Die Nutzung von Daten ist für Versicherungsunternehmen schon immer eine Kern-kompetenz ihres Geschäftsmodells. Die in den letzten Jahren zunehmend populären Data-Analytics-Methoden sind eine hilfreiche Erweiterung des Methodenbaukasten für Datenanalysen in der Lebensversicherung: Sie erlauben ein besseres Erkennen von Strukturen in den Daten und hierdurch eine signifikante Verbesserung der Prognosegüte. Außerdem kann der Analyseprozess beschleunigt und automatisiert werden.
Unsere Projekterfahrungen zeigen, dass es auch in der Lebensversicherung zahlreiche spannende Anwendungsbeispiele für Data Analytics entlang der gesamten Wertschöpfungskette gibt. Illustrativ nachfolgend zwei konkrete Anwendungsbeispiele:
Anwendungsunabhängig ist es wichtig zu entscheiden, ob Modelle z.B. aus regulatorischen Gesichtspunkten nachvollziehbar sein müssen. Black-Box Modelle, die sich zwar durch eine hervorragende Prognosegüte auszeichnen, sind nicht interpretierbar. Für die Anwendung dieser Modelle ist es deshalb besonders wichtig diese mit Kontext- und Methodenwissen zu validieren, um Fehlschlüssen vorzubeugen.
Andererseits sind aber manche mögliche Anwendungsfelder in der Lebensversicherung dadurch geprägt, dass eher zu wenige als zu viele Daten zur Verfügung stehen (also gerade keine Big Data). Hier ist der Zusatznutzen von Data-Analytics-Methoden fraglich. Um solche Fragestellungen für Data-Analytics-Methoden zugänglich zu machen, muss ggf. zunächst die Datenbasis verbessert werden, beispielsweise in Form eines Data Warehouse zum Kundenverhalten. Da der Aufbau einer geeigneten Datenbasis erfahrungsgemäß einige Zeit dauert, sollten entsprechende Initiativen eher frühzeitig in Angriff genommen werden.
Die Zukunft der Lebenserwartung ist aktuell so unsicher wie selten zuvor. Das ifa hat im Rahmen der Herbsttagung der DAV auf diese Unsicherheit hingewiesen und vorgestellt, wie Aktuare in der Produktentwicklung und im Risikomanagement mit dieser Unsicherheit umgehen können. [mehr]
Value for Money und der Nachweis eines angemessenen Kundennutzens von Lebensversicherungsprodukten ist stark in den Fokus der BaFin gerückt. Vor diesem Hintergrund stellt die Rechnungszinserhöhung eine doppelte Chance dar. Zum einen entsteht die Möglichkeit, die Attraktivität der Produkte im Neugeschäft zu erhöhen. Zum anderen bietet sich die Chance, bestehende Schwachstellen im Produktfreigabeverfahren zu korrigieren und damit für die Zukunft nachhaltig kundenorientiert aufgestellt zu sein. [mehr]
BaFin veröffentlicht Erkenntnisse aus der Wohlverhaltensaufsicht Lebensversicherung [mehr]
Transparenz und Kontrolle bei Methoden, Modellen und Tools [mehr]
BaFin beschreibt Zuordnungsansatz für Vermögenswerte im Rahmen der EU-Offenlegungsverordnung [mehr]
Value for Money bei Altersvorsorgeprodukten [mehr]
Update des Branchenstandards für PRIIP der Kategorie 4 erfordert Modellanpassungen [mehr]