Sie sind hier: Startseite - Beratungsfelder - Lebensversicherung & Altersvorsorge - Data Analytics

Data Analytics für Lebensversicherungsunternehmen

Versicherungsunternehmen besitzen große Datenmengen, die zahlreiche Informationen z.B. zu Kunden und Schäden enthalten. Data Analytics beinhaltet die intelligente Informationsgewinnung aus solchen Daten und die praktische Umsetzung der daraus gewonnenen Erkenntnisse.

Anwendungsbeispiele:
  • Data Analytics kann bei der Erstellung, Approximation und Interpretation aktuarieller Projektionsmodelle im Aktuariat und Risikomanagement unterstützen:
    • verbesserte Bestandsverdichtung bei Projektionsrechnungen zur Verbesserung der Performance
    • beschleunigte Approximation von Vorhersagen aus Projektionsmodellen bei geändertem Input zu Versicherungstechnik, Kapitalmarkt und Managementregeln
    • Anwendung von Data-Analytics-Verfahren zur Identifizierung der Haupttreiber und Interpretation ihrer Effekte auf den Output von Projektionsmodellen
  • Eine verbesserte Mustererkennung mit Data-Analytics-Verfahren in der Stornomodellierung kann neben Maßnahmen zur Stornoprävention der gesonderten Berücksichtigung von Frühstorno in vertrieblichen Provisionsmodellen oder der Herleitung von granulareren Stornotafeln für Projektionsrechnungen dienen.
  • Einsatz geografischer Analysen in der Vertriebs- und Unternehmenssteuerung
    • Der Vertrieb kann mit der interaktiven Visualisierung des Versicherungsbestandes hinsichtlich des Rabattierungsverhaltens, Neugeschäftserfolgs oder ihres Churn-Managements (u.A. Storno- und Wiederanlageerfolg) bewertet und gesteuert werden.
    • Unter Hinzunahme externer Daten wird ersichtlich, in welchen Regionen die Marktabdeckung noch unbefriedigend ist und es sich lohnen würde Vertriebskampagnen zu initiieren.  Diese Art der Visualisierung des Bestandes kann damit die Grundlage für ein Dashboard liefern (bzw. ein integraler Bestandteil davon sein), um datenunterstützte Entscheidungen treffen zu können.

  • Im Rahmen der Todesfallabsicherung oder bei der Invaliditäts- und Pflegeversicherung hat der Gesundheitszustand der versicherten Person wesentlichen Einfluss auf das Leistungsversprechen und die Kalkulation. Eine verbesserte Modellierung mittels Data-Analytics-Verfahren kann entlang der gesamten Vertragslaufzeit gewinnbringend sein:
    • vor oder bei Vertragsabschluss: Ableitung von Entscheidungskriterien für Werbemaßnahmen, Kundenansprache und Angebotserstellung sowie Verbesserung und Dynamisierung der Risikoprüfung durch Analyse der Leistungsfälle
    • beim oder nach dem Leistungsfall: Unterstützung bei der Entscheidung über einen gemeldeten Leistungsfall und Modellierung der Reaktivierungswahrscheinlichkeiten (z.B. bei Berufsunfähigkeit)
  • Verbesserung organisatorischer Abläufe wie beispielsweise:
    • Erhöhung der Dunkelverarbeitungsquote in der Antragsbearbeitung von Berufsunfähigkeits- und Risikoversicherungen
    • maschinelle Vorbelegung des Berufsunfähigkeitsgrads durch die Analyse der vorhanden Leistungsdaten (entscheidungsunterstützend)
    • Routing ähnlicher Regulierungsfälle zum gleichen Sachbearbeiter (Inbound-Routing)
    • Bestimmung von Intensität und Terminen anhand des Reaktivierungspotenzials zur Nachprüfung in der Berufsunfähigkeit
Weitere Anwendungsbeispiele finden Sie hier oder direkt bei den Sparten Schaden/Unfall und Kranken.
Wichtige Informationen:

ifa aktuell:
Provisionsverbot und Kleinanlegerstrategie – Plädoyer für eine Koexistenz von Provision und Honorar bei Altersvorsorgeprodukten

Im Zuge der Einführung der sogenannten „EU-Kleinanleger­strategie“ wird derzeit auf EU-Ebene die Frage kontrovers diskutiert, ob provisionsbasierte Beratung bei Finanzprodukten stärker reguliert oder gar verboten werden sollte. Begründet wird die Forderung eines Verbots dabei mit Ergebnissen der sogenannten Kantar-Studie. Dies ist in doppelter Hinsicht problematisch: Die in der öffentlichen Diskussion angeführten Kostenargumente können gar nicht aus der Kantar-Studie abgeleitet werden. Argumente jenseits einer reinen Kosten­betrachtung, die gegen ein Provisions­verbot sprechen, werden komplett ausgeblendet. Um eine Indikation abzuleiten, für welche Typen von Verbrauchern welche Form der Beratungsvergütung kosten­günstiger ist, haben wir für verschie­dene Vergütungsmodelle quantitative Analysen durchgeführt. Hier hat sich deutlich ergeben, dass für Ver­braucher, die regelmäßig eher kleine Summen sparen (die also im Rahmen der EU-Kleinanlegerstrategie besondere Beachtung erhalten müssten) provisionsbasierte Modelle meist kostengünstiger sind als Honorarmodelle. [mehr]

ifa informiert:
Die Rolle der lebenslangen Rente in der geförderten Altersvorsorge

Produkte, die kein lebenslanges Einkommen bieten, sind viel riskanter als sie auf den ersten Blick erscheinen. Eine lebenslange Rente sichert das Risiko ab, welches daraus resultiert, dass niemand wissen kann, wie alt er oder sie wird, und daher nicht planen kann, bis zu welchem Alter die regelmäßigen Ausgaben finanziert werden müssen. [mehr]

Neuigkeiten in Kürze:

Value for Money bei Altersvorsorgeprodukten [mehr]

Update des Branchenstandards für PRIIP der Kategorie 4 erfordert Modellanpassungen [mehr]

Eiopa zu differenziertem Pricing in Schaden/Unfall [mehr]

Forschungsarbeiten zu Solvency II mit PwC Insurance Nord Preis ausgezeichnet [mehr]

Fondsgebundene Rückdeckungsversicherung in der Unterstützungskasse  [mehr]