabatte existieren.
      Hier, aber auch in anderen Sparten kann man beispielsweise durch Analyse von Vertragsparametern Erkenntnisse über Marktdurchdringung und regionale Schwerpunkte in der Gestaltung von Versicherungsschutz gewinnen.
      Aus solchen Erkenntnissen abgeleitete Anpassungen am Tarifmodell oder geplante Vertriebsmaßnahmen können anschließend wiederum mit der identischen Visualisierung untersucht werden, um die Auswirkung geplanter Maßnahmen a-priori abzuschätzen.
  • Die Schadenregulierung, also die Prüfung, Bearbeitung und Abwicklung von Schäden, ist ein umfangreicher, meist schadenindividuell verlaufender und manuell gesteuerter Prozess.
    Dabei entstehen viele Daten zum Schaden und zu einzelnen Bearbeitungsschritten, die um Angaben zur versicherten Person und deren Vergangenheit angereichert werden können. Mit Data Analytics ist es möglich, die Beleg- und Rechnungsprüfung anhand von erwarteten Korrekturpotenzialen zu steuern, um Bearbeitungskosten zu senken und den Regulierungsprozess zu beschleunigen. Eine Fallstudie zur Automatisierung des Regulierungsprozesses und weitere Anwendungsmöglichkeiten finden Sie hier.
  • Im Risikomanagement können feingliedrige Visualisierungen der geografische Analyse, z.B. auf Kreisebene, helfen, Kumulrisiken zu erkennen. Die geografische Analyse der Entwicklung von Schadenquoten oder anderer Risikokennzahlen im Zeitverlauf kann aufzeigen, wie Risiken in gewissen Regionen zu- oder abnehmen.
Weitere Anwendungsbeispiele finden Sie hier oder direkt bei den Sparten Leben und Kranken.
Wichtige Informationen:

ifa aktuell:
Die Zukunft der Lebenserwartung – Wie sollten Aktuare mit der Unsicherheit umgehen?

Die Zukunft der Lebenserwartung ist aktuell so unsicher wie selten zuvor. Das ifa hat im Rahmen der Herbsttagung der DAV auf diese Unsicherheit hingewiesen und vorgestellt, wie Aktuare in der Produktentwicklung und im Risikomanagement mit dieser Unsicherheit umgehen können. [mehr]

ifa informiert:
Möglichkeiten im Produktdesign bei steigendem Rechnungszins

Die Deutsche Aktuarvereinigung (DAV) hat empfohlen, den Höchstrechnungszins in der Lebensversicherung im Jahr 2025 von aktuell 0,25% auf 1,0% anzuheben. Sofern das Bundesministerium der Finanzen dieser Empfehlung folgt, stellen sich zahlreiche Fragen rund um das Design von Lebensversicherungsprodukten. [mehr]

Neuigkeiten in Kürze:

BaFin veröffentlicht Erkenntnisse aus der Wohlverhaltensaufsicht Lebensversicherung [mehr]

Transparenz und Kontrolle bei Methoden, Modellen und Tools [mehr]

BaFin beschreibt Zuordnungsansatz für Vermögenswerte im Rahmen der EU-Offenlegungsverordnung [mehr]

Value for Money bei Altersvorsorgeprodukten [mehr]

Update des Branchenstandards für PRIIP der Kategorie 4 erfordert Modellanpassungen [mehr]